408
Views
44
CrossRef citations to date
0
Altmetric
Research Article

Procyanidin dimer B1 and trimer C1 impair inflammatory response signalling in human monocytes

, , , , , , , & show all
Pages 611-619 | Received 24 Oct 2010, Accepted 10 Feb 2011, Published online: 15 Mar 2011

References

  • Forman HJ, Torres M. Redox signaling in macrophages. Mol Aspects Med 2001;22:189–216.
  • Guha M, Mackman N. LPS induction of gene expression in human monocytes. Cell Sig 2001;13:85–94.
  • Wu T, Chen T, Chen R. Lipopolysaccharide triggers macrophage activation of inflammatory cytokine expression, chemotaxis, phagocytosis, and oxidative ability via a toll-like receptor 4- dependent pathway: validated by RNA interference. Toxicol Lett 2009;191:195–202.
  • Durando M, Meier K, Cook J. Endotoxin activation of mitogen-activated protein kinase in THP-1 cells; diminished activation following endotoxin desensitization. J Leukoc Biol 1998;64:259–264.
  • Guha M, O'Connell MA, Pawlinski R, Hollis A, McGovern P, Yan S, Stern D, Mackman N. Lipopolysaccharide activation of the MEK-ERK1/2 pathway in human monocytic cells mediates tissue factor and tumor necrosis factor {alpha} expression by inducing elk-1 phosphorylation and egr-1 expression. Blood 2001;98:1429–1439.
  • Eder K, Vizler C, Kusz E, Karcagi I, Glavinas H, Balogh GE, Vigh L, Duda E, Gyorfy Z. The role of lipopolysaccharide moieties in macrophage response to Escherichia coli. Biochem Biophys Res Commun 2009;389:46–51.
  • Jimi E, Ghosh S. Role of nuclear factor-kappaB in the immune system and bone. Immunol Rev 2005;208:80–87.
  • Nishi K, Oda T, Takabuchi S, Oda S, Fukuda K, Adachi T, Semenza G L, Shingu K, Hirota K. LPS induces hypoxia-inducible factor 1 activation in macrophage-differentiated cells in a reactive oxygen species-dependent manner. Antioxid Redox Signal 2008;10:983–996.
  • Ryan KA, Smith MF, Sanders MK, Ernst PB. Reactive oxygen and nitrogen species differentially regulate toll-like receptor 4-mediated activation of NF-{kappa}B and interleukin-8 expression. Infect Immun 2004;72:2123–2130.
  • Nagai N, Noguchi T, Takeda K, Ichijo H. Pathophysiological roles of ASK1-MAP kinase signaling pathways. J Biochem Mol Biol 2007;40:1–6.
  • Puiggros F, Llopiz N, Ardevol A, Blade C, Arola L, Salvado MJ. Grape seed procyanidins prevent oxidative injury by modulating the expression of antioxidant enzyme systems. J Agric Food Chem 2005;53:6080–6086.
  • Garg AK, Aggarwal BB. Reactive oxygen intermediates in TNF signaling. Mol Immunol 2002;39:509–517.
  • Zhang Q, Pi J, Woods CG, Andersen ME. A systems biology perspective on Nrf2-mediated antioxidant response. Toxicol Appl Pharmacol 2010;284:84–97.
  • Bonizzi G, Piette J, Merville M, Bours V. Cell type-specific role for reactive oxygen species in nuclear factor-kappaB activation by interleukin-1. Biochem Pharmacol 2000;59:7–11.
  • Gloire G, Legrand-Poels S, Piette J. NF-[kappa]B activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 2006;72:1493–1505.
  • Terra X, Valls J, Vitrac X, Merrillon J, Arola L, Ardevol A, Blade C, Fernandez-Larrea J, Pujadas G, Salvado J, Blay M. Grape-seed procyanidins act as antiinflammatory agents in endotoxin-stimulated RAW 264.7 macrophages by inhibiting NFkB signaling pathway. J Agric Food Chem 2007;55: 4357–4365.
  • Montagut G, Baiges I, Valls J, Terra X, del Bas JM, Vitrac X, Richard T, Merillon J, Arola L, Blay M, Blade C, Fernandez-Larrea J, Pujadas G, Salvado J, Ardevol A. A trimer plus a dimergallate reproduce the bioactivity described for an extract of grape seed procyanidins. Food Chem 2009;116:265–270.
  • Cos P, De Bruyne T, Hermans N, Apers S, Berghe DV, Vlietinck AJ. Proanthocyanidins in health care: current and new trends. Curr Med Chem 2004;11:1345–1359.
  • Roychowdhurya S, Wolfa G, Keilhoffa G, Bagchib D, Horna T. Protection of primary glial cells by grape seed proanthocyanidin extract against nitrosative/oxidative stress. Nitric Oxide 2001;5:137–149.
