795
Views
77
CrossRef citations to date
0
Altmetric
Review Article

Chemical and biological consequences of oxidatively damaged guanine in DNA

, , &
Pages 420-441 | Received 30 Oct 2011, Accepted 27 Dec 2011, Published online: 22 Feb 2012

References

  • Hussain SP, Hofseth LJ, Harris CC. Radical causes of cancer. Nat Rev Canc 2003;3:276–285.
  • Niles JC, Wishnok JS, Tannenbaum SR. Peroxynitrite-induced oxidation and nitration products of guanine and 8-oxoguanine: structures and mechanisms of product formation. Nitric Oxide 2006;14:109–121.
  • Yermilov V, Yoshie Y, Rubio J, Ohshima H. Effects of carbon dioxide/bicarbonate on induction of DNA single-strand breaks and formation of 8-nitroguanine, 8-oxoguanine and base-propenal mediated by peroxynitrite. FEBS Lett 1996;399:67–70.
  • Cadet J, Berger M, Douki T, Ravanat JL. Oxidative damage to DNA: formation, measurement, and biological significance. Rev Physiol Biochem Pharmacol 1997;131:1–87.
  • Misiaszek R, Crean C, Joffe A, Geacintov NE, Shafirovich V. Oxidative DNA damage associated with combination of guanine and superoxide radicals and repair mechanisms via radical trapping. J Biol Chem 2004;279:32106–32115.
  • Regulus P, Duroux B, Bayle PA, Favier A, Cadet J, Ravanat JL. Oxidation of the sugar moiety of DNA by ionizing radiation or bleomycin could induce the formation of a cluster DNA lesion. Proc Natl Acad Sci USA 2007;104: 14032–14037.
  • Regulus P, Spessotto S, Gateau M, Cadet J, Favier A, Ravanat JL. Detection of new radiation-induced DNA lesions by liquid chromatography coupled to tandem mass spectrometry. Rapid Commun Mass Spectrom 2004;18: 2223–2228.
  • Candeias LP, O'Neill P, Jones GD, Steenken S. Ionization of polynucleotides and DNA in aqueous solution by 193 nm pulsed laser light: identification of base-derived radicals. Int J Radiat Biol 1992;61:15–20.
  • Pouget JP, Douki T, Richard MJ, Cadet J. DNA damage induced in cells by gamma and UVA radiation as measured by HPLC/GC-MS and HPLC-EC and comet assay. Chem Res Toxicol 2000;13:541–549.
  • Cadet J, Sage E, Douki T. Ultraviolet radiation-mediated damage to cellular DNA. Mutat Res 2005;571:3–17.
  • Cooke MS, Loft S, Olinski R, Evans MD, Bialkowski K, Wagner JR, . Recommendations for standardized description of and nomenclature concerning oxidatively damaged nucleobases in DNA. Chem Res Toxicol 2010;23:705–707.
  • Steenken S, Jovanovic SV. How easily oxidizable is DNA? One-electron reduction potentials of adenosine and guanosine radicals in aqueous solution. J Am Chem Soc 1997;119:617–618.
  • Margolin Y, Cloutier JF, Shafirovich V, Geacintov NE, Dedon PC. Paradoxical hotspots for guanine oxidation by a chemical mediator of inflammation. Nat Chem Biol 2006;2:365–366.
  • Genereux JC, Barton JK. Mechanisms for DNA charge transport. Chem Rev 2010;110:1642–1662.
  • Saito I, Takayama M, Sugiyama H, Nakatani K. Photoinduced DNA cleavage via electron-transfer-demonstration that guanine residues located 5′ to guanine are the most electron-donating sites. J Am Chem Soc 1995;117:6406–6407.
  • Sugiyama H, Saito I. Theoretical studies of GC-specific photocleavage of DNA via electron transfer: significant lowering of ionization potential and 5′-localization of homo of stacked GG bases in B-form DNA. J Am Chem Soc 1996;118:7063–7068.
  • Burrows CJ, Muller JG. Oxidative nucleobase modifications leading to strand scission. Chem Rev 1998;98:1109–1151.
  • , European Standards Committee on Urinary (DNA) Lesion AnalysisEvans MD, Olinski R, Loft S, Cooke MS. Toward consensus in the analysis of urinary 8-oxo-7,8-dihydro-2‘-deoxyguanosine as a noninvasive biomarker of oxidative stress. FASEB J 2010;24:1249–1260.
  • Mistry V, Teichert F, Sandhu JK, Singh R, Evans MD, Farmer PB, Cooke MS. Non-invasive assessment of oxidatively damaged DNA: liquid chromatography-tandem mass spectrometry analysis of urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine. Meth Mol Biol 2011;682:279–289.
