1,993
Views
121
CrossRef citations to date
0
Altmetric
Review Article

Advances in methods for the determination of biologically relevant lipid peroxidation products

, , , &
Pages 1172-1202 | Received 28 Mar 2010, Published online: 13 Sep 2010

References

  • Gutteridge JM, Halliwell B. The measurement and mechanism of lipid peroxidation in biological systems. Trends Biochem Sci 1990;15:129–135.
  • Comporti M. Lipid peroxidation and biogenic aldehydes: from the identification of 4-hydroxynonenal to further achievements in biopathology. Free Radic Res 1998;28: 623–635.
  • Witztum JL, Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 1991;88:1785–1792.
  • Göbel C, Feussner I. Methods for the analysis of oxylipins in plants. Phytochemistry 2009;70:1485–1503.
  • Kohn HI, Liversedge M. On a new aerobic metabolite whose production by brain is inhibited by apomorphine, emetine, ergotamine, epinephrine, and menadione. J Pharmacol Exp Ther 1944;82:292–300.
  • Moore K, Roberts LJ, 2nd. Measurement of lipid peroxidation. Free Radic Res 1998;28:659–671.
  • O'Donnell VB, Eiserich JP, Chumley PH, Jablonsky MJ, Krishna NR, Kirk M, Barnes S, Darley-Usmar VM, Freeman BA. Nitration of unsaturated fatty acids by nitric oxide-derived reactive nitrogen species peroxynitrite, nitrous acid, nitrogen dioxide, and nitronium ion. Chem Res Toxicol 1999;12:83–92.
  • Spickett CM. Chlorinated lipids and fatty acids: an emerging role in pathology. Pharmacol Ther 2007;115:400–409.
  • Spalteholz H, Wenske K, Panasenko OM, Schiller J, Arnhold J. Evaluation of products upon the reaction of hypohalous acid with unsaturated phosphatidylcholines. Chem Phys Lipids 2004;129:85–96.
  • Albert CJ, Anbukumar DS, Messner MC, Ford DA. Chromatographic methods for the analyses of 2-halofatty aldehydes and chlorohydrin molecular species of lysophosphatidylcholine. J Chromatogr B Analyt Technol Biomed Life Sci 2009;877:2768–2777.
  • Lima ES, Di Mascio P, Rubbo H, Abdalla DS. Characterization of linoleic acid nitration in human blood plasma by mass spectrometry. Biochemistry 2002;41:10717–10722.
  • Baker PR, Lin Y, Schopfer FJ, Woodcock SR, Groeger AL, Batthyany C, Sweeney S, Long MH, Iles KE, Baker LM, Branchaud BP, Chen YE, Freeman BA. Fatty acid transduction of nitric oxide signaling: multiple nitrated unsaturated fatty acid derivatives exist in human blood and urine and serve as endogenous peroxisome proliferator-activated receptor ligands. J Biol Chem 2005;280:42464–42475.
  • Holley A, Cheeseman K. Measuring free radical reactions in vivo. Br Med Bull 1993;49:494–505.
  • Davison G, Ashton T, George L, Young I, McEneny J, Davies B, Jackson S, Peters J, Bailey D. Exercise, free radicals, and lipid peroxidation in type 1 diabetes mellitus. Free Radic Biol Med 2002;33:1543–1551.
  • Davison GW, Morgan RM, Hiscock N, Garcia JM, Grace F, Boisseau N, Davies B, Castell L, McEneny J, Young IS, Hullin D, Ashton T, Bailey DM. Manipulation of systemic oxygen flux by acute exercise and normobaric hypoxia: implications for reactive oxygen species generation. Clin Sci 2006;110:133–141.
  • Jessup W, Dean R, Gebicki J. Iodometric determination of hydroperoxides in lipids and proteins. Meth Enzymol 1994;233:289−303.
  • Jiang Z-Y, Hunt JV, Wolff SP. Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Anal Biochem 1992;202: 384–389.
  • Bou R, Codony R, Tres A, Decker EA, Guardiola F. Determination of hydroperoxides in foods and biological samples by the ferrous oxidation-xylenol orange method: a review of the factors that influence the method's performance. Anal Biochem 2008;377:1–15.
  • Yamamoto Y. Chemiluminescence-based high-performance liquid chromatography assay of lipid hydroperoxides. Methods Enzymol 1994;233:319–324.
  • Miyazawa T, Fujimoto K, Suzuki T, Yasuda K. Determination of phospholipid hydroperoxides using luminol chemiluminescence–high-performance liquid chromatography. Methods Enzymol 1994;233:324–332.
  • Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 1957;226:497–509.
  • Bligh E, Dyer W. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959;37:911–917.
  • Adachi J, Asano M, Naito T, Ueno Y, Tatsuno Y. Chemiluminescent determination of cholesterol hydroperoxides in human erythrocyte membrane. Lipids 1998;33: 1235–1240.
  • Hui SP, Murai T, Yoshimura T, Chiba H, Nagasaka H, Kurosawa T. Improved HPLC assay for lipid peroxides in human plasma using the internal standard of hydroperoxide. Lipids 2005;40:515–522.
  • McMillan RM, MacIntyre DE, Booth A, Gordon JL. Malonaldehyde formation in intact platelets is catalysed by thromboxane synthase. Biochem J 1978;176:595–598.
  • Yagi K. Assay for blood plasma or serum. Methods Enzymol 1984;105:328–331.
  • Wong SH, Knight JA, Hopfer SM, Zaharia O, Leach CN, Jr, Sunderman FW, Jr. Lipoperoxides in plasma as measured by liquid-chromatographic separation of malondialdehyde-thiobarbituric acid adduct. Clin Chem 1987;33:214–220.
  • Khoschsorur G, Winklhofer-Roob B, Rabl H, Auer T, Peng Z, Schaur R. Evaluation of a sensitive HPLC method for the determination of Malondialdehyde, and application of the method to different biological materials. Chromatographia 2000;52:181–184.
  • Esterbauer H, Zollner H. Methods for determination of aldehydic lipid peroxidation products. Free Radic Biol Med 1989;7:197–203.
  • Shibamoto T. Analytical methods for trace levels of reactive carbonyl compounds formed in lipid peroxidation systems. J Pharm Biomed Anal 2006;41:12–25.
  • Poli G, Schaur RJ, Siems WG, Leonarduzzi G. 4-hydroxynonenal: a membrane lipid oxidation product of medicinal interest. Med Res Rev 2008;28:569–631.
  • Shacter E. Quantification and significance of protein oxidation in biological samples. Drug Metab Rev 2000;32: 307–326.
  • Bevan RJ, Durand MF, Hickenbotham PT, Kitas GD, Patel PR, Podmore ID, Griffiths HR, Waller HL, Lunec J. Validation of a novel ELISA for measurement of MDA-LDL in human plasma. Free Radic Biol Med 2003;35:517–527.
  • Khan MF, Wu X, Ansari GA, Boor PJ. Malondialdehyde-protein adducts in the spleens of aniline-treated rats: immunochemical detection and localization. J Toxicol Environ Health A 2003;66:93–102.
  • Waeg G, Dimsity G, Esterbauer H. Monoclonal antibodies for detection of 4-hydroxynonenal modified proteins. Free Radic Res 1996;25:149–159.
  • Borovic S, Rabuzin F, Waeg G, Zarkovic N. Enzyme-linked immunosorbent assay for 4-hydroxynonenal-histidine conjugates. Free Radic Res 2006;40:809–820.
  • Sayre LM, Lin D, Yuan Q, Zhu X, Tang X. Protein adducts generated from products of lipid oxidation: focus on HNE and one. Drug Metab Rev 2006;8:651–675.
  • Sultana R, Perluigi M, Butterfield DA. Proteomics identification of oxidatively modified proteins in brain. Methods Mol Biol 2009;564:291–301.
  • Roe MR, Xie H, Bandhakavi S, Griffin TJ. Proteomic mapping of 4-hydroxynonenal protein modification sites by solid-phase hydrazide chemistry and mass spectrometry. Anal Chem 2007;79:3747–3756.
  • Mosblech A, Feussner I, Heilmann I. Oxylipins: structurally diverse metabolites from fatty acid oxidation. Plant Physiol Biochem 2009;47:511–517.
  • Sattler SE, Mene-Saffrane L, Farmer EE, Krischke M, Mueller MJ, DellaPenna D. Nonenzymatic lipid peroxidation reprograms gene expression and activates defense markers in Arabidopsis tocopherol-deficient mutants. Plant Cell 2006;18:3706–3720.
