24
Views
17
CrossRef citations to date
0
Altmetric
Original Article

Renal Medullary Blood Flow and Renal Medullary Antihypertensive Mechanisms

, , &
Pages 1-26 | Received 08 Apr 1996, Accepted 19 May 1997, Published online: 03 Jul 2009

References

  • Grollman A., Muirhead E. E., Vanatta J. Role of the kidney in pathogenesis of hypertension as determined by a study of the effects of bilateral nephrectomy and other experimental procedures on the blood pressure of the dog. Am J Physiol 1949; 157: 21–30
  • Fasciolo J. C. Historical background on the renin-angiotensin system. Hypertension, J Genest, E Koiw, O Kuchel. McGraw-Hill, New York 1977; 134–139
  • Muirhead E. E., Stirman J. A., Lesch W., Jones F. The reduction of postnephrectomy hypertension by renal homotransplant. Surg Gyn Obst 1956; 103: 673–686
  • Ledingham J. M., Cohen R. D. Circulatory changes during the reversal of experimental hypertension. Clin Sci 1962; 22: 69–77
  • Liard J. F., Peters G. Role of the retention of water and sodium in two types of experimental renovascular hypertension in the rat. Pflugers Archiv-European J Physiol 1973; 344: 93–108
  • Lundgren Y. Regression of structural cardiovascular changes after reversal of experimental renal hypertension in rats. Acta Physiol Scand 1974; 91: 275–285
  • Hallbäck-Nordlander M., Noresson E., Lundgren Y. Haemodynamic alterations after reversal of renal hypertension in rats. Clin Sci 1979; 57(Suppl 5)15s–17s
  • Göthberg G., Thoren P. Suppression of the sympathetic nerve activity after surgical reversal of two-kidney, one clip hypertension in rats. J Hypertens Suppl 1984; 2: S355–S357
  • Russell G. I., Godfrey N. P., Forsling M. L., Bing R. F., Thurston H., Swales J. D. Selective renal medullary damage and hypertension in the rat: the role of vasopressin. Clin Sci 1986; 71: 167–171
  • Brice J. M., Russell G. I., Bing R. F., Swales J. D., Thurston H. Surgical reversal of renovascular hypertension in rats: changes in blood pressure, plasma and aortic renin. Clin Sci 1983; 65: 33–36
  • Russell G. I., Bing R. F., Swales J. D., Thurston H. Indomethacin or aprotinin infusion: effect on reversal of chronic two-kidney, one-clip hypertension in the conscious rat. Clin Sci 1982; 62: 361–366
  • Russell G. I., Bing R. F., Thurston H., Swales J. D. Surgical reversal of two-kidney one clip hypertension during inhibition of the renin-angiotensin system. Hypertension 1982; 4: 69–76
  • Smith A. J., Gerkens J. F., Dosen P. WEB-2086 and indomethacin do not modify blood pressure fall on unclipping hypertensive rats. Clin Exp Pharmacol Physiol 1994; 21: 413–416
  • Bing R. F., Russell G. I., Swales J. D., Thurston H., Fletcher A. Chemical renal medullectomy; effect upon reversal of two-kidney, one-clip hypertension in the rat. Clin Sci 1981; 61(Suppl 7)335s–338s
  • Beierwaltes W. H., Potter D. L., Carretero O. A., Sigmon D. H. Nitric oxide synthesis inhibition blocks reversal of two-kidney, one clip renovascular hypertension after unclipping. Hypertension 1995; 25: 174–179
  • Ma Y. H., Dunham E. W. Postunclipping renal blood flow in one-kidney, one-clip hypertensive rats. Am J Physiol 1990; 258: H165–H172
  • Göthberg G., Nordlander M., Lundgren Y. Peripheral haemodynamics after surgical reversal of two-kidney, one clip renal hypertension in rats. J Hypertens Suppl 1986; 4: S399–S402
  • Edmunds M. E., Russell G. I., Bing R. F. Reversal of experimental renovascular hypertension. J Hypertens 1991; 9: 289–301
  • Göthberg G., Karlström G. Physiological effects of the humoral renomedullary antihypertensive system. Am J Hypertens 1991; 4: 569S–574S
  • Muirhead E. E. Renal vasodepressor mechanisms: the medullipin system. J Hypertens Suppl 1993; 11(Suppl 5)S53–S58
  • Bergström G., Rudenstam J., Creutz J., Göthberg G., Karlström G. Renal and haemodynamic effects of nitric oxide blockade in a Wistar assay rat during high pressure cross-circulation of an isolated denervated kidney. Acta Physiol Scand 1995; 154: 241–252
