114
Views
37
CrossRef citations to date
0
Altmetric
Review Article

Selective Neural Regulation of Epinephrine and Norepinephrine Cells in the Adrenal Medulla-Cardiovascular Implications

Pages 731-751 | Published online: 03 Jul 2009

References

  • Young J. B, Rosa R. M, Landsberg L. Dissociation of sympathetic nervous system and adrenal medullary responses. Am. J. Physiol. 1984; 247: E35–40
  • Folkow B., von Euler U S. Selective activation of nonadrenaline and adrenaline producing cells in the cat's adrenal gland by hypothalamic stimulation Circ. Res. 1954; 2: 191–5
  • Hillarp N. A, Hokfelt B. Evidence of adrenaline and noradrenaline in separate adrenal medullary cells Acta Physiol. Scand. 1953; 30: 55–68
  • Verhofstad A. A.J, Coupland R. E, Parker T. R, Goldstein M. Immunohistochemical and biochemical study of the development of the noradrenaline- and adrenaline-storing cells of the adrenal medulla of the rat. Cell Tissue Res. 1985; 242: 233–43
  • Seidl K., Unsicker K. The determination of the adrenal medullary cell fate during embryogenesis Dev. Biol. 1989; 136: 481–90
  • Michelsohn A. M, Anderson D. J. Changes in competence determine the timing of two sequential glucocorticoid effects on sympathoadrenal progenitors. Neuron 1992; 8: 589–604
  • Coupland R. E, Tomlinson A. The development and maturation of adrenal medullary chromaffin cells of the ratin vivo: A descriptive and quantitative study Int. J. Devel. Neurosci. 1989; 7: 419–38
  • Tomlinson A., Durbin J., Coupland R. E. A quantitative analysis of rat adrenal chromaffin tissue: morphometric analysis at tissue and cellular level correlated with catecholamine content. Neuroscience 1987; 20: 895–904
  • Serck-Hanssen G, Sovik O. Specific insulin binding in bovine chromaffin cells: demonstration of preferential binding to adrenal-storing cells. Life Sci. 1987; 41: 2799–806
  • Marley P. D, Bunn S. J, Wan D. C.C, Allen A. M, Mendelsohn F A.O. Localization of angiotensin II binding sites in the bovine adrenal medulla using a labelled specific antagonist. Journal of Neuroscience 1989; 28: 777–87
  • Togashi H., Yoshioka M., Tochihara M., Matsumoto M., Saito H. Differential effect of hemorrhage on adrenal and renal nerve activity in anesthetized rats. Am. J. Physiol. 1990; 259: H1134–41
  • Higuchi S., Morgan D. A, Mark A. L. Contrasting reflex effects of chemosensitive and mechanosensitive vagal afferents. Journal of Hypertension 1988; 11: 674–9
  • Schramm L. P, Adair J. R, Stribling J. M, Gray L. P. Preganglionic innervation of the adrenal gland of the rat: a study using horseradish peroxidase. Experimental Neurobiology 1975; 49: 540–53
  • Kesse W. K, Parker T. L, Coupland R. E. The innervation of the adrenal gland I The source of pre- and postganglionic nerve fibres to the rat adrenal gland. J. Anat. 1988; 157: 33–41
  • Jansen A. S.P, Nguyen X. V, Karpitskiy V., Mettenleiter T. C, Loewy A. D. Central command neurons of the sympathetic nervous system: basis of the fight-or-flight response. Science 1995; 270: 644–6
  • Jensen I., Pilowsky P., Llewellyn-Smith I, Minson J., Chalmers J. Sympathetic preganglionic neurons projecting to the adrenal medulla and aorticorenal ganglion in the rabbit. Brain Res. 1992; 586: 125–9
  • Appel N. M, Elde R. P. The intermediolateral cell column of the thoracic spinal cord is comprised of target-specific subnuclei: evidence from retrograde transport studies and immunohistochemistry. Journal of Neuroscience 1988; 8: 1767–75