  • Mueller MJ, Mene-Saffrane L, Grun C, Karg K, Farmer EE. Oxylipin analysis methods. Plant J 2006;45:472–489.
  • Morrow J, Harris T, Roberts L, 2nd. Noncyclooxygenase oxidative formation of a series of novel prostaglandins. Analytical ramifications for measurement of eicosanoids. Anal Biochem 1990;184:1–10.
  • Morrow J, Hill K, Burk R, Nammour T, Badr K, Roberts L. A series of prostaglandin F2-like compounds are produced in vivo by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci USA 1990;23:9383–9387.
  • Stafforini DM, Sheller JR, Blackwell TS, Sapirstein A, Yull FE, McIntyre TM, Bonventre JV, Prescott SM, Roberts LJ, 2nd. Release of free F2-isoprostanes from esterified phospholipids is catalyzed by intracellular and plasma platelet-activating factor acetylhydrolases. J Biol Chem 2006;281: 4616–4623.
  • Morrow J, Awad J, Boss H, Blair I, Roberts L. Non-cyclooxygenase-derived prostanoids (F2-isoprostanes) are formed in situ in phospholipids. Proc Natl Acad Sci USA 1992;89: 10721–10725.
  • Morrow J, Roberts L. The isoprostanes: unique bioactive products of lipid peroxidation. Prog Lipid Res 1997;36: 1–21.
  • Davi G, Ciabattoni G, Consoli A, Mezzetti A, Falco A, Santarone S, Pennese E, Vitacolonna E, Bucciarelli T, Costantini F, Capani F, Patrono C. In vivo formation of 8-iso-prostaglandin f2alpha and platelet activation in diabetes mellitus: effects of improved metabolic control and vitamin E supplementation. Circulation 1999;99:224–229.
  • Roberts L, Oates J, Linton M, Fazio S, Meador B, Gross M, Shyr Y, Morrow J. The relationship between dose of vitamin E and suppression of oxidative stress in humans. Free Radic Biol Med 2007;43:1388–1393.
  • Taber D, Morrow J, Roberts L. A nomenclature system for the isoprostanes. Prostaglandins 1997;53:63–67.
  • Milne G, Huiyong Y, Morrow J. Human biochemistry of the isoprostane pathway. J Biol Chem 2008;283:15533–15537.
  • Nourooz-Zadeh J. Key issues in F2-isoprostane analysis. Biochem Soc Trans 2008;36:1060–1065.
  • Lawson J, Rokach J, FitzGerald A. Isoprostanes: formation, analysis and use as indices of lipid peroxidation in vivo. J Biol Chem 1999;274:24441–24444.
  • Montuschi P, Barnes P, Roberts L. Isoprostanes: markers and mediators of oxidative stress. FASEB J 2004;18: 1791–1800.
  • Comporti M, Signorini C, Arezzini B, Vecchio D, Monaco B, Gardi C. F2-isoprostanes are not just markers of oxidative stress. Free Radic Biol Med 2008;44:247–256.
  • Milne GL, Sanchez SC, Musiek ES, Morrow JD. Quantification of F2-isoprostanes as a biomarker of oxidative stress. Nat Protoc 2007;2:221–226.
  • Kadiiska MB, Gladen BC, Baird DD, Germolec D, Graham LB, Parker CE, Nyska A Wachsman JT, Ames BN, Basu S, Brot N, Fitzgerald GA, Floyd RA, George M, Heinecke JW, Hatch GE, Hensley K, Lawson JA, Marnett LJ, Morrow JD, Murray DM, Plastaras J, Roberts LJ, 2nd, Rokach J, Shigenaga MK, Sohal RS, Sun J, Tice RR, Van Thiel DH, Wellner D, Walter PB, Tomer KB, Mason RP, Barrett JC. Biomarkers of oxidative stress study II: are oxidation products of lipids, proteins, and DNA markers of CCl4 poisoning? Free Radic Biol Med 2005;38:698–710.
  • Musiek E, Yin H, Milne G, Morrow J. Recent advances in the biochemistry and clinical relevance of the isoprostane pathway. Lipids 2005;40:987–994.
  • Roberts L, Morrow J. Measurement of F2-isoprostanes as an index of oxidative stress in vivo. Free Radic Biol Med 2000;28:505–513.
  • Wiswedel I, Hirsch D, Nourooz-Zadeh J, Flechsig A, Lueck-Lambrecht A, Augustin W. Analysis of monohydroxyeicosatetraenoic acids and F2-isoprostanes as markers of lipid peroxidation in rat brain mitochondria. Free Radic Res 2002;36:1–11.
  • Liu W, Morrow J, Yin H. Quantification of F2-isoprostanes as a reliable index of oxidative stress in vivo using gas chromatography-mass spectrometry (GC-MS) method. Free Radic Biol Med 2009;47:1101–1107.
  • Morrow J, Roberts L. Mass spectrometric quantification of F2-isoprostanes in biological fluids and tissues as a measure of oxidant stress. Methods Enzymol 1999;300:3–12.
  • Nourooz-Zadeh J, Gopaul N, Barrow S, Mallet A, Anggard E. Analysis of F2-isoprostanes as indicators of non-enzymatic in vivo lipid peroxidation by gas chromatography: development of a solid-phase extraction procedure. J Chromatogr 1995;667:199–208.
  • Nourooz-Zadeh J. Gas chromatography-mass spectrometry assay for measurement of plasma isoprostanes. Methods Enzymol 1999;300:13–17.
  • Nourooz-Zadeh J, Cooper M, Ziegler D, Betteridge D. Urinary 8-epi-PGF2alpha and its endogenous beta-oxidation products (2,3-dinor and 2,3-dinor-5,6-dihydro) as biomarkers of total body oxidative stress. Biochem Biophys Res Commun 2005; 330:731–736.
  • Wiswedel I, Hirsch D, Kropf S, Gruening M, Pfister E, Schewe T, Sies H. Flavanol-rich cocoa drink lowers plasma F2-isoprostane concentrations in humans. Free Radic Biol Med 2004;37:411–421.
  • Yin H, Gao L, Tai H, Murphey L, Porter N, Morrow J. Urinary prostaglandin F2alpha is generated from the isoprostane pathway and not the cyclooxygenase in humans. J Biol Chem 2007;282:329–336.
  • Wiswedel I, Grundmann J, Boschmann M, Krautheim A, Böckelmann R, Peter D, Holzapfel I, Götz S, Müller-Goymann C, Bonnekoh B, Gollnick H. Effects of UVB irradiation and diclofenac on F2-isoprostane/prostaglandin concentrations in keratinocytes and microdialysates of human skin. J Invest Dermatol 2007;127:1794–1797.
  • Wiswedel I. F(2)-isoprostanes: sensitive biomarkers of oxidative stress in vitro and in vivo: a gas chromatography-mass spectrometric approach. Methods Mol Biol 2009;580:3–16.
  • Mori T, Croft K, Puddey I, Beilin L. An improved method for the measurement of urinary and plasma F2-isoprostanes using gas chromatography-mass spectrometry. Anal Biochem 1999;268:117–125.
  • Morrow J, Frei B, Longmire A, Gaziano J, Lynch S, Shyr Y, Strauss W, Oates J, Roberts LJ 2nd. Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers. Smoking as a cause of oxidative damage. N Engl J Med 1995;332:1198–1203.
  • Gopaul N, Zacharowski K, Halliwell B, Anggård E. Evaluation of the postprandial effects of a fast-food meal on human plasma F(2)-isoprostane levels. Free Radic Biol Med 2000;28:806–814.
  • Handelman G, Walter M, Adhikarla R, Gross J, Dallal G, Levin N, Blumberg J. Elevated plasma F2-isoprostanes in patients on long-term hemodialysis. Kidney Int 2001;59: 1960–1966.
  • Morales C, Terry E, Zackert W, Montine T, Morrow J. Improved assay for the quantification of the major urinary metabolite of the isoprostane 15-F(2t)-Isoprostane (8-iso-PGF (2alpha)) by a stable isotope dilution mass spectrometric assay. Clin Chim Acta 2001;314:93–99.
  • Li H, Lawson J, Reilly M, Adiyaman M, Hwang S, Rokach J, FitzGerald G. Quantitative high performance liquid chromatography/tandem mass spectrometric analysis of the four classes of F(2)-isoprostanes in human urine. Proc Natl Acad Sci USA 1999;96:13381–13386.