  • European Standards Committee on Oxidative DNA Damage. Comparative analysis of baseline 8-oxo-7,8-dihydroguanine in mammalian cell DNA, by different methods in different laboratories: an approach to consensus. Carcinogenesis 2002;23:2129–2133.
  • European Standards Committee on Oxidative DNA Damage. Comparison of results from different laboratories in measuring 8-oxo-2 ‘-deoxyguanosine in synthetic oligonucleotides. Free Radic Res 2002;36:649–659.
  • European Standards Committee on Oxidative DNA Damage. Inter-laboratory validation of procedures for measuring 8-oxo-7,8-dihydroguanine/8-oxo-7,8-dihydro-2′-deoxyguanosine in DNA. Free Radic Res 2002;36:239–245.
  • European Standards Committee on Oxidative DNA Damage. Measurement of DNA oxidation in human cells by chromatographic and enzymic methods. Free Radic Bio Med 2003;34:1089–1099.
  • European Standards Committee on Oxidative DNA Damage. Establishing the background level of base oxidation in human lymphocyte DNA: results of an interlaboratory validation study. FASEB J 2004;18:82–84.
  • Møller P, Cooke MS, Collins A, Olinski R, Rozalski R, Loft S. Harmonising measurements of 8-oxo-7,8-dihydro-2′-deoxyguanosine in cellular DNA and urine. Free Rad Res 2012.
  • Munk BH, Burrows CJ, Schlegel HB. Exploration of mechanisms for the transformation of 8-hydroxy guanine radical to FapyG by density functional theory. Chem Res Toxicol 2007;20:432–444.
  • Gajewski E, Rao G, Nackerdien Z, Dizdaroglu M. Modification of DNA bases in mammalian chromatin by radiation-generated free-radicals. Biochemistry 1990;29:7876–7882.
  • Doetsch PW, Zastawny TH, Martin AM, Dizdaroglu M. Monomeric base damage products from adenine, guanine, and thymine induced by exposure of DNA to ultraviolet-radiation. Biochemistry 1995;34:737–742.
  • Haraguchi K, Greenberg MM. Synthesis of oligonucleotides containing FapydG (N6-(2-deoxy-α,β-d-erythro-pentofuranosyl)-2,6-diamino-4-hydroxy-5-formamidopyrimidine). J Am Chem Soc 2001;123:8636–8637.
  • Haraguchi K, Delaney MO, Wiederholt CJ, Sambandam A, Hantosi Z, Greenberg MM. Synthesis and characterization of oligodeoxynucleotides containing formamidopyrimidine lesions and nonhydrolyzable analogues. J Am Chem Soc 2002;124:3263–3269.
  • Jiang YL, Wiederholt CJ, Patro JN, Haraguchi K, Greenberg MM. Synthesis of oligonucleotides containing FapydG (N-6-(2-deoxy-α,β-d-erythropentofuranosyl)-2,6-diamino-4-hydroxy-5-formamidopyrimidine) using a 59-dimethoxytrityl dinucleotide phosphoramidite. J Org Chem 2005;70: 141–149.
  • Christov PP, Brown KL, Kozekov ID, Stone MP, Harris TM, Rizzo CJ. Site-specific synthesis and characterization of oligonucleotides containing an N(6)-(2-deoxy-d-erythro-pentofuranosyl)-2,6-diamino-3,4-dihydro-4-oxo-5-n-methylformamidopyrimidine lesion, the ring-opened product from N7-methylation of deoxyguanosine. Chem Res Toxicol 2008;21:2324–2333.
  • Lukin M, Minetti CA, Remeta DP, Attaluri S, Johnson F, Breslauer KJ, de Los Santos C. Novel post-synthetic generation, isomeric resolution, and characterization of Fapy-dG within oligodeoxynucleotides: differential anomeric impacts on DNA duplex properties. Nucleic Acids Res 2011;39:5776–5789.
  • Berger M, Anselmino C, Mouret JF, Cadet J. High-performance liquid-chromatography electrochemical assay for monitoring the formation of 8-oxo-7,8-dihydroadenine and its related 2′-deoxyribonucleoside. J Liq Chrom 1990;13:929–940.
  • Yanagawa H, Ogawa Y, Ueno M. Redox ribonucleosides. Isolation and characterization of 5-hydroxyuridine, 8-hydroxyguanosine, and 8-hydroxyadenosine from torula yeast RNA. J Biol Chem 1992;267:13320–13326.
  • Neeley WL, Essigmann JM. Mechanisms of formation, genotoxicity, and mutation of guanine oxidation products. Chem Res Toxicol 2006;19:491–505.