  • Tomlinson A., Coupland R. E. The innervation of the adrenal gland Innervation of the rat adrenal medulla from birth to old age. A descriptive and quantitative morphometric and biochemical study of the innervation of chromaffin cells and adrenal medullary neurons in Wistar rats. J. Anat. 1990; 169: 209–36
  • Pyner S., Coote J. H. Evidence that sympathetic preganglionic neurones are arranged in target-specific columns in the thoracic spinal cord of the rat J. Comp. Neurol. 1994; 342: 15–22
  • Holets V., Elde R. The differential distribution and relationship of serotoninergic and peptidergic fibers to sympathoadrenal neurons in the intermediolateral cell column of the rat: a combined retrograde axonal transport and immunoflourescence study. Journal of Neuroscience 1982; 7: 1155–74
  • Marley P. D, Prout G. I. Physiology and pharmacology of the splanchnic-adrenal medullary junction J. Physiol. 1965; 180: 483–513
  • Grynszspan-Winograd O. Adrenaline and noradrenaline cells in the adrenal medulla of the hamster: a morphological study of their innervation. Journal of Neurocytology 1974; 3: 341–61
  • Edwards S. L, Anderson C. R, Southwell B. R, McAllen R. M. Distinct preganglionic neurons innervate noradrenaline and adrenaline cells in the cat adrenal medulla. Neuroscience 1996; 70: 825–32
  • Matsui H. Adrenal medullary secretory response to stimulation of the medulla oblongata in the rat. Neuroendocrinology 1979; 29: 385–90
  • Matsui H. Adrenal medullary secretory response to pontine and mesencephalic stimulation in the rat. Neuroendocrinology 1981; 33: 84–7
  • Matsui H. Adrenal medullary secretion in response to diencephalic stimulation in the rat. Neuroendocrinology 1984; 38: 164–8
  • Jansen A. S.P, Farwell D. G, Loewy A. D. Specificity of pseudorabies virus as a retrograde marker of sympathetic preganglionic neurons: implications for transneuronal labeling studies. Brain Res. 1993; 617: 103–12
  • Strack A. M, Sawyer W. B, Marubio L. M, Loewy. Spinal origin of sympathetic preganglionic neurons in the rat. Brain Res. 1988; 455: 187–91
  • Strack A. M, Sawyer W. B, Platt K. B, Loewy A. D. CNS cell groups regulating the sympathetic outflow to adrenal gland as revealed by transneuronal cell body labeling with pseudorabies virus. Brain Res. 1989; 491: 274–96
  • Strack A. M, Sawyer W. B, Hughes J. H, Platt K. B, Loewy A. D. A general pattern of CNS innervation of the sympathetic outflow demonstrated by transneuronal pseudorabies viral infections. Brain Res. 1989; 491: 156–62
  • Wesselingh S. L, Li Y. W, Blessing W. W. PNMT-containing neurons in the rostral medulla oblongata (C1, C3 groups) are transneuronally labelled after injection of herpes simplex virus type 1 into the adrenal gland Neurosci. Let. 1989; 106: 99–104
  • Ross C. A, Ruggiero D. A, Park D. H, Joh T. H, Sved A. F, Fernandez-Pardal J., Saavedra J. M, Reis D. J. Tonic vasomotor control by the rostral ventrolateral medulla: effect of electrical or chemical stimulation of the area containing C1 adrenaline neurons on arterial pressure, heart rate and plasma catecholamines and vasopressin. Journal of Neuroscience 1984; 4: 474–94
  • Merkin B. L. Factors influencing the selective secretion of adrenal medullary hormones Am. J. Physiol. 1961; 132: 218–25
  • Carbonaro D. A, Mitchell J. P, Hall F. L, Vulliet P. R. Altered reactivity of the rat adrenal medulla Brain Res. Bull. 1988; 21: 451–8
  • Coupland R. E. The effects of insulin, reserpine and 2,6-xylyetherbromide on the adrenal medulla and medullary autografts in the rat J. Endocrinol. 1958; 17: 191–6
  • Gagner J. P, Gauthier S., Sourkes T. L. Descending spinal pathways mediating the responses of adrenal tyrosine hydroxylase and catecholamines to insulin and 2-deoxyglucose. Brain Res. 1985; 325: 187–97