  • Liang Y, Wei P, Duke R, Reaven P, Harman S, Cutler R, Heward C. Quantification of 8-iso-prostaglandin-F(2alpha) and 2,3-dinor-8-iso-prostaglandin-F(2alpha) in human urine using liquid chromatography-tandem mass spectrometry. Free Radic Biol Med 2003;34:409–418.
  • Taylor A, Bruno R, Frei B, Traber M. Benefits of prolonged gradient separation for high-performance liquid chromatography-tandem mass spectrometry quantitation of plasma total 15-series F-isoprostanes. Anal Biochem 2006;350: 41–51.
  • Sircar D, Subbaiah P. Isoprostane measurement in plasma and urine by liquid chromatography-mass spectrometry with one-step sample preparation. Clin Chem 2007;53: 251–258.
  • Basu S. Radioimmunoassay of 8-iso-prostaglandin F2alpha: an index for oxidative injury via free radical catalysed lipid peroxidation. Prostaglandins Leukot Essent Fatty Acids 1998;58:319–325.
  • Sasaki DM, Yuan Y, Gikas K, Kanai K, Taber D, Morrow JD, Roberts LJ, 2nd, Callewaert DM. Enzyme immunoassays for 15-F2T isoprostane-M, an urinary biomarker for oxidant stress. Adv Exp Med Biol 2002;507:537–541.
  • Proudfoot J, Barden A, Mori T, Burke V, Croft K, Beilin L, Puddey I. Measurement of urinary F2-isoprostanes as markers of in vivo lipid peroxidation - a comparison of enzyme immunoassay with gas chromatography/mass spectrometry. Anal Biochem 1999;272:209–215.
  • Bessard J, Cracowski J, Stanke-Labesque F, Bessard G. Determination of isoprostaglandin F2alpha type III in human urine by gas chromatography-electronic impact mass spectrometry. Comparison with enzyme immunoassay. J Chromatogr B Biomed Sci Appl 2001;754:333–343.
  • Fukunaga M, Makita N, Roberts LJ, 2nd, Morrow JD, Takahashi K, Badr KF. Evidence for the existence of F2-isoprostane receptors on rat vascular smooth muscle cells. Am J Physiol 1993;264:1619–1624.
  • Takahashi K, Nammour TM, Fukunaga M, Ebert J, Morrow JD, Roberts LJ, 2nd, Hoover RL, Badr KF. Glomerular actions of a free radical-generated novel prostaglandin, 8-epi-prostaglandin F2 alpha, in the rat. Evidence for interaction with thromboxane A2 receptors. J Clin Invest 1992;90:136–141.
  • Basu S. Isoprostanes: novel bioactive products of lipid peroxidation. Free Radic Res 2004;38:105–122.
  • Basu S. F2-isoprostanes in human health and diseases: from molecular mechanisms to clinical implications. Antioxid Redox Signal 2008;10:1405–1434.
  • Belik J, Gonzalez-Luis GE, Perez-Vizcaino F, Villamor E. Isoprostanes in fetal and neonatal health and disease. Free Radic Biol Med 2010;48:177–188.
  • Lee C, Huang S, Jenner A, Halliwell B. Measurement of F2-isoprostanes, hydroxyeicosatetraenoic products and oxysterols from a single plasma sample. Free Radic Biol Med 2008;44:1314–1322.
  • Yoshida Y, Kodai S, Takemura S, Minaiyama Y, Niki E. Simultaneous measurement of F2-isoprostane, hydroxyoctadecadienoic acid, hydroxyeicosa-tetraenoic acid, and hydroxycholesterols from physiological samples. Anal Biochem 2008;379:105–115.
  • Olkkonen V, Lehto M. Oxysterols and oxysterol binding proteins: role in lipid metabolism and atherosclerosis. Ann Med 2004;36:562–572.
  • Björkhem I, Cedazo-Minguez A, Leoni V, Meaney S. Oxysterols and neurodegenerative diseases. Mol Aspects Med 2009;30:171–179.
  • Leoni V. Oxysterols as markers of neurological disease - a review. Scand J Clin Lab Invest 2009;69:22–25.
  • Vejux A, Lizard G. Cytotoxic effects of oxysterols associated with human diseases: induction of cell death (apoptosis and/or oncosis), oxidative and inflammatory activities, and phospholipidosis. Mol Aspects Med 2009;30:153–170.
  • Leonarduzzi G, Chiarpotto E, Biasi F, Poli G. 4-Hydroxynonenal and cholesterol oxidation products in atherosclerosis. Mol Nutr Food Res 2005;49:1044–1049.
  • Negre-Salvayre A, Vieira O, Escargueil-Blanc I, Salvayre R. Oxidized LDL and 4-hydroxynonenal modulate tyrosine kinase receptor activity. Mol Aspects Med 2003;24:251–261.
  • Brown A, Jessup W. Oxysterols: sources, cellular storage and metabolism, and new insights into their roles in cholesterol homeostasis. Mol Aspects Med 2009;30:111–122.
  • Vejux A, Malvitte L, Lizard G. Side effects of oxysterols: cytotoxicity, oxidation, inflammation, and phospholipidosis. Braz J Med Biol Res 2008;41:545–556.
  • Garenc D, Julien P, Levy E. Oxysterols in biological systems: the gastrointestinal tract, liver, vascular wall and central nervous system. Free Radic Res 2010;44:47–73.
  • Leonarduzzi G, Poli G, Sottero B, Biasi F. Activation of the mitochondrial pathway of apoptosis by oxysterols. Fron Biosci 2007;12:791–799.
  • Poli G, Sottero B, Gargiulo S, Leonarduzzi G. Cholesterol oxidation products in the vascular remodelling due to atherosclerosis. Mol Aspects Med 2009;30:180–189.
  • Siems W, Quast S, Carluccio F, Wiswedel I, Hirsch D, Augustin W, Hampl H, Riehle M, Sommerburg O. Oxidative stress in chronic renal failure as a cardiovascular risk factor. Clin Nephrol 2002;58:S12–S19.
  • Siems W, Quast S, Peter D, Augustin W, Carluccio F, Grune T, Sevanian A, Hampl H, Wiswede LI. Oxysterols are increased in plasma of end-stage renal disease patients. Kidney Blood Press Res 2005;28:302–306.
  • Siems W, Quast S, Carluccio F, Cadenas E, Gardemann A, Wiswedel I. Increased serum oxysterols in renal failure. Grune T. Proceedings of the European meeting of the Society for Free Radical Research. 40128 Bologna: Medimond SRL; 2008. 25–30.
  • Sottero B, Gamba P, Gargiulo S, Leonarduzzi G, Poli G. Cholesterol oxidation products and disease: an emerging topic of interest in medicinal chemistry. Curr Med Chem 2009;16:685–705.
  • Schroepfer GJ. Oxysterols: modulators of cholesterol metabolism and other processes. Physiol Rev 2000;80: 361–554.
  • Wang Y, Karu K, Griffiths W. Analysis of neurosterols and neurosteroids by mass spectrometry. Biochimie 2007;89: 182–191.
  • Yoshida Y, Niki E. Bio-markers of lipid peroxidation in vivo: hydroxyoctadecadienoic acid and hydroxycholesterol. Biofactors 2006;27:195–202.
  • Yoshida T, Honda A, Miyazaki H, Matsuzaki Y. Determination of key intermediates in cholesterol and bile acid biosynthesis by stable isotope dilution mass spectrometry. Anal Chem Insights 2008;3:45–60.
  • Dzeletovic S, Breuer O, Lund E, Diczfalusy U. Determination of cholesterol oxidation products in human plasma by isotope dilution-mass spectrometry. Anal Biochem 1995;225: 73–80.
  • Diczfalusy U. Analysis of cholesterol oxidation products in biological samples. J AOAC Int 2004;87:467–473.
  • Lövgren-Sandblom A, Heverin M, Larsson H, Lundström E, Wahren J, Diczfalusy U, Björkhem I. Novel LC-MS/MS method for assay of 7alpha-hydroxy-4-cholesten-3-one in human plasma. Evidence for a significant extrahepatic metabolism. J Chromatogr B Analyt Technol Biomed Life Sci 2007;856:15–19.
  • Hodis H, Crawford D, Sevanian A. Cholesterol feeding increases plasma and aortic tissue cholesterol oxide levels in parallel: further evidence for the role of cholesterol oxidation in atherosclerosis. Atherosclerosis 1991;89:117–126.
  • Sevanian A, Seraglia R, Traldi P, Rossato P, Ursini F, Hodis H. Analysis of plasma cholesterol oxidation products using gas- and high-performance liquid chromatography/ mass spectrometry. Free Rad Biol Med 1994;17:397–409.