  • Niles JC, Wishnok JS, Tannenbaum SR. Spiroiminodihydantoin and guanidinohydantoin are the dominant products of 8-oxoguanosine oxidation at low fluxes of peroxynitrite: mechanistic studies with 18O. Chem Res Toxicol 2004;17: 1510–1519.
  • Ye Y, Muller JG, Luo WC, Mayne CL, Shallop AJ, Jones RA, Burrows CJ. Formation of C-13-, N-15-, and O-18-labeled guanidinohydantoin from guanosine oxidation with singlet oxygen. Implications for structure and mechanism. J Am Chem Soc 2003;125:13926–13927.
  • Munk BH, Burrows CJ, Schlegel HB. An exploration of mechanisms for the transformation of 8-oxoguanine to guanidinohydantoin and spiroiminodihydantoin by density functional theory. J Am Chem Soc 2008;130:5245–5256.
  • Ye Y, Munk BH, Muller JG, Cogbill A, Burrows CJ, Schlegel HB. Mechanistic aspects of the formation of guanidinohydantoin from spiroiminodihydantoin under acidic conditions. Chem Res Toxicol 2009;22:526–535.
  • Niles JC, Wishnok JS, Tannenbaum SR. Mass spectrometric identification of 4-hydroxy-2,5-dioxo-imidazolidine-4-carboxylic acid during oxidation of 8-oxoguanosine by peroxynitrite and KHSO5/CoCl2. Chem Res Toxicol 2004;17:1501–1509.
  • Cadet J, Berger M, Buchko GW, Joshi PC, Raoul S, Ravanat JL. 2,2-diamino-4-[(3,5-di-O-acetyl-2-deoxy-β-d-erythropentofuranosyl) amino]-5-(2H)-oxazolone. A novel and predominant radical oxidation-product of 3′,5′-di-O-acetyl-2′-deoxyguanosine. J Am Chem Soc 1994;116:7403–7404.
  • Chworos A, Coppel Y, Dubey I, Pratviel G, Meunier B. Guanine oxidation: NMR characterization of a dehydro-guanidinohydantoin residue generated by a 2e-oxidation of d(GpT). J Am Chem Soc 2001;123:5867–5877.
  • Henderson PT, Neeley WL, Delaney JC, Gu F, Niles JC, Hah SS, . Urea lesion formation in DNA as a consequence of 7,8-dihydro-8-oxoguanine oxidation and hydrolysis provides a potent source of point mutations. Chem Res Toxicol 2005;18:12–18.
  • Leipold MD, Muller JG, Burrows CJ, David SS. Removal of hydantoin products of 8-oxoguanine oxidation by the escherichia coli DNA repair enzyme, FPG. Biochemistry 2000;39:14984–14992.
  • Hailer MK, Slade PG, Martin BD, Sugden KD. Nei deficient Escherichia coli are sensitive to chromate and accumulate the oxidized guanine lesion spiroiminodihydantoin. Chem Res Toxicol 2005;18:1378–1383.
  • Bodepudi V, Shibutani S, Johnson F. Synthesis of 2′-deoxy-7,8-dihydro-8-oxoguanosine and 2′-deoxy-7,8-dihydro-8-oxoadenosine and their incorporation into oligomeric DNA. Chem Res Toxicol 1992;5:608–617.
  • Plum GE, Grollman AP, Johnson F, Breslauer KJ. Influence of the oxidatively damaged adduct 8-oxodeoxyguanosine on the conformation, energetics, and thermodynamic stability of a DNA duplex. Biochemistry 1995;34:16148–16160.
  • Oda Y, Uesugi S, Ikehara M, Nishimura S, Kawase Y, Ishikawa H, . Nmr studies of a DNA containing 8-hydroxydeoxyguanosine. Nucleic Acids Res 1991;19: 1407–1412.
  • Lipscomb LA, Peek ME, Morningstar ML, Verghis SM, Miller EM, Rich A, . X-ray structure of a DNA decamer containing 7,8-dihydro-8-oxoguanine. Proc Natl Acad Sci USA 1995;92:719–723.
  • Singh SK, Szulik MW, Ganguly M, Khutsishvili I, Stone MP, Marky LA, Gold B. Characterization of DNA with an 8-oxoguanine modification. Nucleic Acids Res 2011;39: 6789–6801.
  • Crenshaw CM, Wade JE, Arthanari H, Frueh D, Lane BF, Nunez ME. Hidden in plain sight: subtle effects of the 8-oxoguanine lesion on the structure, dynamics, and thermodynamics of a 15-base pair oligodeoxynucleotide duplex. Biochemistry 2011;50:8463–8477.