  • Delehanty JB, Johnson BJ, Hickey TE, Pons T, Ligler FS. Binding and neutralization of lipopolysaccharides by plant proanthocyanidins. J Nat Prod 2007;70:1718–1724.
  • Houde V, Grenier D, Chandad F. Protective effects of grape seed proanthocyanidins against oxidative stress induced by lipopolysaccharides of periodontopathogens. J Periodontol 2006;77:1371–1379.
  • Hong MH, Kim MH, Chang HJ, Kim NH, Shin BA, Ahn BW, Jung YD. (−)- Epigallocatechin-3-gallate inhibits monocyte chemotactic protein-1 expression in endothelial cells via blocking NF-[kappa]B signaling. Life Sci 2007;80:1957–1965.
  • Calixto J, Campos M, Otuki M, Santos A. Anti-inflammatory compounds of plant origin. part II. modulation of pro-inflammatory cytokines, chemokines and adhesion molecules. Plant Med 2004; :93–103.
  • Lin Y, Lin J. (−)-Epigallocatechin-3-gallate blocks the induction of nitric oxide synthase by down-regulating lipopolysaccharide-induced activity of transcription factor nuclear factor-kappa B. Mol Pharmacol 1997;52:465–472.
  • Yang F, de Villiers WJS, McClain CJ, Varilek GW. Green tea polyphenols block endotoxin-induced tumor necrosis factor-production and lethality in a murine model. J Nutr 1998;128: 2334–2340.
  • Manach C, Williamson G, Morand C, Scalbert A, Remesy C. Bioavailability and bioefficacy of polyphenols in humans. A review of 97 bioavailability studies. Am J Clin Nutr 2005;81:230S–242S.
  • Terra X, Montagut G, Bustos M, Llopiz N, Ardevol A, Blade C, Fernandez-Larrea J, Pujadas G, Salvado J, Arola L, Blay M. Grape-seed procyanidins prevent low-grade inflammation by modulating cytokine expression in rats fed a high-fat diet. J Nutr Biochem 2009;20:210–218.
  • Ichikawa D, Matsui A, Imai M, Sonoda Y, Kasahara T. Effect of various catechins on the IL-12p40 production by murine peritoneal macrophages and a macrophage cell line, J774.1. Biol Pharm Bull 2004;27:1353–1358.
  • Trompezinski S, Denis A, Schmitt D, Viac J. Comparative effects of polyphenols from green tea (EGCG) and soybean (genistein) on VEGF and IL-8 release from normal human keratinocytes stimulated with the proinflammatory cytokine TNFa. Arch Dermatol Res 2003;295:112–116.
  • Zhang W, Liu H, Xie K, Yin L, Li Y, Kwik-Uribe CL, Zhu X. Procyanidin dimer B2 [epicatechin-(4[beta]-8)-epicatechin] suppresses the expression of cyclooxygenase-2 in endotoxin treated monocytic cells. Biochem Biophys Res Commun 2006;345:508–515.
  • Mackenzie GG, Carrasquedo F, Delfino JM, Keen CL, Fraga CG, Oteiza PI. Epicatechin, catechin, and dimeric procyanidins inhibit PMA-induced NF-κB activation at multiple steps in jurkat T cells. FASEB J 2004;18:167–169.
  • Weiss T, Shalit I, Blau H, Werber S, Halperin D, Levitov A, Fabian I. Anti-inflammatory effects of moxifloxacin on activated human monocytic cells: inhibition of NF-{kappa}B and mitogen activated protein kinase activation and of synthesis of proinflammatory cytokines. Antimicrob Agents Chemother 2004;48:1974–1982.
  • Verhaeghe C, Remouchamps C, Hennuy B, Vanderplasschen A, Chariot A, Tabruyn SP, Oury C, Bours V. Role of IKK and ERK pathways in intrinsic inflammation of cystic fibrosis airways. Biochem Pharmacol 2007;73:1982–1994.
  • Suh S, Chung T, Son M, Kim S, Moon TC, Son KH, Kim HP, Chang HW, Kim C. The naturally occurring biflavonoid, ochnaflavone, inhibits LPS-induced iNOS expression, which is mediated by ERK1/2 via NF-[kappa]B regulation, in RAW264.7 cells. Arch Biochem Biophys 2006;447:136–146.
  • Park HS, Jung HY, Park EY, Kim J, Lee WJ, Bae YS. Cutting edge: direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-{kappa}B. J Immunol 2004;173:3589–3593.
  • Steffen Y, Gruber C, Schewe T, Sies H. Mono-O-methylated flavanols and other flavonoids as inhibitors of endothelial NADPH oxidase. Arch Biochem Biophys 2008;469: 209–219.
  • Mackenzie GG, Delfino JM, Keen CL, Fraga CG, Oteiza PI. Dimeric procyanidins are inhibitors of NF-κB–DNA binding. Biochem Pharmacol 2009;78:1252–1262.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.