  • Steffen Y, Wiswedel I, Peter D, Schewe T, Sies H. Cytotoxicity of myeloperoxidase/nitrite-oxidized low-density lipoprotein toward endothelial cells is due to a high 7b-hydroxycholesterol ratio. Free Radic Biol Med 2006; 41: 1139–1150.
  • Fourgeux C, Martine L, Björkhem I, Diczfalusy U, Joffre C, Acar N, Creuzot-Garcher C, Bron A, Bretillon L. Primary open-angle glaucoma: association with cholesterol 24S-hydrolylase (CYP46A1) gene polymorphism and plasma 24-hydroxycholesterol levels. Invest Ophthalmol Vis Sci 2009;50:5712–5717.
  • Diczfalusy U, Olofsson K, Carlsson A, Gong M, Golenbock D, Rooyackers O, Fläring U, Björkbacka H. Marked upregulation of cholesterol 25-hydrolxylase expression by lipopolysaccharide. J Lipid Res 2009;50:2258-2264.
  • Josephson F, Bertilsson L, Böttiger Y, Flamholc L, Gissllén M, Ormaasen V, Sönnerborg A, Diczfalusy U. CYP3A induction and inhibition by different antiretroviral regimens reflected by changes in plasma 4beta-hydroxycholesterol levels. Eur J Clin Pharmacol 2008;64:775–781.
  • Lütjohann D, Marinova M, Schneider B, Oldenburg J, von Bergmann K, Bieber T, Björkhem I, Diczfalusy U. 4beta-hydroxycholesterol as a marker of CYP3A4 inhibition in vivo-effects of itraconazole in man. Int J Clin Pharmacol Ther 2009;47:709–715.
  • Larsson H, Böttiger Y, Iuliano L, Diczfalusy U. In vivo interconversion of 7beta-hydroxycholesterol and 7-ketocholesterol, potential surrogate markers for oxidative stress. Free Radic Biol Med 2007;43:695–701.
  • Ohyama Y, Meaney S, Heverin M, Ekström L, Brafman A, Shafir M, Andersson U, Olin M, Eggertsen G, Diczfalusy U, Feinstein E, Björkhem I. Studies on the transcriptional regulation of cholesterol 24-hydroxylase (CYP46A1): marked insensitivity toward different regulatory axes. J Biol Chem 2006;281:3810–3820.
  • Bodin K, Andersson U, Rystedt E, Ellis E, Norlin M, Pikuleva I, Eggertsen G, Björkhem I, Diczfalusy U. Metabolism of 4beta-hydroxycholesterol in humans. J Biol Chem 2002;277:31534–31540.
  • Bodin K, Lindbom U, Diczfalusy U. Novel pathways of bile acid metabolism involving CYP3A4. Biochim Biophys Acta 2005;1687:84–93.
  • Björkhem I, Meaney S, Diczfalusy U. Oxysterols in human circulation: which role do they have? Curr Opin Lipidol 2002;13:247–253.
  • Babiker A, Andersson O, Lindblom D, van der Linden J, Wiklund B, Lütjohann D, Diczfalusy U, Björkhem I. Elimination of cholesterol as cholestenoic acid in human lung by sterol 27-hydroxylase: evidence that most of this steroid in the circulation is of pulmonary origin. J Lipid Res 1999;40: 1417–1425.
  • Meaney S, Babiker A, Lütjohann D, Diczfalusy U, Axelson M, Björkhem I. On the origin of the cholestenoic acids in human circulation. Steroids 2003;68:595–601.
  • Babiker A, Dzeletovic S, Wiklund B, Pettersson N, Salonen J, Nyyssönen K, Erisson M, Diczfalusy U, Björkhem I. Patients with atherosclerosis may have increased circulating levels of 27-hydroxycholesterol and cholestenoic acid. Scand J Clin Lab Invest 2005;65:365–375.
  • Blom T, Bäck N, Mutka A, Bittman R, Li Z, de Lera A, Kovanen P, Diczfalusy U, Ikonen E. FTY720 stimulates 27-hydroxycholesterol production and confers atheroprotective effects in human primary macrophages. Circ Res 2010;
  • Crisby M, Nilsson J, Kostulas V, Björkhem I, Diczfalusy U. Localization of sterol 27-hydroxylase immuno-reactivity in human atherosclerotic plaques. Biochim Biophys Acta 1997;1344:278–285.
  • Salonen J, Nyyssönen K, Saonen R, Porkkala-Sarataho E, Tuomainen T, Diczfalusy U, Björkhem I. Lipoprotien oxidation and progression of carotid atherosclerosis. Circulation 1997;95:840–845.
  • Arca M, Natoli S, Micheletta F, Riggi S, Di Angelantonio E, Montali A, Antonini T, Antonini R, Diczfalusy U, Iuliano L. Increased plasma levels of oxysterols, in vivo markers of oxidative stress, in patients with familial combined hyperlipidemia: reduction during atorvastatin and fenofibrate therapy. Free Radic Biol Med 2007;442: 698–705.
  • Wide K, Larsson H, Bertilsson L, Diczfalusy U. Time course of the increase in 4beta-hydroxycholesterol concentration during carbamazepine treatment of paediatric patients with epilepsy. Br J Clin Pharmacol 2008;65:708–715.
  • Bjorkhem I, Heverin M, Leoni V, Meaney S, Diczfalusy U. Oxysterols and Alzheimer's disease. Acta Neurol Scand Suppl 2006;185:43–49.
  • Heverin M, Bogdanovic N, Lütjohann D, Bayer T, Pikuleva I, Bretillon L, Diczfalusy U, Binblad B, Björkhem I. Changes in the levels of cerebral and extracerebral sterols in the brain of patients with Alzheimer´s disease. J Lipid Res 2004;45: 186–193.
  • Leoni V, Materman T, Mousavi F, Wretlind B, Wahlund L, Diczfalusy U, Hillert J, Björkhem I. Diagnostic use of cerebral and extracerebral oxysterols. Clin Chem Lab Med 2004;42:186–191.
  • Leoni V, Masterman T, Diczfalusy U, De Luca G, Hillert J, Björkhem I. Changes in human plasma levels of the brain specific oxysterol 24S-hydroxycholesterol during progression of multiple sclerosis. Neurosci Lett 2002;331: 163–166.
  • Stenvinkel P, Diczfalusy U, Lindholm B, Heimbürger O. Phospholipid plsmalogen, a surrogate marker of oxidative stress, is associated with increased cardiovascular mortality in patients on renal replacement therapy. Nephrol Dial Transplant 2004;19:972–976.
  • Ziedén B, Kaminskas A, Kristenson M, Kucinskiené Z, Vessby B, Olsson A, Diczfalusy U. Increased plasma 7beta-hydroxycholesterol concentrations in a population with a high risk for cardiovascular disease. Arterioscler Thromb Vasc Biol 1999;19:967–971.
  • Mann M. Electrospray: its potential and limitations as an ionization method for biomolecules. Org Mass Spectrom 1990;25:575–587.
  • Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization - principles and practice. Mass Spectrom Rev 1990;9:37–70.
  • Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons. Anal Chem 1988;60:2299–2301.
  • Spickett CM, Pitt AR, Brown AJ. Direct observation of lipid hydroperoxides in phospholipid vesicles by electrospray mass spectrometry. Free Radic Biol Med 1998;25: 613–620.
  • Domingues MRM, Reis A, Domingues P. Mass spectrometry analysis of oxidized phospholipids. Chem Phys Lipids 2008;156:1–12.
  • Arnhold J, Osipov AN, Spalteholz H, Panasenko OM, Schiller J. Effects of hypochlorous acid on unsaturated phosphatidylcholines. Free Radic Biol Med 2001;31: 1111–1119.
  • Lessig J, Schiller J, Arnhold J, Fuchs B. Hypochlorous acid-mediated generation of glycerophosphocholine from unsaturated plasmalogen glycerophosphocholine lipids. J Lipid Res 2007;48:1316–1324.
  • Yurkova I, Shadyro O, Kisel M, Brede O, Arnhold J. Radiation-induced free-radical transformation of phospholipids: MALDI-TOF MS study. Chem Phys Lipids 2004;132: 235–246.
  • Shadyro OI, Yurkova IL, Kisel MA, Brede O, Arnhold J. Radiation-induced fragmentation of cardiolipin in a model membrane. Int J Radiat Biol 2004;80:239–245.
  • MacMillan DK, Murphy RC. Analysis of lipid hydroperoxides and long-chain conjugated keto acids by negative ion electrospray mass spectrometry. J Am Soc Mass Spectrom 1995;6:1190–1201.