  • Rudenstam J., Bergström G., Göthberg G., Karlström G. Efferent renal nerve stimulation inhibits the antihypertensive function of the rat renal medulla when studied in a cross-circulation model. Acta Physiol Scand 1995; 155: 183–191
  • Karlström G., Arnman V., Bergström G., Muirhead E. E., Rudenstam J., Göthberg G. Renal and circulatory effects of medullipin I, as studied in the in-vivo cross-circulated isolated kidney and intact Wistar-Kyoto (WKY) rat. Acta Physiol Scand 1989; 137: 521–533
  • Göthberg G., Lundin S., Folkow B. Acute vasodepressor effect in normotensive rats following extracorporal perfusion of the declipped kidney of two-kidney, one clip hypertensive rats. Hypertension 1982; 4: II-101–II-105
  • Göthberg G., Lundin S., Folkow B., Thoren P. Suppression of tonic sympathetic nerve activity by depressor agents released from the declipped kidney. Acta Physiol Scand 1982; 116: 93–95
  • Karlström G., Bergström G., Folkow B., Rudenstam J., Göthberg G. Is the humoral renal antihypertensive activity of the spontaneously hypertensive rat (SHR) reset to the high blood pressure?. Acta Physiol Scand 1991; 141: 517–530
  • Christy I. J., Woods R. L., Courneya C. A., Denton K. M., Anderson W. P. Evidence for a renomedullary vasodepressor system in rabbits and dogs. Hypertension 1991; 18: 325–333
  • Christy I. J., Woods R. L., Anderson W. P. Mediators of the hypotensive response to increased renal perfusion in rabbits. Hypertension 1993; 21: 149–154
  • Thomas C. J., Woods R. L., Gao Y., Anderson W. P. Pressure range for release of renomedullary depressor substance in rabbits. Hypertension 1994; 23: 639–645
  • Rudenstam J., Bergström G., Taghipour K., Göthberg G., Karlström G. Efferent renal sympathetic nerve stimulation in vivo.Effects on regional renal haemodynamics in the Wistar rat, studied by laser-Doppler technique. Acta Physiol Scand 1995; 154: 387–394
  • Folkow B. Hypertensive structural changes in systemic precapillary resistance vessels: how important are they for in vivo haemodynamics?. J Hypertens 1995; 13: 1546–1559
  • Swales J. D., Bing R. F., Edmunds M. E., Russell G. I. Renal vasodepressor mechanism: characterization by chemical medullectomy. Am J Med Sci 1988; 295: 241–245
  • Sabatini S. The pathophysiology of experimentally induced papillary necrosis. Seminars in Nephrology 1984; 4: 27–39
  • Murray G., Wyllie R. G., Hill G. S., Ramsden P. W., Heptinstall R. H. Experimental papillary necrosis of the kidney. I. Morphologic and functional data. Am J Pathol 1972; 67: 285–302
  • Bergström G., Bohman S. O., Folkow B., Göthberg G., Rudenstam J., Karlström G. Influence of the renal medulla and early treatment with enalapril upon the development of hypertension in young spontaneously hypertensive rats. J Hypertens 1992; 10: 1343–1351
  • Heptinstall R. H., Salyer D. C., Salyer W. R. Experimental hypertension. The effects of chemical ablation of the renal papilla on the blood pressure of rats with and without silver-clip hypertension. Am J Pathol 1975; 78: 297–308
  • Karlström G., Arnman V., Bergström G., Bohman S. O., Rudenstam J., Göthberg G. Do angiotensin converting enzyme inhibitors lower blood pressure in the rat partly via the humorally mediated antihypertensive system of the renal medulla?. J Hypertens 1990; 8: 501–513
  • Susic D. The role of the renal medulla in blood pressure control. Am J Med Sci 1988; 295: 234–240
  • Thomas C. J., Woods R. L., Evans R. G., Alcorn D., Christy I. J., Anderson W. P. Evidence for a renomedullary vasodepressor hormone. Clin Exp Pharmacol Physiol 1996; 23: 777–785
  • Wolgast M. Renal medullary red cell and plasma flow as studied with labelled indicators and internal detection. Acta Physiol Scand 1973; 88: 215–225
  • Pallone T. L., Robertson C. R., Jamison R. L. Renal medullary microcirculation. Physiol Rev 1990; 70: 885–920
