14
Views
10
CrossRef citations to date
0
Altmetric
Original Article

Role of Endogenous Brain “Ouabain” in The Sympathoexcitatory and Pressor Effects of Sodium

&
Pages 657-667 | Published online: 03 Jul 2009

References

  • Brody T. M., Akera T. Relations among Na,K-ATPase activity, sodium pump activity, transmembrane sodium movement, and cardiac contractility. Federation Proc. 1977; 36: 2219–2224
  • Schwartz A., Allen J. C., Harigaya S. Possible involvement of cardiac Na+, K+-adenosine triphosphatase in the mechanism of action of cardiac glycosides. J. Pharmacol. Exp. Therapeu. 1969; 168: 31–41
  • Apantaku F. O., Baumgarten C. M., Ten Eick R. E. Effect of beta-receptor blockade on the initiation and perpetuation of ouabain-induced ventricular tachyarrhythmia. J. Pharmacol. Exp. Ther. 1975; 193: 327–335
  • Blaustein M. P. Physiological effects of endogenous ouabain: control of intracellular Ca2+stores and cell responsiveness. Am. J. Physiol. 1993; 264: C1367–C1387
  • Huang B. S., Huang X., Harmsen E., Leenen F. H. Chronic central versus peripheral ouabain, blood pressure, and sympathetic activity in rats. Hypertension 1994; 23: 1087–1090
  • Lloyd M. A., Sandberg S. M., Edwards B. S. The role of renal Na+, K+-ATPase in the regulation of sodium excretion under normal conditions and in acute congestive heart failure. Circulation 1992; 85: 1912–7
  • Hamlyn J. M., Blaustein M. P., Bova S., Ducharme D. W., Harris D. W., Mandel F., Mathews W. R., Ludens J. H. Identification and characterization of a ouabain-like compound from human plasma. Proc. Natl. Acad. Sci. 1991; 88: 6259–6263
  • Tymiak A. A., Norman J. A., Bolger M., DiDonato G. C., Lee H., Parker W. L., Lo L.-C., Berova N., Nakanishi K., Haber E., Haupert G. T. Physicochemical characterization of a ouabain isomer isolated from bovine hypothalamus. Proc. Natl. Acad. Sci. 1993; 90: 8189–8183
  • Smith H. W. Salt and water volume receptors: an exercise in physiologic apologetics. Am. J. Med. 1957; 23: 623–652
  • Zhao N., Lo L.-C., Berova N., Nakanishi K., Tymiac A. A., Ludens J. H., Haupert G. T. Na,K-ATPase inhibitors from bovine hypothalamus and human plasma are different from ouabain: nanogram scale CD structureal analysis. Biochemistry 1995; 34: 9893–9896
  • Huang B. S., Sancho J. M., Garcia-Robles R., Leenen F. H. Sympathoexcitatory effect of hypthalamic/hypophysary inhibitory factor in rats. Hypertension 1997; 29(6)1291–95
  • Antman E. M., Wenger T. L, Butler V. P., Haber E., Smith T. W. Treatment of 150 cases of life-threatening digitalis intoxication with digoxin-specific Fab fragments: Final report of a multicenter study. Circulation 1990; 81: 1744–1752
  • Butler V. P., Jr., Smith T. W., Schmidt D. H., Haber E. Immunological reversal of the effects of digoxin. Federation Proc. 1977; 36: 2235–2241
  • Yamada H., Naruse M., Naruse K., Demura H., Takahashi H., Yoshimura M., Ochi J. Histological study on ouabain immunoreactivities in the mammalian hypothalamus. Neurosci. Lett. 1992; 141: 143–146
  • Yamada H., Ihara N., Takahashi H., Yoshimura M., Sano Y. Immunochemical studies on the distribution of endogenous digitalis-like substance (EDLS)-containing neurons labeled by digoxin antibody in hypothalamus and three circumventricular organs of dog and macaque. Brain Res. 1992; 584: 237–243
  • Ihara N., Yuri K., Yamada H., Sano Y. Distribution of endogenous digitalis-like substance (EDLS)-containing neurons labeled by digoxin antibody in the rat hypothalamus, with special consideration on the possibility of their coexistence with posterior lobe hormones. Arch. Histol. Cytol. 1988; 51(1)35–42
  • Teruya H., Yamazato M., Muratani H., Sakima A., Takishita S., Terano Y., Fukiyama K. Role of ouabain-like compound in the rostral ventrolateral medulla in rats. Journal of Clinical Investigation. 1997; 99(11)2791–8
  • Ganguli M., Tobian L., Dahl L. Low renal papillary plasma flow in both Dahl and Kyoto rats with spontaneous hypertension. Circulation Research. 1976; 39(3)337–41
  • Oparil S., Chen Y.-F., Meng Q., Yang R. H., Jin H., Wyss J. M. The neural basis of salt sensitivity in the rat: Altered hyothalamic function. Am. J. Med. Sci. 1988; 295: 360–362