  • Hall LM, Murphy RC. Analysis of stable oxidized molecular species of glycerophospholipids following treatment of red blood cell ghosts with t-butylhydroperoxide. Anal Biochem 1998;258:184–194.
  • Spickett CM, Dever G. Studies of phospholipid oxidation by electrospray mass spectrometry: from analysis in cells to biological effects. Biofactors 2005;24:17–31.
  • Yin HY, Cox BE, Liu W, Porter NA, Morrow JD, Milne GL. Identification of intact oxidation products of glycerophospholipids in vitro and in vivo using negative ion electrospray iontrap mass spectrometry. J Mass Spectrom 2009;44: 672–680.
  • Brugger B, Erben G, Sandhoff R, Wieland FT, Lehmann WD. Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc Natl Acad Sci USA 1997; 94:2339–2344.
  • Han X, Gross RW. Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma membrane phospholipids. Proc Natl Acad Sci USA 1994;91: 10635–10639.
  • Kagan VE, Borisenko GG, Tyurina YY, Tyurin VA, Jiang JF, Potapovich AI, Kini V, Amoscato AA, Fujii Y. Oxidative lipidomics of apoptosis: redox catalytic interactions of cytochrome C with cardiolipin and phosphatidylserine. Free Radic Biol Med 2004;37:1963–1985.
  • Jerlich A, Pitt AR, Schaur RJ, Spickett CM. Pathways of phospholipid oxidation by HOCl in human LDL detected by LC-MS. Free Rad Biol Med 2000;28:673–682.
  • Jerlich A, Schaur RJ, Pitt AR, Spickett CM. The formation of phosphatidylcholine oxidation products by stimulated phagocytes. Free Radic Res 2003;37:645–653.
  • Spickett CM, Rennie N, Winter H, Zambonin L, Landi L, Jerlich A, Schaur RJ, Pitt AR. Detection of phospholipid oxidation in oxidatively stressed cells by reversed-phase HPLC coupled with positive-ionization electrospray MS. Biochem J 2001;357:911–911.
  • Spickett CM, Rennie N, Winter H, Zambonin L, Landi L, Jerlich A, Schaur RJ, Pitt AR. Detection of phospholipid oxidation in oxidatively stressed cells by reversed-phase HPLC coupled with positive-ionization electroscopy MS. Biochem J 2001;355:449–457.
  • Panasenko OM, Spalteholz H, Schiller J, Arnhold J. Myeloperoxidase-induced formation of chlorohydrins and lysophospholipids from unsaturated phosphatidylcholines. Free Radic Biol Med 2003;34:553–562.
  • Cunningham JC, Glish GL, Burinsky DJ. High amplitude short time excitation: a method to form and detect low mass product ions in a quadrupole ion trap mass spectrometer. J Am Soc Mass Spectrom 2006;7:81–84.
  • Hsu FF, Turk J. Electrospray ionization/tandem quadrupole mass spectrometric studies on phosphatidylcholines: the fragmentation processes. J Am Soc Mass Spectrom 2003;14: 352–363.
  • Adachi J, Yoshioka N, Funae R, Nushida H, Asano M, Ueno Y. Determination of phosphatidylcholine monohydroperoxides using quadrupole time-of-flight mass spectrometry. J Chromatogr B-Analyt Technol Biomed Life Sci 2004;806: 41–46.
  • Domingues MRM, Simoes C, da Costa JP, Reis A, Domingues P. Identification of 1-palmitoyl-2-linoleoyl-phosphatidylethanolamine modifications under oxidative stress conditions by LC-MS/MS. Biomed Chromatogr 2009;23:588–601.
  • Tyurin VA, Tyurina Y, Jung MY, Tungekar MA, Wasserloos KJ, Bayir H, Greenberger JS, Kochanek PM, Shvedova AA, Pitt B, Kagan VE. Mass-spectrometric analysis of hydroperoxy- and hydroxy-derivatives of cardiolipin and phosphatidylserine in cells and tissues induced by pro-apoptotic and pro-inflammatory stimuli. J Chromatogr B Analyt Technol Biomed Life Sci 2009;877:2863–2872.
  • Chisolm GM, Steinberg D. The oxidative modification hypothesis of atherogenesis: an overview. Free Radic Biol Med 2000;28:1815–1826.
  • Watson AD, Leitinger N, Navab M, Faull KF, Horkko S, Witztum JL, Palinski W, Schwenke D, Salomon RG, Sha W, Subbanagounder G, Fogelman AM, Berliner JA. Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J Biol Chem 1997;272:13597–13607.
  • Watson AD, Subbanagounder G, Welsbie DS, Faull KF, Navab M, Jung ME, Fogelman AM, Berliner JA. Structural identification of a novel pro-inflammatory epoxyisoprostane phospholipid in mildly oxidized low density lipoprotein. J Biol Chem 1999;274:24787–24798.
  • Leitinger N, Watson AD, Hama SY, Ivandic B, Qiao JH, Huber J, Faull KF, Grass DS, Navab M, Fogelman AM, de Beer FC, Lusis AJ, Berliner JA. Role of group II secretory phospholipase A(2) in atherosclerosis - 2. Potential involvement of biologically active oxidized phospholipids. Arterioscler Thromb Vasc Biol 1999;19:1291–1298.
  • Subbanagounder G, Wong JW, Lee H, Faull KF, Miller E, Witztum JL, Berliner JA. Epoxyisoprostane and epoxycyclopentenone phospholipids regulate monocyte chemotactic protein-1 and interleukin-8 synthesis - formation of these oxidized phospholipids in response to interleukin-1 beta. J Biol Chem 2002;277:7271–7281.
  • Ravandi A, Babaei S, Leung R, Monge JC, Hoppe G, Hoff H, Kamido H, Kuksis A. Phospholipids and oxophospholipids in atherosclerotic plaques at different stages of plaque development. Lipids 2004;39:97–109.
  • Hoff HF, O'Neil J, Wu ZP, Hoppe G, Salomon RL. Phospholipid hydroxyalkenals – biological and chemical properties of specific oxidized lipids present in atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2003;23:275–282.
  • Subbanagounder G, Deng YJ, Borromeo C, Dooley AN, Beliner JA, Salomon RG. Hydroxy alkenal phospholipids regulate inflammatory functions of endothelial cells. Vascul Pharmacol 2002;38:201–209.
  • Podrez EA, Poliakov E, Shen ZZ, Zhang RL, Deng YJ, Sun MJ, Finton PJ, Shan L, Febbraio M, Hajjar DP, Silverstein RL, Hoff HF, Salomon RG, Hazen SL. A novel family of atherogenic oxidized phospholipids promotes macrophage foam cell formation via the scavenger receptor CD36 and is enriched in atherosclerotic lesions. J Biol Chem 2002;277: 38517–38523.
  • Podrez EA, Poliakov E, Shen ZZ, Zhang RL, Deng YJ, Sun MJ, Finton PJ, Shan L, Gugiu B, Fox PL, Hoff HF, Salomon RG, Hazen SL. Identification of a novel family of oxidized phospholipids that serve as ligands for the macrophage scavenger receptor CD36. J Biol Chem 2002;277: 38503–38516.
  • Salomon RG. Isolevuglandins, oxidatively truncated phospholipids, and atherosclerosis. Ann NY Acad Sci 2005;1043:327–342.
  • Wiswedel I, Gardemann A, Storch A, Peter D, Schild L. Degradation of phospholipids by oxidative stress-exceptional significance of cardiolipin. Free Radic Res 2010;44: 135–145.
  • Lesnefsky EJ, Minkler P, Hoppel CL. Enhanced modification of cardiolipin during ischemia in the aged heart. J Mol Cell Cardiol 2009;46:1008–1015.
  • Kitteringham NR, Jenkins RE, Lane CS, Elliott VL, Park BK. Multiple reaction monitoring for quantitative biomarker analysis in proteomics and metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 2009;877:1229–1239.
  • Kamleh MA, Dow JA, Watson DG. Applications of mass spectrometry in metabolomic studies of animal model and invertebrate systems. Brief Funct Genomic Proteomic 2009;8:28–48.
  • Wenk MR. The emerging field of lipidomics. Nat Rev Drug Discov 2005;4:594–610.
  • Merrill AH, Jr, Sullards MC, Allegood JC, Kelly S, Wang E. Sphingolipidomics: high-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods 2005;36: 207–224.