  • Kriz W. Structural organization of renal medullary circulation. Nephron 1982; 31: 290–295
  • Beeuwkes R., 3rd. Efferent vascular patterns and early vascular-tubular relations in the dog kidney. Am J Physiol 1971; 221: 1361–1374
  • Chou S. Y., Porush J. G., Faubert P. F. Renal medullary circulation: hormonal control. Kidney Int 1990; 37: 1–13
  • Aukland K. Methods for measuring renal blood flow: total flow and regional distribution. Ann Rev Physiol 1980; 42: 543–555
  • Aukland K. Myogenic mechanisms in the kidney. J Hypertens Suppl 1989; 7: S71–S76
  • Wolgast M. Studies on the regional renal blood flow with p32-labelled red cells and small beta-sensitive semiconductor detectors. Acta Physiol Scand Suppl 1968; 313: 1–109
  • Stern M. D., Bowen P. D., Parma R., Osgood R. W., Bowman R. L., Stein J. H. Measurement of renal cortical and medullary blood flow by laser-Doppler spectroscopy in the rat. Am J Physiol 1979; 236: F80–7
  • Cupples W. A., Marsh D. J. Autoregulation of blood flow in renal medulla of the rat: no role for angiotensin II. Can J Physiol Pharmacol 1988; 66: 833–836
  • Thurau K. Renal hemodynamics. Am J Med 1964; 36: 698–719
  • Cowley A. W., Jr., Mattson D. L., Lu S., Roman R. J. The renal medulla and hypertension. Hypertension 1995; 25: 663–673
  • Strick D. M., Fiksen-Olsen M. J., Lockhart J. C., Roman R. J., Romero J. C. Direct measurement of renal medullary blood flow in the dog. Am J Physiol 1994; 267: R253–R259
  • Mattson D. L., Lu S., Roman R. J., Cowley A. W.J. Relationship between renal perfusion pressure and blood flow in different regions of the kidney. Am J Physiol 1993; 264: R578–R583
  • Roman R. J., Cowley A. W., Jr., Garcia Estan J., Lombard J. H. Pressure-diuresis in volume-expanded rats. Cortical and medullary hemodynamics. Hypertension 1988; 12: 168–176
  • Nakanishi K., Mattson D. L., Gross V., Roman R. J., Cowley A. W., Jr. Control of renal medullary blood flow by vasopressin V1 and V2 receptors. Am J Physiol 1995; 269: R193–R200
  • Mattson D. L., Roman R. J. Role of kinins and angiotensin II in the renal hemodynamic response to captopril. Am J Physiol 1991; 260: F670–F679
  • Nobes M. S., Harris P. J., Yamada H., Mendelsohn F. A. Effects of angiotensin on renal cortical and papillary blood flows measured by laser-Doppler flowmetry. Am J Physiol 1991; 261: F998–1006
  • Huang C. L., Davis G., Johns E. J. A study of the action of angiotensin II on perfusion through the cortex and papilla of the rat kidney. Exp Physiol 1991; 76: 787–798
  • Mattson D. L., Roman R. J., Cowley A. W.J. Role of nitric oxide in renal papillary blood flow and sodium excretion. Hypertension 1992; 19: 766–769
  • Bergström G., Rudenstam J., Taghipour K., Göthberg G., Karlström G. Effect of nitric oxide and renal nerves on renomedullary haemodynamics in SHR and Wistar rats, studied with laser doppler technique. Acta Physiol Scand 1996; 156: 27–36
  • Hermansson K., Ojteg G., Wolgast M. The cortical and medullary blood flow at different levels of renal nerve activity. Acta Physiol Scand 1984; 120: 161–169
  • Bohman S. O. The ultrastructure of the rat renal medulla as observed after improved fixation methods. J Ultrastruct Res 1974; 47: 329–360
  • Bohman S. O. The Ultrastucture of the Renal Medulla and the Interstitial Cells. The renal medulla, A K Mandal, S O Bohman, 1980; 7–33
  • Bulger R. E., Tisher C. C., Myers C. H., Trump B. F. Human renal ultrastructure II. The thin limb of Henle's loop and the interstitium in healthy individuals. Lab Invest 1967; 16: 124–141
  • Kriz W. Structural organization of the renal medulla: comparative and functional aspects. Am J Physiol 1981; 241: R3–16
  • Zhuo J., Alcorn D., Allen A. M., Mendelsohn F. A. High resolution localization of angiotensin II receptors in rat renal medulla. Kidney Int 1992; 42: 1372–1380