  • Huang B. S., Leenen F. H. Brain “ouabain” mediates the sympathoexcitatory and hypertensive effects of high sodium intake in Dahl salt-sensitive rats. Circ. Res. 1994; 74: 586–95
  • Huang B. S., Leenen F. H. Blockade of brain “ouabain” prevents sympathoexcitatory and pressor responses to high sodium in SHR. Am. J. Physiol. 1996; 271(1 Pt 2)H103–8
  • Huang B. S., Leenen F. H. Sympathoexcitatory and pressor resonses to increased brain sodium and ouabain are mediated via brain ANG II. Am. J. Physiol. 1996; 270(1 Pt. 2)H275–80
  • Huang B. S., Leenen F. H. Brain “ouabain” and angiotensin II in salt-sensitive hypertension in spontaneously hypertensive rats. Hypertension 1996; 28(6)1005–12
  • Huang B. S., Harmsen E., Yu H., Leenen F. H. Brain ouabain-like activity and the sypathoexcitatory and pressor effects of central sodium in rats. Circ. Res. 1992; 71: 1059–66
  • McRae-Degueurce A., Bellin S. I., Landas S. K., Johnson A K. Fetal noradrenergic transplants into amine-depleted basal forebrain nuclei restore drinking to angiotensin. Brain Research. 1986; 374(1)162–6
  • Knuepfer M. M., Johnson A. K., Brody M. J. Vasomotor projections from the anteroventral third ventricle (AV3V). American Journal of Physiology. 1984; 247(1 Pt 2)H139–45
  • van Huysse J. W., Bealer S. L. Central nervous system catecholamine content and norepinephrine release after AV3V ablation. Am. J. Physiol. 1992; 262: R1064–R1069
  • Bealer S. L., van Huysse J. W. Axon destruction and adrenergic systems mediate pressor responses after AV3V lesions. Am. J. Physiol. 1989; 257: R80–R86
  • Budsikowski A. S., Leenen F. H. Brain ‘ouabain’ in the median preoptic nucleus mediates sodium-sensitive hypertension in spontaneously hypertensive rats. Hypertension 1997; 29(2)599–605
  • Veerasingham S. J., Leenen F. H.H. Excitotoxic lesions of the ventral anteroventral third ventricle and pressor responses to central sodium, ouabain and angiotensin II. Brain Res., 749: 157–160
  • Veerasingham S. J., Leenen F. H.H. The ventral anteroventral third ventricle mediates central sodium and ouabain-induced hypertension. FASEB. J. 1997; 11(3), Abs 2846
  • Doll C. J., Hochachka P. W., Reiner P. B. Effects of anoxia and metabolic arrest on turtle and rat cortical neurons. Am. J. Physiol. 1991; 260: R747–755
  • Harold D. E., Walz W. Metabolic inhibition and electrical properties of type-1-like cortical astrocytes. Neuroscience 1992; 47: 203–211
  • Santos M. S., Goncalves P. P., Carvalho A. P. Release of gamma-3H-aminobutyric acid from synaptosomes: effect of external cations and of ouabain. Brain Res. 1991; 547: 135–141
  • Santos M. S., Rodriguez R., Carvalho A. P. Effect of depolarizing agents on the Ca(2+)-independent and Ca(2+)-dependent release of [3H]GABA from sheep brain synaptosomes. Biochem. Pharmacol. 1992; 44: 301–308
  • Konya H, Nagai K., Masuda H., Kakishita E. Endothelin-3 modification of dopamine release in anaesthetised rat striatum; an in vivo microdialysis study. Life Sci. 1992; 51: 499–506
  • Price E. M., Lingrel J. B. Structure-function relationships in the Na, K-ATPase α subunit: site-directed mutagenesis of glutamine-111 to arginine and asparagine-122 to aspartic acid generates a ouabain-resistant enzyme. Biochemistry 1988; 27: 8400–8407
  • Price E. M., Rice D. A., Lingrel J. B. Structure-function studies of the Na, K-ATPase. J. Biol. Chem. 1990; 265: 6638–641
  • Goto A., Yamada K., Nagoshi H., Dan Y., Omata M. Role of ouabain-like compound in the regulation of transmembrane sodium and potassium gradients in rats. Hypertension 1997; 30(2)753–58
  • Ferrari P., Ferrandi M., Duzzi L., Padoani G., Minotti E., Melloni P. A new selective antagonist of the ouabain pressor effect. Am. J. Hyperten. 1997; 9: 162A
  • Askew G. R., Doetschman T., Lingrel J. B. Site-directed point mutations in embryonic stem cells: a gene targeting tag-and-exchange strategy. Mol. Cell. Biol. 1993; 13: 4115–4124
  • Stacey A., Schnieke A., McWhir J., Cooper J., Colman A., Melton D. W. Use of double-replacement gene targeting to replace the murine a-lactalbumin gene with its human counterpart in embryonic stem cells and mice. Mol. Cell. Biol. 1994; 14: 1009–1016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.