  • Haynes CA, Allegood JC, Park H, Sullards MC. Sphingolipidomics: methods for the comprehensive analysis of sphingolipids. J Chromatogr B Analyt Technol Biomed Life Sci 2009;877:2696–2708.
  • Han X, Yang K, Yang J, Cheng H, Gross RW. Shotgun lipidomics of cardiolipin molecular species in lipid extracts of biological samples. J Lipid Res 2006;47:864–879.
  • Ejsing CS, Duchoslav E, Sampaio J, Simons K, Bonner R, Thiele C, Ekroos K, Shevchenko A. Automated identification and quantification of glycerophospholipid molecular species by multiple precursor ion scanning. Anal Chem 2006;78:6202–6214.
  • Yang J, Schmelzer K, Georgi K, Hammock BD. Quantitative profiling method for oxylipin metabolome by liquid chromatography electrospray ionization tandem mass spectrometry. Anal Chem 2009;81:8085–8093.
  • Gugiu BG, Mesaros CA, Sun M, Gu X, Crabb JW, Salomon RG. Identification of oxidatively truncated ethanolamine phospholipids in retina and their generation from polyunsaturated phosphatidylethanolamines. Chem Res Toxicol 2006;19:262–271.
  • Maskrey BH, Bermudez-Fajardo A, Morgan AH, Stewart-Jones E, Dioszeghy V, Taylor GW, Baker PR, Coles B, Coffey MJ, Kuhn H, O'Donnell VB. Activated platelets and monocytes generate four hydroxyphosphatidylethanolamines via lipoxygenase. J Biol Chem 2007;282:20151–20163.
  • Pitt AR, Spickett CM. Mass spectrometric analysis of HOCl- and free-radical-induced damage to lipids and proteins. Biochem Soc Trans 2008;36:1077–1082.
  • Ishida M, Yamazaki T, Houjou T, Imagawa M, Harada A, Inoue K, Taguchi R. High-resolution analysis by nano-electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for the identification of molecular species of phospholipids and their oxidized metabolites. Rapid Commun Mass Spectrom 2004;18:2486–2494.
  • Tyurin VA, Tyurina YY, Ritov VB, Lysytsya A, Amoscato AA, Kochanek PM, Hamilton R, Dekosky ST, Greenberger JS, Bayir H, Kagan VE. Oxidative lipidomics of apoptosis: quantitative assessment of phospholipid hydroperoxides in cells and tissues. Methods Mol Biol 2010;610:353–374.
  • Zarkovic N. 4-hydroxynonenal as a bioactive marker of pathophysiological processes. Mol Aspects Med 2003;24: 281–291.
  • Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 1991;11:81–128.
  • Poli G, Schaur RJ. 4-Hydroxynonenal in the pathomechanisms of oxidative stress. IUBMB Life 2000;50:315–321.
  • Zarkovic N, Zarkovic K, Schaur R, Stolc S, Schlag G, Redl H, Waeg G, Borovic S, Loncaric I, Juric G, Hlavka V. 4-Hydroxynonenal as a second messenger of free radicals and growth modifying factor. Life Sci 1999;65:1901–1904.
  • Canuto RA, Ferro M, Muzio G, Bassi AM, Leonarduzzi G, Maggiora M, Adamo D, Poli G, Lindahl R. Role of aldehyde metabolizing enzymes in mediating effects of aldehyde products of lipid peroxidation in liver cells. Carcinogenesis 1994;15:1359–1364.
  • Levine R, Garland D, Oliver C, Amici A, Climent I, Lenz A, Ahn B, Shaltiel S, Stadtman E. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 1990;186:464–478.
  • Uchida K, Stadtman E. Selective cleavage of thioether linkage in proteins modified with 4-hydroxynonenal. Proc Natl Acad Sci USA 1992;89:5611–5615.
  • Uchida K, Toyokuni S, Nishikawa K, Kawakishi S, Oda H, Hiai H, Stadtman ER. Michael addition-type 4-hydroxy-2-nonenal adducts in modified low-density lipoproteins: markers for atherosclerosis. Biochemistry 1994; 33: 12487–12494.
  • Palinski W, Yla-Herttuala S, Rosenfeld M, Butler S, Socher S, Parthasarathy S, Curtiss L, Witztum J. Antisera and monoclonal antibodies specific for epitopes generated during oxidative modification of low density lipoprotein. Arteriosclerosis 1990;10:325–335.
  • Chen Q, Esterbauer H, Jurgens G. Studies on epitopes on low-density lipoprotein modified by 4-hydroxynonenal. Biochemical characterization and determination. Biochem J 1992;288:249–254.
  • Uchida K, Itakura K, Kawakishi S, Hiai H, Toyokuni S, Stadtman E. Characterization of epitopes recognized by 4-hydroxy-2-nonenal specific antibodies. Arch Biochem Biophys 1995;324:241–248.
  • Toyokuni S, Miyake N, Hiai H, Hagiwara M, Kawakishi S, Osawa T, Uchida K. The monoclonal antibody specific for 4-hydroxy-2-nonenal histidine adduct. FEBS Lett 1995;359: 189–191.
  • Sayre L, Sha W, Xu G, Kaur K, Nadkarni D, Subbanagounder G, Salomon R. Immunochemical evidence supporting 2-pentylpyrrole formation on proteins exposed to 4-hydroxy-2-nonenal. Chem Res Toxicol 1996;9:1194–1201.
  • Tsai L, Szweda P, Vinogradova O, Szweda L. Structural characterization and immunochemical detection of fluorophore derived from 4-hydroxy-2-nonenal and lysine. Proc Natl Acad Sci USA 1998;915:7975–7980.
  • Itakura K, Oya-Ito T, Osawa T, Yamada S, Toyokuni S, Shibata N, Kobayashi M, Uchida K. Detection of lipofuscin-like fluorophore in oxidized human low-density lipoprotein. 4-hydroxy-2-nonenal as a potential source of fluorescent chromophore. FEBS Lett 2000;473:249–253.
  • Zarkovic N. Protein-aldehydic adducts as biomarkers of oxidative stress, lipid peroxidation and oxidative homeostasis. Free Radic Res 2009;43:S33.
  • Yelisyeyeva O, Cherkas A, Zarkovic K, Semen K, Kaminskyy D, Waeg G, Zarkovic K. The distribution of 4-hydroxinonenal-modified proteins in gastric mucosa of duodenal peptic ulcer patients. Free Radic Res 2008;42:1–7.
  • Sovic A, Borovic S, Loncaric I, Kreuzer T, Zarkovic K, Vukovic T, Wäg G, Hrascan R, Wintersteiger R, Klinger R, Zurak N, Schaur R, Zarkovic N. The carcinostatic and proapoptotic potential of 4-Hydroxynonenal in HeLa cells is associated with its conjugation to cellular proteins. Anticancer Res 2001;21:1997–2004.
  • Zarkovic N, Zarkovic K, Kralj M, Borovic S, Sabolovic S, Cipak A, Pavelic K. Anticancer and antioxidative effects of micronized zoelite clinoptilolite. Anticancer Res 2003;23: 1589–1596.
  • Zivkovic M, Zarkovic K, Skrinjar L, Weag F, Poljak-Blazi M, Borovic SS, Schaur R, Žarkovic N. A novel method for detection of HNE-histidine conjugates in rat inflammatory cells. Croatica Chemica Acta 2005;78:91–98.
  • Marquez-Quiñones A, Cipak A, Zarkovic K, Fattel-Fazenda S, Villa-Treviño S, Zarkovic N, Guéraud F. HNE-protein adducts formation in different pre-carcinogenic stages of hepatitis in LEC rats. Free Radic Res 2010;44: 119–127.
  • Borovic S, Cipak A, Meinitzer A, Kejla Z, Perovic D, Waeg G, Neven Z. Differential effect of 4-hydroxynonenal on normal and malignant mesenchimal cells. Redox Report 2007;207:50–54.
  • Gueraud F, Peiro G, Bernard H, Alary J, Creminon C, Debrauwer L, Rathahao E, Drumare M, Canlet C, Wal J, Bories G. Enzyme immunoassay for a urinary metabolite of 4-hydroxynonenal as a marker of lipid peroxidation. Free Radic Biol Med 2006;40:54–62.
  • Toyokuni S, Uchida K, Okamoto K, Hattori-Nakakuki Y, Hiai H, Stadtman E. Formation of 4-hydroxy-2-nonenal-modified proteins in the renal proximal tubules of rats treated with a renal carcinogen, ferric nitrilotriacetate. Proc Natl Acad Sci USA 1994;91:2616–2620.