  • Vollmer R. R, Baruchin A., Kolibal-Pegher S S, Corey S. P, Stricker E. M, Kaplan B. B. Selective activation of norepinephrine- and epinephrine- secreting chromaffin cells in rat adrenal medulla. Am. J. Physiol. 1992; 263: R716–21
  • Scheurink A., Ritter S. Sympathoadrenal responses to glucoprivation and lipoprivation in rats J. Neurochem. 1993; 50: 1302–8
  • Patrick R. L, Kirshner N. Effect of stimulation on the levels of tyrosine hydroxylase, dopamine beta-hydroxylase, and catecholamines in intact and denervated rat adrenal glands Mol. Pharmacol. 1971; 7: 87–96
  • Carlsson M., Carlsson A. Effects of mild stress on adrenal and heart catecholamines in male and female rats. Journal of Neural Transmission 1989; 77: 217–26
  • Lau C., Ross L. L, Whitmore W. L, Slotkin T. A. Regulation of adrenal chromaffin cell development by the central monoaminergic system: differential control of norepinephrine and epinephrine levels and secretory responses. Neuroscience 1987; 22: 1067–75
  • Sun C. L, Thoa N. B, Kopin I. J. Comparison of the effects of 2-doxyglucose and immobilization on plasma levels of catecholamines and corticosterone in awake rats J. Endocrinol. 1979; 105: 305–11
  • Pendleton R. G, Weiner G., Jenkins B., Gessner G. The effects of an inhibitor of phenylethanolamine N-Methyltransferase upon stimulated adrenal catecholamine release and excretion in the rat Naunyn Schmiedebergs Arch. Pharmacol. 1977; 297: 245–50
  • Niijima A. The effect of 2-deoxy-D-glucose on the efferent discharge rate of sympathetic nerves J. Physiol. 1975; 251: 231–43
  • Medvedev O. S, Delle M., Thoren P. 2-deoxy-D-glucose-induced central glycopenia differentially influences renal and adrenal nerve activity in awake SHR rats. Clin. Exp. Hypertens. 1988; A10: 375–81
  • Eranko O., Hopsu V. Effect of reserpine on the histochemistry and content of adrenaline and noradrenaline in the adrenal medulla of the rat and the mouse Acta Physiol. Scand. 1953; 62: 15–23
  • Gauthier P., Nadeau R., deChamplain J. Acute and chronic cardiovascular effects of 6-hydroxydopamine in dogs Circ. Res. 1972; 31: 207–17
  • Kolibal-Pegher S, Edwards D. J, Meyers-Schoy S A, Vollmer R. R. Adrenal medullary adaptations and cardiovascular regulation after 6-hydroxydopamine treatment in rats J. Auton. Nerv. Sys. 1994; 48: 113–20
  • Barron B. A, Van Loon G R. Role of sympathoadrenomedullary system in cardiovascular response to stress in rats J. Auton. Nerv. Sys. 1989; 28: 179–88
  • Togashi H. Central and peripheral effects of clonidine on the adrenal medullary function in spontaneously hypertensive rats J. Pharmacol. Exp. Ther. 1983; 225: 191–7
  • Edwards A. V, Jones C. T. Autonomic control of adrenal function J. Anat. 1993; 183: 291–307
  • Jarry H., Duker E. M, Wuttke W. Adrenal release of catecholamines and met-enkephalin before and after stress as measured by a novel in vivo dialysis method in the rat Neurosci. Let. 1985; 60: 273–8
  • Vaupel R., Jarry H., Schlomer H., Wuttke W. Differential response of substance P-containing subtypes of adrenomedullary cells to different stressors. Endocrinology 1988; 123: 2140–5
  • Jarry H., Dietrich M., Barthel A., Giesler A., Wuttke W. In vivo demonstration of a paracrine, inhibitory action of met-enkephalin on adrenomedullary catecholamine release in the rat J. Endocrinol. 1989; 125: 624–9
  • Medvedev O. S, Selivanov V. N, Kuz'min A I. Selective activation of adrenaline secretion by the rat adrenal in neuroglycopenia detected via microdialysis Fiziol. Zh. 1996; 76: 1172–8