  • Shibutani S, Takeshita M, Grollman AP. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 1991;349:431–434.
  • Kouchakdjian M, Bodepudi V, Shibutani S, Eisenberg M, Johnson F, Grollman AP, Patel DJ. NMR structural studies of the ionizing radiation adduct 7-hydro-8-oxodeoxyguanosine (8-oxo-7H-dG) opposite deoxyadenosine in a DNA duplex. 8-oxo-7H-dG(syn).dA(anti) alignment at lesion site. Biochemistry 1991;30:1403–1412.
  • McAuley-Hecht KE, Leonard GA, Gibson NJ, Thomson JB, Watson WP, Hunter WN, Brown T. Crystal structure of a DNA duplex containing 8-hydroxydeoxyguanine-adenine base pairs. Biochemistry 1994;33:10266–10270.
  • Kornyushyna O, Berges AM, Muller JG, Burrows CJ. In vitro nucleotide misinsertion opposite the oxidized guanosine lesions spiroiminodihydantoin and guanidinohydantoin and DNA synthesis past the lesions using Escherichia coli DNA polymerase I (klenow fragment). Biochemistry 2002;41:15304–15314.
  • Chinyengetere F, Jamieson ER. Impact of the oxidized guanine lesion spiroiminodihydantoin on the conformation and thermodynamic stability of a 15-mer DNA duplex. Biochemistry 2008;47:2584–2591.
  • Schibel AE, Fleming AM, Jin Q, An N, Liu J, Blakemore CP, . Sequence-specific single-molecule analysis of 8-oxo-7,8-dihydroguanine lesions in DNA based on unzipping kinetics of complementary probes in ion channel recordings. J Am Chem Soc 2011;133:14778–14784.
  • Marky LA, Breslauer KJ. Calculating thermodynamic data for transitions of any molecularity from equilibrium melting curves. Biopolymers 1987;26:1601–1620.
  • Patro JN, Haraguchi K, Delaney MO, Greenberg MM. Probing the configurations of formamidopyrimidine lesions FapydA and FapydG in DNA using endonuclease IV. Biochemistry 2004;43:13397–13403.
  • Wiederholt CJ, Greenberg MM. Fapy-dG instructs klenow exo(-) to misincorporate deoxyadenosine. J Am Chem Soc 2002;124:7278–7279.
  • Jia L, Shafirovich V, Shapiro R, Geacintov NE, Broyde S. Structural and thermodynamic features of spiroiminodihydantoin damaged DNA duplexes. Biochemistry 2005;44:13342–13353.
  • Fenn D, Chi LM, Lam SL. Effect of hyperoxidized guanine on DNA primer-template structures: spiroiminodihydantoin leads to strand slippage. FEBS Lett 2008;582:4169–4175.
  • Gasparutto D, Da Cruz S, Bourdat AG, Jaquinod M, Cadet J. Synthesis and biochemical properties of cyanuric acid nucleoside-containing DNA oligomers. Chem Res Toxicol 1999;12:630–638.
  • Lowe LG, Guengerich FP. Steady-state and pre-steady-state kinetic analysis of dNTP insertion opposite 8-oxo-7,8-dihyvdroguanine by Escherichia coli polymerases I exo-and II exo. Biochemistry 1996;35:9840–9849.
  • Furge LL, Guengerich FP. Analysis of nucleotide insertion and extension at 8-oxo-7,8-dihydroguanine by replicative T7 polymerase exo-and human immunodeficiency virus-1 reverse transcriptase using steady-state and pre-steady-state kinetics. Biochemistry 1997;36:6475–6487.
  • Haracska L, Yu SL, Johnson RE, Prakash L, Prakash S. Efficient and accurate replication in the presence of 7,8-dihydro-8-oxoguanine by DNA polymerase eta. Nat Genet 2000;25:458–461.
  • Rechkoblit O, Malinina L, Cheng Y, Kuryavyi V, Broyde S, Geacintov NE, Patel DJ. Stepwise translocation of dpo4 polymerase during error-free bypass of an oxoG lesion. PLoS Biol 2006;4:e11.
  • David SS, Williams SD. Chemistry of glycosylases and endonucleases involved in base-excision repair. Chem Rev 1998;98:1221–1262.
  • Sampath H, McCullough AK, Lloyd RS. Regulation of DNA glycosylases and their role in limiting disease. Free Rad Res 2012.
  • Wood ML, Dizdaroglu M, Gajewski E, Essigmann JM. Mechanistic studies of ionizing radiation and oxidative mutagenesis: genetic effects of a single 8-hydroxyguanine (7-hydro-8-oxoguanine) residue inserted at a unique site in a viral genome. Biochemistry 1990;29:7024–7032.