  • Tanaka N, Tajima S, Ishibashi A, Uchida K, Shigematsu T. Immunohistochemical detection of lipid peroxidation products, protein-bound acrolein and 4-hydroxynonenal protein adducts, in actinic elastosis of photodamaged skin. Arch Dermatol Res 2001;293:363–367.
  • Zarkovic K, Juric G, Weag G, Kolenc D, Zarkovic N. Immunohistochemical appearance of HNE-protein conjugates in human astrocytomas. Biofactors 2005;24:33–40.
  • Ando J, Brannstrom T, Uchida K, Nyhlin N, Nasman B, Suhr O, Yamashita T, Olsson T, El SM, Uchino M, Ando M. Histochemical detection of 4-hydroxinonenal protein i Alzheimer amyloid. J Neurol Sci 1988;156:172–176.
  • Zarkovic K. 4-hydroxinonenal and neurodegenerative diseases. Mol Aspects Med 2003;24:293–303.
  • Yoritaka A, Hattori N, Uchida K, Tanaka M, Stadtman E, Mizuno Y. Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc Natl Acad Sci USA 1996;93:2696–2701.
  • Shibata N, Nagai R, Uchida K, Horiuchi S, Yamada S, Hirano A, Kawaguchi M, Yamamoto T, Sasaki S, Kobayashi M. Morphological evidence for lipid peroxidation and protein glycoxidation in spinal cord from sporadic amyotrophic lateral sclerosis patientes. Brain Res 2001;917:97–104.
  • Yoshino H, Hattori N, Urabe T, Uchida K, Tanaka M, Mizuno Y. Postischemic accumulation of lipid peroxidation products in the rat brain: immunohistochemical detection of 4-hydroxy-2-nonenal modified proteins. Brain Res 1997; 767:81–86.
  • Urabe T, Yamasaki Y, Hattori N, Yoshikawa M, Uchida K, Mizuno Y. Accumulation of 4-hydroxynonenal-modified proteins in hippocampal CA1 pyramidal neurons precedes delayed neuronal damage in gerbil brain. Neuroscience 2000;100:241–250.
  • Ihara Y, Toyokuni S, Uchida K, Odaka H, Tanaka T, Ikeda H, Hiai H, Seino Y, Yamada Y. Hyperglycemia causes oxidative stress in pancreatic beta-cells of GK rats, a model of type 2 diabetes. Diabetes 1999;48:927–932.
  • Suzuki D, Miyata T, Sotome N, Horie K, Inagi R, Yasuda Y, Uchida K, Izuhara Y, Yagame M, Sakai H, Kurokawa K. Immunohistochemical evidence for an increased oxidative stress and carbonyl modification of proteins in diabetic glomerular lesions. Am Soc Nephrol 1999;10:822–832.
  • Yla-Herttuala S, Palinski W, Rosenfeld M, Parthasarathy S, Carew T, Butler S, Witztum J, Steinberg D. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesion of rabbit and man. J Clin Invest 1989;84:1086–1095.
  • Palinski W, Rosenfeld M, Yla-Herttuala S, Gurtner G, Socher S, Butler S. Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci USA 1989;86: 1372–1376.
  • Carini M, Aldini G, Facino RM. Mass spectrometry for detection of 4-hydroxy-trans-2-nonenal (HNE) adducts with peptides and proteins. Mass Spectrom Rev 2004;23: 281–305.
  • Uchida K. 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res 2003;42:318–343.
  • Negre-Salvayre A, Coatrieux C, Ingueneau C, Salvayre R. Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. Br J Pharmacol 2008;153:6–20.
  • D'Souza A, Kurien BT, Scofield RH. Detection of catalase as a major protein target of the lipid peroxidation product 4-HNE and the lack of its genetic association as a risk factor in SLE. Arthritis Rheum 2008;58:S811–S812.
  • Vila A, Tallman KA, Jacobs AT, Liebler DC, Porter NA, Marnett LJ. Identification of protein targets of 4-hydroxynonenal using click chemistry for ex vivo biotinylation of azido and alkynyl derivatives. Chem Res Toxicol 2008;21:432–444.
  • Reed T, Perluigi M, Sultana R, Pierce WM, Klein JB, Turner DM, Coccia R, Markesbery WR, Butterfield DA. Redox proteomic identification of 4-hydroxy-2-nonenal-modified brain proteins in amnestic mild cognitive impairment: insight into the role of lipid peroxidation in the progression and pathogenesis of Alzheimer's disease. Neurobiol Dis 2008;30:107–120.
  • Reed TT, Pierce WM, Markesbery WR, Butterfield DA. Proteomic identification of HNE-bound proteins in early Alzheimer disease: insights into the role of lipid peroxidation in the progression of AD. Brain Res 2009;1274:66–76.
  • Sultana R, Reed T, Butterfield DA. Detection of 4-hydroxy-2-nonenal- and 3-nitrotyrosine-modified proteins using a proteomics approach. Methods Mol Biol 2009;519: 351–361.
  • Syslova K, Kacer P, Kuzma M, Najmanova V, Fenclova Z, Vlckova S, Lebedova J, Pelclova D. Rapid and easy method for monitoring oxidative stress markers in body fluids of patients with asbestos or silica-induced lung diseases. J Chromatogr B Analyt Technol Biomed Life Sci 2009;877: 2477–2486.
  • Kawai Y, Takeda S, Terao J. Lipidomic analysis for lipid peroxidation-derived aldehydes using gas chromatography-mass spectrometry. Chemi Res Toxicol 2007;20:99–107.
  • Spies-Martin D, Sommerburg O, Langhans CD, Leichsenring M. Measurement of 4-hydroxynonenal in small volume blood plasma samples: modification of a gas chromatographic-mass spectrometric method for clinical settings. J Chromatogr B 2002;774:231–239.
  • Stopforth A, Burger BV, Crouch AM, Sandra P. Urinalysis of 4-hydroxynonenal, a marker of oxidative stress, using stir bar sorptive extraction-thermal desorption-gas chromatography/mass spectrometry. J Chromatogr B 2006;834:134–140.
  • Rauniyar N, Stevens SM, Prokai-Tatrai K, Prokai L. Characterization of 4-hydroxy-2-nonenal-modified peptides by liquid chromatography-tandem mass spectrometry using data-dependent acquisition: neutral loss-driven MS3 versus neutral loss-driven electron capture dissociation. Anal Chem 2009;81:782–789.
  • Adiyaman M, Lawson J, Khanapure S, FitzGerald G, Rokach J. Total synthesis of 17,17,18,18-d4-iPF2alpha-VI and quantification of iPF2alpha-VI in human urine by gas chromatography/mass spectrometry. Anal Biochem 1998; 262:45–56.
  • Morrow J, Zackert W, Yang J, Kurhts E, Callewaert D, Dworski R, Kanai K, Taber D, Moore K, Oates J, Roberts L. Quantification of the major urinary metabolite of 15-F2t-isoprostane (8-iso-PGF2alpha) by a stable isotope dilution mass spectrometric assay. Anal Biochem 1999;269:326–331.
  • Walter M, Blumberg J, Dolnikowski G, Handelman G. Streamlined F2-isoprostane analysis in plasma and urine with high-performance liquid chromatography and gas chromatography/mass spectrometry. Anal Biochem 2000; 280:73–79.
  • Schwedhelm E, Tsikas D, Durand T, Gutzki F, Guy A, Rossi J, Frölich J. Tandem mass spectrometric quantification of 8-iso-prostaglandin F2alpha and its metabolite 2,3-dinor-5,6-dihydro-8-iso-prostaglandin F2alpha in human urine. J Chromatogr B Biomed Sci Appl 2000;744:99–112.
  • Tsikas D, Schwedhelm E, Fauler J, Gutzki FM, Mayatepek E, Frolich JC. Specific and rapid quantification of 8-iso-prostaglandin F2alpha in urine of healthy humans and patients with Zellweger syndrome by gas chromatography-tandem mass spectrometry. J Chromatogr B Biomed Sci Appl 1998;716:7–17.
  • Lee C, Jenner A, Halliwell B. Rapid preparation of human urine and plasma samples for analysis of F2-isoprostanes by gas chromatography-mass spectrometry. Biochem Biophys Res Commun 2004;320:696–702.
  • Björkhem I, Danielsson H, Einarsson K. On the metabolism of cholesterol in rat liver homogenates. Bile acids and steroids. Eur J Biochem 1968;4:458–463.
  • Brooks C, Steel G, Gilbert J, Harland W. Lipids of human atheroma. Part 4. Characterization of a new group of polar sterol esters from human atherosclerotic plaques. Atherosclerosis 1971;13:223–227.