  • Vollmer R R, Balcita J J, Edwards D J. Adrenal catecholamine release to hypoglycemia measured using a novel microdialysis probe in conscious rats. FASEB Journal 1996; 10: A161, [Abstract]
  • Guo X., Wakade A. R. Differential secretion of catecholamines in response to peptidergic and cholinergic transmitters in rat adrenals J. Physiol. 1994; 475: 539–45
  • Malhotra R. K, Wakade A. R. Non-cholinergic component of rat splanchnic nerves predominates at low neuronal activity and is eliminated by naloxone J. Physiol. 1987; 383: 639–52
  • Gaspo R., Yamaguchi N., deChamplain J. Correlation between neural release of VIP and adrenomedullary catecholamine secretion in vivo. Am. J. Physiol. 1995; 268: R1449–55
  • Wakade T. D, Blank M. A, Malhotra R. K, Pourcho R., Wakade A. R. The peptide VIP is neurotransmitter in rat adrenal medulla-physiological role in controlling catecholamine secretion J. Physiol. 1991; 444: 349–62
  • Feldberg W., Lewis G. P. The action of peptides on the adrenal medulla Release of adrenaline by bradykinin and angiotensin. J. Physiol. 1964; 171: 98–108
  • Peach M. J, Cline W. H, Watts D. T. Release of adrenal catecholamines by angiotensin II Circ. Res. 1966; 19: 571–5
  • Vollmer R. R, Corey S. P, Fluharty S. J. Angiotensin II facilitation of pressor responses to adrenal field stimulation in pithed rats Am. J. Physiol. 1988; 254: R95–R101
  • Vollmer R. R, Corey S. P, Meyers S. A, Stricker E. M, Fluharty S. J. Angiotensin augments epinephrine release in pithed rats fed a low-sodium diet. Am. J. Physiol. 1990; 27: R187–92
  • Choi A. Y, Cahill A. L, Perry B. D, Perlman R. L. Histamine evokes greater increases in phosphatidylinositol metabolism and catecholamine secretion in epinephrine-containing chromaffin cells J. Neurochem. 1993; 61: 541–9
  • Feuerstein G., Boonyaviroj P., Gutman Y. Renin-angiotensin mediation of adrenal catecholamine secretion induced by haemorrhage Eur. J. Pharmacol. 1977; 44: 131–42
  • Feuerstein G., Cohen S. Modification by SQ 14225 of blood pressure and adrenal catecholamine response to hemorrhage Eur. J. Pharmacol. 1979; 55: 203–6
  • Vincent H. H, Boomsma F., Man in'tVeld A J, Schalekamp M A.D.H. Stress levels of adrenaline amplify the blood pressure response to sympathetic stimulation. Journal of Hypertension 1986
  • Floras J. S, Aylward P. E, Mark A. L, Abboud F. M. Adrenaline facilitates neurogenic vasoconstriction in borderline hypertensive subjects. Journal of Hypertension 1990; 8: 443–8
  • Guimaraes S, Brandao F., Paiva M. Q. A study of the adrenoceptor-mediated feedback mechanisms by using adrenaline as a false transmitter Naunyn Schmiedebergs Arch. Pharmacol. 1978; 305: 185–8
  • Majewski H., Rand M. J, Tung L. H. Activation of prejunctional B-adrenoceptors in rat atria by adrenaline applied exogenously or released as a co-transmitter Br. J. Pharmacol. 1981; 73: 669–79
  • Berecek K. H, Brody M. J. Evidence for a neurotransmitter role for epinephrine derived from the adrenal medulla. Am. J. Physiol. 1982; 242: H593–601
  • Sherwin R. S, Sacca L. Effect of epinephrine on glucose metabolism in humans: contribution of the liver. Am. J. Physiol. 1984; 247: E157–65
  • Hilsted J., Bonde-Petersen F, Norgaad M. B, Greniman M., Christensen N. J, Parving H. H, Suzuki M. Haemodynamic changes in insulin-induced hypoglycaemia in normal man. Diabetologia 1984; 26: 328–32
  • Neil H. A.W, Gale E. A.M, Hamilton S. J.C, Lopez-Espinoza I, Kaura R., McCarthy S. T. Cerebral blood flow increases during insulin-induced hypoglycemia in type 1 (insulin-dependent) diabetic patients and control subjects. Diabetologia 1987; 30: 305–9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.