  • Dunn M. J., Staley R. S., Harrison M. Characterization of prostaglandin production in tissue culture of rat renal medullary cells. Prostaglandins 1976; 12: 37–49
  • Pitcock J. A., Brown P. S., Byers W., Brooks B., Muirhead E. E. Degranulation of renomedullary interstitial cells during reversal of hypertension. Hypertension 1981; 3: II-75–80
  • Mandal A. K., Frohlich E. D., Chrysant K., Pfeffer M. A., Yunice A., Nordquist J. A. Ultrastructural analysis of renal papillary interstitial cell of spontaneously hypertensive rats. J Lab Clin Med 1974; 83: 256–262
  • Pitcock J. A., Brown P. S., Rapp J. P., Crofton J., Muirhead E. E. Morphometric studies of the renomedullary interstitial cells of Dahl hypertension-prone and hypertension-resistant rats. Am J Pathol 1982; 109: 123–128
  • Muirhead E. E. Antihypertensive functions of the kidney: Arthur C. Corcoran memorial lecture. Hypertension 1980; 2: 444–464
  • Manthorpe T. Antihypertensive and hypertensive effects of the kidney. Elucidated by treatment with medullary transplants and with blockade either of the reninangiotensin-system or of the prostaglandin biosynthesis. Acta Pathol Microbiol Scand 1975; 83: 395–405
  • Manthorpe T. The effect on renal hypertension of subcutaneous isotransplantation of renal medulla from normal or hypertensive rats. Including studies on spontaneous variations in blood pressure in normal and hypertensive rats. Acta Pathol Microbiol Scand 1973; 81: 725–733
  • Solez K., D'Agostini R. J., Buono R. A., Vernon N., Wang A. L., Finer P. M., Heptinstall R. H. The renal medulla and mechanisms of hypertension in the spontaneously hypertensive rat. Am J Pathol 1976; 85: 555–568
  • Tobian L., Jr., Azar S. Antihypertensive and other functions of the renal papilla. Transactions of the Association of American Physicians 1971; 84: 281–288
  • Bergström G. The renomedullary depressor mechamism and its relation to the renin-angiotensin system and nitric oxide. Thesis, 1995; 1–56, (ISBN 91-628-1573-3)
  • Bergström G., Rudenstam J., Folkow B., Karlström G., Göthberg G. N-omega-nitro-L-arginine inhibits the humoral renomedullary vasodepressor response in a Wistar ‘assay’ rat, otherwise induced by extracorporeal high- pressure perfusion of an isolated kidney. Acta Physiol Scand 1992; 146: 527–528
  • Rudenstam J., Bergström G., Folkow B., Göthberg G., Karlström G. Sympathetic nerve stimulation to an isolated cross-circulated kidney inhibits the pressure-induced humoral hypotensive responses but increases diuresis and natriuresis in the cross-circulating Wistar ‘assay’ rat. Acta Physiol Scand 1992; 146: 529–530
  • Bergström G., Rudenstam J., Göthberg G., Karlström G. Effects of renal nerve stimulation on blood pressure and regional renal blood flow when unclipping a 2K1C-renal hypertensive Wistar rat. Proc Aust Physiol Pharmacol Soc 1996; 27: 53P, (Abstract)
  • Thomas C. J., Anderson W. P., Woods R. L. Nitric oxide inhibition does not prevent the hypotensive response to increased renal perfusion in rabbits. Clin Exp Pharmacol Physiol 1995; 22: 345–351
  • Zou A. P., Muirhead E. E., Cowley A. W., Mattson D. L., Falck J. R., Jiang J., Roman R. J. Role of changes in renal hemodynamics and P-450 metabolites of arachidonic acid in the reversal of one-kidney, one clip hypertension. J Hypertens 1995; 13: 557–566
  • Muirhead E. E., Brooks B., Byers L. W. Secretion of medullipin I by the kidney requires oxygen. J Hypertens 1992; 10: 963–967
  • Brezis M., Rosen S. Hypoxia of the renal medulla-its implications for disease. New Eng J Med 1995; 332: 647–655
  • Fenoy F. J., Ferrer P., Carbonell L., Garcia-Salom M. Role of nitric oxide on papillary blood flow and pressure natriuresis. Hypertension 1995; 25: 408–414
  • Cowley A. W.J. Long-term control of arterial blood pressure. Physiol Rev 1992; 72: 231–300
  • Folkow B. Physiological aspects of primary hypertension. Physiol Rev 1982; 62: 347–504