  • Rennert H, Fischer RT, Alvarez JG, Trzaskos JM, Strauss JF, 3rd. Generation of regulatory oxysterols: 26-hydroxylation of cholesterol by ovarian mitochondria. Endocrinology 1990;127:738–746.
  • Ansari G, Smith L. High-performance liquid chromatography of cholesterol autoxidation products. J Chromatogr 1971;175:307–315.
  • Brown A, Leong S, Dean T, Jessup W. 7-Hydroperoxycholesterol and its products in oxidized low density lipoprotein and in human atherosclerotic plaque. J Lipid Res 1997;38: 1730–1745.
  • Breuer O, Björkhem I. Use of an 18O2 inhalation technique and mass isotopomer distribution analysis to study oxygenation of cholesterol in rat. Evidence for in vivo formation of 7-oxo-, 7β-hydroxy-, 24-hydroxy-, and 25-hydroxycholesterol. J Biol Chem 1995;270:20278–20284.
  • Garcia Regueiro J, Maraschiello C. Procedure for the determination of eight cholesterol oxides in poultry meat using on-column and solvent venting capillary gas chromatography. J Chromatogr 1997;764:279–293.
  • Pyrek J, Wilson W, Numazawa S, Schroepfer GJ. Inhibitors of sterol synthesis. Characterization of trimethylsilyl dienol ethers of 3β-hydroxy-5α-cholest-8(14)-en-15-one. Applications in the analysis of mitochondrial metabolites of the 15-ketosterol by gas chromatography mass spectrometry. J Lipid Res 1991;32:1371–1380.
  • Wilson W, Sumpter R, Warren J, Rogers P, Ruan B, Schroepfer GJ. Analysis of unsaturated C27 sterols by nuclear magnetic resonance spectroscopy. J Lipid Res 1996;37: 1529–1555.
  • Schroepfer GJ, Parish E, Kandutsch A, Bowen S, Quiocho F. 15β-Methyl-5α,14β-cholest-7-ene-3β,15α-diol. Synthesis, structure, and inhibition of sterol synthesis in animal cells. Biochem Int 1987;15:403–408.
  • Toyokuni S. Iron-induced carcinogenesis: the role of redox regulation. Free Radic Biol Med 1996;20:553–566.
  • Aoyama K, Matsubara K, Kobayashi S. Aging and oxidative stress in progressive supranuclear palsy. Eur J Neurob 2006;13:89–92.
  • Montine T, Huang D, Valentine W, Amarnath V, Saundrs A, Weisgraber K, Graham D, Strittmatter W. Crosslinking of apolipoprotein E by products of lipid peroxidation. J Neuropathol Exp Neurol 1996;55:202–210.
  • Calingasan N, Uchida K, Gibson G. Protein-bound acrolein. A novel marker of oxidative stress in Alzheimer's disease. J Neurochem 1999;72:751–756.
  • Moreira P, Smith M, Zhu X, Nunomura A, Castellani R, Perry G. Oxidative stress and neurodegeneration. Ann NY Acad Sci 2005;1043:545–552.
  • Fukuda M, Kanou F, Shimada N, Sawabe M, Saito Y, Murayama S, Hashimoto M, Maruyama N, Ishigami A. Elevated levels of 4-hydroxynonenal-histidine Michael adduct in the hippocampi of patients with Alzheimer`s disease. Biomed Res 2009;30:227–233.
  • Tang S, Lathia J, Selvaraj P, Jo D, Mughal M, Cheng A, Silver D, Markesbery W, Arumugam T, Mattson M. Toll-like receptor-4 mediates neuronal apoptosis induced by amyloid β-peptide and the membrane lipid peroxidation product 4-hydroxynonenal. Exper Neurol 2008;213:114–121.
  • Steinberg D, Parthasarathy S, Carew T, Khoo J, Witztum J. Beyond cholesterol. Modification of low-densiy lipoprotein that increase its atherogenicity. N Engl J Med 1989;320: 915–924.
  • Ide T, Tsutsui H, Kinugawa S, Utsumi H, Kang D, Hattori N, Uchida K, Arimura K, Egashira K, Takeshira A. Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res 1999;85:357–363.
  • Rosenfeld M, Palinski W, Yla-Herttuala S, Butler S, Witztum J. Distribution of oxidation specific lipid-protein adducts and apolipoprotein B in atherosclerotioc lesions of varying severity from WHHL rabbits. Arteriosclerosis 1990;10:336–349.
  • Itakura A, Kurauchi O, Takashima S, Uchida K, Ito M, Mizutani S. Immunological detection of 4-hydroxynonenal protein adducts in developing pontine and Purkinje neurons and in karyorrhexis in pontosubicular neuronal necrosis. Early Hum Dev 2002;67:19–28.
  • Noiri E, Nakao A, Uchida K, Tsukahara H, Ohno M, Fujita T, Brodsky S, Goligorsky M. Oxidative and nitrosative stress in acute renal ischemia. J Physiol Renal Physiol 2001;284: 948–957.
  • Shibuk H, Katai N, Yodoi J, Uchida K, Yoshimura N. Lipid peroxidation and peroxynitrite in retinal ichemia-reperfusion injury. Invest Ophthalmol Vis Sci 2000; 41:3607–3614.
  • Cherkas A, Yelisyeyeva O, Semen K, Zarkovic K, Kaminskyy D, Gasparovic AC, Jaganjac M, Lutsyk A, Waeg G, Zarkovic N. Persistent accumulation of 4-hydroxynonenal-protein adducts in gastric mucosa after helicobacter pylory eradication. Coll Antropol 2009;33:815–821.
  • Rahman I, Van Schadewijk A, Crowther A, Hiemstra P, Stolk J, MacNee W, De Boer W. 4-hydroxy-2-nonenal, a specific lipid peroxidation product, is elevated in lung of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2002;166:490–495.
  • Zivkovic M, Zarkovic K, Skrinjar L, Weag G, Poljak-Blazi M, Sunjic S, Schaur R, Zarkovic N. A new method for detection of HNE-histidine conjugates in rat inflammatory. Croatica Chemica Acta 2005;78:91–98.
  • Khan FM, Wu X, Tipnis U, Ansari G, Boor P. Protein adducts of malondialdehyde and 4-hydroxynonenal in liver of ironloaded rats: quantitation and localization. Toxicology 2002;173:193–201.
  • Hartley D, Kolaja K, Reichard J, Petersen D. 4-hydroxynonenal and malondialdehyde hepatic protein adducts in rats treated with carbon tetrachloride: immunochemical detection and lobular localization. Tox Appl Pharm 1999;166: 23–33.
  • Kawamura K, Kobayashi Y, Kageyama F, Kawasaki T, Nagasawa M, Toyokuni S, Uchida K, Nakamura H. Enhanced hepatic lipid peroxidation in patients with primary biliary cirrhosis. Am J Gastroenterol 2000;95:3596–3601.
  • Sobocanec S, Balog T, Saric A, Sverko V, Zarkovic N, Cipak Gasparovic A, Zarkovic K, Waeg G, Macak Safranko Z, Kusic B, Marotti T. Cyp4a14 overexpression induced by hyperoxia in female CBA mice as a possible contributor of increased resistance to oxidative stress. Free Radic Res 2010;44:181–190.
  • Yamamoto H, Yamamoto Y, Yamagami K, Kume M, Kimoto S, Toyokuni S, Uchida K, Fukumoto M, Yamaoka Y. Heat-shock preconditioning reduces oxidative protein denaturation and ameliorates liver injury by carbon tetrachloride in rats. Res Exp Med 2000;199:309–318.
  • Casasco A, Calligaro A, Casasco M, Tateo S, Icaro Cornaglai, Reguzzoni M, Farina A. Immunohistochemical localization of lipoperoxidation productrs in normal human placenta. Placenta 1997;18:249–253.
  • Gveric-Ahmetasevic S, Borovic Sunjic S, Skala H, Andrisic L, Stroser M, Zarkovic K, Skrablin S, Tatzber F, Cipak A, Jaganjac M, Gveric T, Zarkovic N. Oxidative stress in small-for-gestation age (SGA) term newborns and their mothers. Free Radic Res 2009;43:376–384.
  • Rotzoll DE, Scherling R, Etzl R, Stepan H, Horn LC, Poschl JM. Immunohistochemical localisation of α-tocopherol transfer protein and lipoperoxidation products in human first-trimester and term placenta. Eur J Obst Gyn Repr Biol 2008;140:183–191.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.