73
Views
83
CrossRef citations to date
0
Altmetric
Original Article

The Broad Substrate Specificity of Human Angiotensin I Converting Enzyme

&
Pages 243-259 | Published online: 03 Jul 2009

References

  • Erdös E G, Yang H YT. An enzyme in microsomal fraction of kidney that inactivates bradykinin. Life Sci 1967; 6: 569–574
  • Erdös E G, Yang H YT. Inactivation and potentiation of the effects of bradykinin. Hypotensive Peptides, E G Erdös, N Back, F Sicuteri. Springer-Verlag, New York 1966; 235–250
  • Erdös E G. Kininases. Handbook of Experimental Pharmacology, E G Erdös. Springer-Verlag, Heidelberg 1979; 427–487, (vol 25 suppl)
  • Erdös E G, Skidgel R A. Structure and functions of human angiotensin I converting enzyme (kininase II). Biochem Soc Trans 1985; 13: 42–44
  • Defendini R, Zimmerman E A, Weare J A, Alhenc-Gelas F., Erdös E G. Angiotensin-converting enzyme in epithelial and neuroepithelial cells. Neuroendocrinol. 1983; 37: 32–40
  • Johnson A R, Skidgel R A, Gafford J T, Erdös E G. Enzymes in placental microvilli: Angiotensin I converting enzyme, angiotensinase A, carboxypeptidase, and neutral endopeptidase (“Enkephalinase”). Peptides 1984; 5: 789–796
  • Erdös E G. Angiotensin I converting enzyme. Circ Res 1975; 36: 247–255
  • Igic R, Robinson C JB, Erdös E G. Angiotensin I converting enzyme activity in the choroid plexus and in the retina. Central Actions of Angiotensin and Related Hormones, J P Buckley, C M Ferrario. Pergamon Press, New York 1977; 23–27
  • Rix E, Ganten D, Schüll B, Unger T H, Taugner R. Convertingenzyme in the choroid plexus, brain, and kidney: Immunocytochemical and biochemical studies in rats. Neuro-science Lett 1981; 22: 125–130
  • Erdös E G, Schulz W W, Gafford J T, Defendini R. Neutral metalloendopeptidase in human male genital tract. Comparison to angiotensin I-converting enzyme. Lab Invest 1985; 52: 437–447
  • Yasui T, Alhenc-Gelas F, Corvol P, Menard J. Angiotensin I-converting enzyme in amniotic fluid. J Lab Clin Med 1984; 104: 741–751
  • The Renin Angiotensin System in the Brain, D. Ganten, M. Printz, M I Phillips, B A Schölkens. Springer-Verlag, Heidelberg 1982
  • Lantz I, Terenius L. High enkephalyl peptide degradation, due to angiotensin-converting enzyme-like activity in human CSF. FEBS Lett 1985; 193: 31–34
  • Palenker J, Lentzen H, Brandt U. Enkephalin degradation by enkephalinergic neuroblastoma cells. Involvement of angiotensin-converting enzyme. Naunyn-Schmiedeberg's Arch Pharmacol. 1984; 325: 214–217
  • Norman J. Chang J-Y Proteolytic conversion of [Met]-enkephalin-Arg6-Gly7-Leu8 by brain synaptic membranes. J Biol Chem 1985; 260: 2653–2656
  • Yang H-Y T, Majane E, Costa E. Conversion of [Met5]-enkephalinArg6-Phe7 to [Met5]-enkephalin by dipeptidyl carboxypeptidase. Neuropharmacology 1981; 20: 891–894
  • Skidgel R A, Engelbrecht S, Johnson A R, Erdös E G. Hydrolysis of substance P and neurotensin by converting enzyme and neutral endopeptidase. Peptides 1984; 5: 769–776
  • Inokuchi J-I, Nagamatsu A. Tripeptidyl carboxypeptidase activity of kininase II (Angiotensin-converting enzyme). Biochim Biophys Acta 1981; 662: 300–307
  • Marasco W A, Phan S H, Krutzsch H, Showell H J, Feltner D E, Nairn R, Becker E L, Ward P A. Purification and identification of formyl-methionyl-leucyl-phenylalanine as the major peptide neutrophil chemotactic factor produced by Escherichia coli. J Biol Chem 1984; 259: 5430–5439
  • Mendelsohn F AO, Chai S Y, Dunbar M. In vitro autoradiographic localization of angiotensin-converting enzyme in rat brain using 125I-labelled MK351A. J Hypertension 1984; 2(suppl 3)41–44
  • Gale J S, Bird E D, Iversen L L, Jessel T. Human brain substance P: distribution in controls and Huntington's chorea. J Neurochem 1978; 30: 633–634
  • Cascieri M A, Bull H G, Mumford R A, Patchett A A, Thornberry N A, Liang T. Tripeptidyl carboxyl-terminal hydrolysis of substance P by purified rabbit lung angiotensin-converting enzyme and the potentiation of substance P activity in vivo by captopril and MK-422. Mol Pharmacol 1984; 25: 287–293
  • Yokosawa H, Endo S, Ogura Y, Ishii S. A new feature of angiotensin-converting enzyme in the brain: hydrolysis of substance P. Biochem Biophys Res Commun 1983; 116: 735–742
  • Bünning P, Holmquist B, Riordan J F. Functional residues at the active site of angiotensin converting enzyme. Biochem Biophys Res Commun 1978; 83: 1442–1449