  • Göthberg G., Lundin S., Ricksten S. E., Folkow B. Apparent and true vascular resistances to flow in SHR and NCR kidneys as related to the pre/postglomerular resistance ratio. Acta Physiol Scand 1979; 105: 282–294
  • Folkow B., Göthberg G., Lundin S., Ricksten S. E. Structural “resetting” of the renal vascular bed in spontaneously hypertensive rats (SHR). Acta Physiol Scand 1977; 100: 270–272
  • Mattson D. L., Lu S., Nakanishi K., Papanek P. E., Cowley A. W., Jr. Effect of chronic renal medullary nitric oxide inhibition on blood pressure. Am J Physiol 1994; 266: H1918–26
  • Szczepanska-Sadowska E., Stepniakowski K., Skelton M. M., Cowley A. W., Jr. Prolonged stimulation of intrarenal V1 vasopressin receptors results in sustained hypertension. Am J Physiol 1994; 267: R1217–25
  • Lu S., Mattson D. L., Cowley A. W., Jr. Renal medullary captopril delivery lowers blood pressure in spontaneously hypertensive rats. Hypertension 1994; 23: 337–345
  • Cowley A. W., Jr. Franz Volhard Lecture Evolution of the medullipin concept of blood pressure control: a tribute to Eric Muirhead. J Hypertens Suppl 1994; 12: S25–34
  • Braun-Menendez E. The prohypertensive and antihypertensive actions of the kidney. Ann Intern Med 1958; 49: 717–731
  • Roman R. J. Altered pressure-natriuresis relationship in young spontaneously hypertensive rats. Hypertension 1987; 9: III130–6
  • Roman R. J., Cowley A. W., Jr. Abnormal pressure-diuresis-natriuresis response in spontaneously hypertensive rats. Am J Physiol 1985; 248: F199–205
  • Roman R. J., Kaldunski M. L. Renal cortical and papillary blood flow in spontaneously hypertensive rats. Hypertension 1988; 11: 657–663
  • Imig J. D., Falck J. R., Gebremedhin D., Harder D. R., Roman R. J. Elevated renovascular tone in young spontaneously hypertensive rats. Role of cytochrome P-450. Hypertension 1993; 22: 357–364
  • Muirhead E. E., Streeten D. H., Brooks B., Schroeder E. T., Byers L. W. Persistent hypotension associated with hypermedullipinemia: a new syndrome. Blood Pressure 1992; 1: 138–148
  • Muirhead E. E., Streeten D. H., Byers L. W., Brooks B., Schroeder E. T. Lipomedullipinoma: a source of hypermedullipinemia. Blood Pressure 1993; 2: 183–188
  • Otsuka Y., Abe K., Saito T., Irokawa N., Miyazaki S. Postoperative course of blood pressure and plasma renin activity in patients with renovascular hypertension. Tohoku J Exp Med 1976; 118: 35–43
  • Morlin C., Fagius J., Hagg A., Lorelius L. E., Niklasson F. Continuous recording of muscle nerve sympathetic activity during percutaneous transluminal angioplasty in renovascular hypertension in man. J Hypert 1990; 8: 239–244
  • Hagg A., Lorelius L. E., Morlin C., Wide L. Serial measurements of plasma renin activity, aldosterone and cortisol during percutaneous transluminal angioplasty of the renal artery in man. Acta Physiol Scand 1988; 134: 473–478
  • Lee J. B., Hickler R. B., Saravis C. A., Thorn G. W. Sustained depressor effect of renal medullary extract in the normotensive rat. Circ Res 1963; 13: 359–366
  • Muirhead E. E., Folkow B., Byers L. W., Aus G., Friberg P., Göthberg G., Nilsson H., Thoren P. Cardiovascular effects of antihypertensive renomedullary lipids (APRL and ANRL). Acta Physiol Scand 1983; 117: 465–467
  • Faber J. E., Barron K. W., Bonham A. C., Lappe R., Muirhead E. E., Brody M. J. Regional hemodynamic effects of antihypertensive renomedullary lipids in conscious rats. Hypertension 1984; 6: 494–502
  • Ma Y. H., Dunham E. W. Rat renal papillary release of hypotensive substances in vitro. J Hypertens 1991; 9: 761–770
  • Brooks B., Byers L. W., Muirhead E. E., Muirhead M., Pitcock J. A., Maddipati K R, Maxey K. M. Purification of class I medullipins from the venous effluent of isolated normal kidneys perfused under high pressure with saline. Blood Pressure 1994; 3: 407–417

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.