3
Views
22
CrossRef citations to date
0
Altmetric
Original Article

Transmitter and Peptide Systems in Areas Involved in the Control of Blood Pressure

, , , , , , , , , & show all
Pages 23-41 | Published online: 03 Jul 2009

References

  • Dahlström A, Fuxe K. Evidence of the existence of monoamine containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta physiol. scand. 1964; 62(Suppl. 232)1–55
  • Central nervous system mechanisms in hypertension. Perspectives in Cardiovascular Research, A.M. Katz, JO Buckley, CM Ferrario. Raven Press, New York 1981; Vol. 6
  • Fuxe K, Bolme P, Agnati L F, Jonsson G, Andersson K, Köhler C, Hökfelt T. On the role of central adrenaline neurons in central cardiovascular regulation. In Central Adrenaline Neurons. Basic Aspects and their Role in Cardiovascular Functions. Wenner-Gren Int. Symp. Ser. Vol. 33., K. Fuxe, M. Goldstein, B. Hökfelt, T. Hökfelt. Pergamon Press, Oxford 1980; pp. 161–182
  • Fuxe K, Agnati L F, Ganten D, Goldstein M, Yukimura F, Jonsson G, Bolme P, Hökfelt T, Andersson K, Härfstrand A, Unger T, Rascher W. The role of nor-adrenaline and adrenaline neuron systems and substance P in the control of central cardiovascular functions. Central Nervous System Mechanisms in Hypertension, J.P. Buckley, C.M. Ferrario. Raven Press, New York 1981; pp. 89–113
  • Hökfelt T, Fuxe K, Goldstein M, Johansson O. Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain. Brain Res. 1974; 66: 235–251
  • Hökfelt T, Goldstein M, Fuxe K, Johansson O, Verhofstad A, Steinbusch H, Penke B, Vargas J. Histochemical identification of adrenaline containing cells with special reference to neurons. Central Adrenaline Neurons. Basic Aspects and their Role in Cardiovascular Functions, K. Fuxe, M. Goldstein, B. Hökfelt, T. Hökfelt. Pergamon Press, Oxford 1980; pp. 19–47
  • Howe P RC, Costa M, Furness J B, Chalmers J. Simultaneous demonstration of phenylethanolamine N-methyl-transferase immunotluorescent and catecholamine fluorescent nerve cell bodies in the rat medulla oblongata. Neuroscience 1980; 5: 229–238
  • Hökfelt T, Lundberg J M, Skirboll L, Johansson O, Schultzberg M, Vincent S R. Coexistence of classical transmitters and peptides in neurons. Co-transmission, A.C. Cuello. MacMillan, London and Basingstoke 1982; pp. 77–126
  • Said S I, Mutt V. Polypeptide with broad biological activity: isolation from small intestine. Science 1970; 265: 84–86
  • Mutt V, Said S I. Structure of the porcine vasoactive intestinal octacosa peptide. The amino-acid sequence. Use of kallikrein in its determination. Eur. J. Biochem. 1974; 42: 581–589
  • Lundberg J M, Hedlund B, Änggård A, Fahrenkrug J, Hökfelt T, Tatemoto K, Bartfai T. Costorage of peptides and classical transmitters in neurons. Systemic Role of Regulatory Peptides, S.R. Bloom, J.M. Polak, E. Lindenlaub. Schattauer, Stuttgart, New York 1982; pp. 93–119
  • Tatemoto K, Carlqvist M, Mutt V. Neuropeptide Y - a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature (Lönd.) 1982; 296: 659–660
  • Tatemoto K, Neuropeptide Y. Complete amino acid sequence of the brain peptide. Proc. Natl. Acad. Sci. USA 1982; 79: 5485–5489
  • Lundberg J M, Terenius L, Hökfelt T, Goldstein M. High levels of neuropeptide Y (NPY) in peripheral noradrenergic neurons in various animals including man. Neurosci. Letts. 1983, submitted.
  • Lundberg J M, Terenius L, Hökfelt T, Martling C R, Tatemoto K, Mutt V, Polak J, Bloom S, Goldstein M. Neuropeptide Y (NPY)-like immunoreactivity in peripheral noradrenergic neurons and effects of NPY on sympathetic function. Acta physiol. scand. 1982b; 116: 477–480
  • Coons A H. Fluorescent antibody methods. General Cytochemical Methods, J.F. Danielli. Academic Press, New York 1958; pp. 399–422
  • Hökfelt T, Fuxe K, Goldstein M, Joh T H. Immunohistochemical localization of three catecholamine synthesizing enzymes: Aspects of methodology. Histochemistry 1973; 33: 231–254
  • Goldstein M, Anagnoste B, Freedman L S, Roffman M, Ebstein R P, Park D H, Fuxe K, Hökfelt T. Characterization localization and regulation of catecholamine synthesizing enzymes. Frontiers in Catecholamine Research, E. Usdin, S.H. Snyder. Pergamon Press, New York 1973; pp. 69–81
  • Markey K A, Kondo S, Shenkman I, Goldstein M. Purification and characterization of tyrosine hydroxylase from a clonal phaeochromocytoma cell line. Molec. Pharmacol. 1980; 17: 79–85
  • Pelletier G, Steinbusch H W, Verhofstad A. Immunoreactive substance P and serotonin present in the same dense core vesicles. Nature (Lond.) 1981; 293: 71–72