  • Skidgel R A, Erdös E G. Novel activity of human angiotensin I converting enzyme: Release of the NH2− and COOH-terminal tripeptides from the luteinizing hormone-releasing hormone. Proc Natl Acad Sci USA 1985; 82: 1025–1029
  • Advis J P, Krause J E, McKelvy J F. Luteinizing hormone-releasing hormone peptidase activities in the female rat: characterization by an assay based on high-performance liquid chromatography. Anal Biochem 1982; 125: 41–49
  • Horsthemke B, Knisatschek H, Rivier J, Sandow J, Bauer K. Degradation of luteinizing hormone-releasing hormone and analogs by adenohypophyseal peptidases. Biochem Biophys Res Commun 1981; 100: 753–759
  • Hersh L B, Gafford J T, Powers J C, Tanaka T, Erdös E G. Novel substrates for angiotensin I converting enzyme. Biochem Biophys Res Commun 1983; 110: 654–659
  • Yang H YT, Erdös E G. Second kininase in human blood plasma. Nature 1967; 215: 1402–1403
  • Ferreira S H. A bradykinin-potentiating factor (BPF) present in the venom of Bothrops jararaca. Br J Pharmacol 1965; 24: 163–169
  • Kato H, Suzuki T. Bradykinin-potentiating peptides from the venom of Agkistrodon halys blomhoffii. Isolation of five bradykinin potentiators and the amino acid sequences of two of them, potentiators B and C. Biochemistry 1971; 10: 972–980
  • Cushman D W, Ondetti M A. Inhibitors of angiotensin-converting enzyme. Progress in Medicinal Chemistry, G P Ellis, G B West. Elsevier/North Holland, Amsterdam 1980; Vol. 17: 41–104
  • Patchett A A, Cordes E H. The design and properties of N-carboxyalkyldipeptide inhibitors of angiotensin-converting enzyme. Advances in Enzymology and Related Areas of Molecular Biology, A Meister. John Wiley & Sons, Inc., New York 1985; Vol. 57: 1–84
  • Stine S M, Yang H YT, Costa E. Inhibition of in situ metabolism of [3H] (Met5)-enkephalin and potentiation of (Met5)-enkephalin analgesia by captopril. Brain Res 1980; 188: 295–299
  • Aoki K, Kajiwara M, Oka T. The role of bestatin-sensitive aminopeptidase, angiotensin converting enzyme and thiorphan-sensitive “enkephalinase” in the potency of enkephalins the guinea-pig ileum. Japan J Pharmacol 1984; 36: 59–65
  • Aoki K, Kajiwara M, Oka T. The inactivation of [Met5]-enkephalin by bestatin-sensitive aminopeptidase, captopril-sensitive peptidyl dipeptidase A and thiorphan-sensitive endopeptidase-24. 11 in mouse vas deferens. Japan J Pharmacol 1986; 40: 297–302
  • Manwaring D, Mullane K. Disappearance of enkephalins in the isolated perfused rat lung. Life Sci 1984; 35: 1787–1794
  • DiNicolantonio R, Hutchinson J S, Takata Y, Veroni M. Captopril potentiates the vasodepressor action of Metenkephalin in the anaesthetized rat. Br J Pharmac 1983; 80: 405–408
  • Norman J A, Autry W L, Barbaz B S. Angiotensin-converting enzyme inhibitors potentiate the analgesic activity of [Met]-enkephalin-Arg -Phe by inhibiting its degradation in mouse brain. Mol Pharmacol 1985; 28: 521–526
  • Benuck M, Berg M J, Marks N. Separate metabglic pathways for Leu-enkephalin and Met-enkephalin-Arg -Phe degradation by rat striatal synaptosomal membranes. Neurochem Internat 1982; 389–396
  • Demmer W, Brand K. Processing and degradation of Metenkephalin by peptidases associated with rat brain cortical synaptosomes. Arch Biochem Biophys 1983; 227: 310–320
  • Chou J, Tang J, Costa E. Met5-enkephalin-Arg6-Phe7 content of human and rabbit plasma. Life Sci 1983; 32: 2589–2595
  • Benuck M, Berg M J, Marks N. Membrane-bound enzymes and their role in processing of the dynorphins and of the proenkephalin octapeptide Met-enkephalin-Arg-Gly-Leu. Neurochem Res 1984; 9: 733–749
  • Couture R, Regoli D. Inactivation of substance P and its C-terminal fragments in rat plasma and its inhibition by captopril. Can J Physiol Pharmacol 1981; 59: 621–625
  • Cannon D EB, Skrabanek P, Powell D. Difference in behaviour between synthetic and endogenous substance P in human plasma. Naunyn-Schmiedeberg's Arch Pharmacol 1979; 307: 251–255
  • Checler F, Vincent J-P, Kitabgi P. Degradation of neurotensin by rat brain synaptic membranes: involvement of a thermolysin-like metalloendopeptidase (enkephalinase), angiotensin-converting enzyme, and other unidentified peptidases. J Neurochem 1983; 41: 375–384
  • Zubenko G S, Nixon R A. Mood-elevating effect of captopril in depressed patients. Am J Psychiatry 1984; 141: 110–111

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.