  • Tramu G, Pillez A, Leonardelli J. An efficient method of antibody elution for the successive or simultaneous location of two antigens by immunocytochemistry. J. Histochem. Cytochem. 1978; 26: 322–324
  • Hökfelt T, Johansson O, Fuxe K, Goldstein M. Catecholamine neurons - distribution and cellular localization as revealed by immunohistochemistry. Catecholamines II, U. Trendelenburg, N. Weiner. Springer Verlag, Heidelberg, New York 1983, submitted
  • Armstrong D M, Ross C A, Pickel V M, Joh T H, Reis D J. Distribution of dopamine-, noradrenaline-, and adrenaline-containing cell bodies in the rat medulla oblongata: Demonstrated by the immunocytochemical localization of catecholamine biosynthetic enzymes. J. comp. Neurol. 1982; 212: 173–187
  • Kalia M, Fuxe K, Hökfelt T, Johansson O, Lang L E, Ganten D, Cuello T, Terenius L. Distribution of neuropeptide immunoreactive nerve terminals within the sub-nuclei of the nucleus of tractus solitarius of the rat. J. comp. Neurol. 1983, in press
  • Kalia M, Sullivan J M. Brain stem projections of sensory and motor components of the vagus nerve in the rat. J. Comp. Neurol. 1982; 211: 248–264
  • Lundberg J M, Hökfelt T, Änggård A, Kimmel J, Goldstein M, Markey K. Coexistence of an avian pancreatic polypeptide (AFP) immunoreactive substance and catecholamines in some peripheral and central neurons. Acta physiol. scand. 1980; 110: 107–109
  • Hunt S P, Emson P C, Gilbert R, Goldstein M, Kimmel J R. Presence of avian pancreatic polypeptide-like immunoreactivity in catecholamine and methionine enkephalin containing neurons within the central nervous system. Neurosci. Lett. 1981; 21: 125–130
  • Jacobowitz D M, Olschcwka J A. Coexistence of bovine pancreatic polypeptide-like immunoreactivity and catecholamines in neurons of the ventral aminergic pathway of the rat brain. Brain Res. Bull. 1982; 9: 391–406
  • Lorén I, Alumets J, Håkanson R, Sundler F. Immunoreactive pancreatic polypeptide (PP) occurs in the central and peripheral nervous system: preliminary immunocytochemical observations. Cell Tissue Res. 1979; 200: 179–186
  • Olschowka J A, O'Donohue T L, Jacobowitz D M. The distribution of bovine pancreatic polypeptide-like immunoreactive neurons in rat brain. Peptides 1981; 2: 309–311
  • Lundberg J M, Terenius L, Hökfelt T, Tatemoto K. Occurrence and characterization of neuropeptide Y (NPY)-like immunoreactivity and its relation to certain other peptides (APP, BPP, γ-MSH and FMRF-amine). J. Neuroscience 1983, submitted
  • Everitt B J, Hökfelt T, Terenius L, Tatemoto K, Mutt V, Goldstein M. Differential coexistence of neuropeptide Y (NPY)-like immunoreactivity with catecholamines in the central nervous system of the rat. Neuroscience 1983, in press
  • Carraway R, Leeman S E. The isolation of a new hypotensive peptide, neurotensin, from bovine hypothalami. J. biol. Chem. 1973; 248: 6854–6861
  • Uhl G R, Goodman R R, Snyder S H. Neurotensin-containing cell bodies fibers and nerve terminals in the brainstem of the rat. Immunohistochemical mapping 1979; 167: 77–91
  • Jennes L, Stumpf W E, Kalivas P W. Neurotensin: Topographical distribution in rat brain by immunohisto-chemistry. J. comp. Neurol. 1982; 210: 211–224
  • Hökfelt T, Everitt B J, Theodorsson-Norheim E, Goldstein M. Occurrence of neurotensin-like immunoreactivity in hypothalamic and medullary catecholamine neurons. J. comp. Neurol. 1983, submitted
  • Quirion R, Rioux F, St-Pierre S, Belanger F, Jolicoeur F B, Barbeau A. Hypotensive effects of centrally and peripherally administered neurotensin and neurotensin derivates in rats. Neuropeptide 1981; 1: 253–259
  • Rioux Quirion RR, St-Pierre S, Regoli D, Jolicoeur F, Belanger F, Barbeau A. The hypotensive effect of centrally administered neurotensin in rats. Eur. J. Pharmac. 1981; 69: 241–247
  • Sumners C, Phillips M I, Richards E M. Central pressor action of neurotensin in conscious rats. Hypertension 1982; 4: 888–893
  • Fuxe K, Agnati L F, Härfstrand A, Zini I, Tatemoto K, Pich E, Hökfelt T, Mutt V, Terenius L. Central administration of neuropeptide Y induces hypotension bradypnea and EEG synchronization in the rat. Acta physiol. scand. 1983; 118: 189–192
  • Agnati L F, Fuxe K, Benfenati F, Battistini N, Härfstrand A, Tatemoto K, Hökfelt T, Mutt V. Neuropeptide Y in vitro selectively increases the number of a α2-adrenergic binding sites in membranes of the medulla oblongata of the rat. Acta physiol. scand. 1983; 118: 293–295
  • Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. Academic Press, Sydney 1982

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.