  • Moriya M, Ou C, Bodepudi V, Johnson F, Takeshita M, Grollman AP. Site-specific mutagenesis using a gapped duplex vector: a study of translesion synthesis past 8-oxodeoxyguanosine in E. Coli. Mutat Res 1991;254:281–288.
  • Moriya M. Single-stranded shuttle phagemid for mutagenesis studies in mammalian cells: 8-oxoguanine in DNA induces targeted G.C→T.A transversions in simian kidney cells. Proc Natl Acad Sci USA 1993;90:1122–1126.
  • Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA. 8-hydroxyguanine, an abundant form of oxidative DNA damage, causes G→T and A→C substitutions. J Biol Chem 1992;267:166–172.
  • Delaney JC, Essigmann JM. Assays for determining lesion bypass efficiency and mutagenicity of site-specific DNA lesions in vivo. Meth Enzymol 2006;408:1–15.
  • Maki H, Sekiguchi M. Mutt protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature 1992;355:273–275.
  • Katafuchi A, Nohmi T. DNA polymerases involved in the incorporation of oxidized nucleotides into DNA: their efficiency and template base preference. Mutat Res 2010;703:24–31.
  • Einolf HJ, Schnetz-Boutaud N, Guengerich FP. Steady-state and pre-steady-state kinetic analysis of 8-oxo-7,8-dihydroguanosine triphosphate incorporation and extension by replicative and repair DNA polymerases. Biochemistry 1998;37:13300–13312.
  • Joyce CM. Techniques used to study the DNA polymerase reaction pathway. Biochim Biophys Acta 2010;1804:1032–1040.
  • Hanes JW, Thal DM, Johnson KA. Incorporation and replication of 8-oxo-deoxyguanosine by the human mitochondrial DNA polymerase. J Biol Chem 2006;281: 36241–36248.
  • Cabrera M, Nghiem Y, Miller JH. MutM, a 2nd mutator locus in Escherichia coli that generates G.C→T.A transversions. J Bacteriol 1988;170:5405–5407.
  • Michaels ML, Pham L, Cruz C, Miller JH. MutM, a protein that prevents G.C→T.A transversions, is formamidopyrimidine-DNA glycosylase. Nucleic Acids Res 1991;19:3629–3632.
  • Yanofsky C, Cox EC, Horn V. Unusual mutagenic specificity of an E coli mutator gene. Proc Natl Acad Sci USA 1966;55:274–281.
  • Tassotto ML, Mathews CK. Assessing the metabolic function of the MutT 8-oxodeoxyguanosine triphosphatase in Escherichia coli by nucleotide pool analysis. J Biol Chem 2002;277:15807–15812.
  • Nakabeppu Y, Oka S, Sheng Z, Tsuchimoto D, Sakumi K. Programmed cell death triggered by nucleotide pool damage and its prevention by MutT homolog-1 (MTH1) with oxidized purine nucleoside triphosphatase. Mutat Res 2010; 703:51–58.
  • Patro JN, Wiederholt CJ, Jiang YL, Delaney JC, Essigmann JM, Greenberg MM. Studies on the replication of the ring opened formamidopyrimidine, FapydG in Escherichia coli. Biochemistry 2007;46:10202–10212.
  • Imoto S, Patro JN, Jiang YL, Oka N, Greenberg MM. Synthesis, DNA polymerase incorporation, and enzymatic phosphate hydrolysis of formamidopyrimidine nucleoside triphosphates. J Am Chem Soc 2006;128:14606–14611.
  • Kalam MA, Haraguchi K, Chandani S, Loechler EL, Moriya M, Greenberg MM, Basu AK. Genetic effects of oxidative DNA damages: comparative mutagenesis of the imidazole ring-opened formamidopyrimidines (Fapy lesions) and 8-oxo-purines in simian kidney cells. Nucleic Acids Res 2006;34:2305–2315.
  • Muller JG, Duarte V, Hickerson RP, Burrows CJ. Gel electrophoretic detection of 7,8-dihydro-8-oxoguanine and 7,8-dihydro-8-oxoadenine via oxidation by Ir(IV). Nucleic Acids Res 1998;26:2247–2249.
  • Duarte V, Muller JG, Burrows CJ. Insertion of dGMP and dAMP during in vitro DNA synthesis opposite an oxidized form of 7,8-dihydro-8-oxoguanine. Nucleic Acids Res 1999;27:496–502.
  • Kornyushyna O, Burrows CJ. Effect of the oxidized guanosine lesions spiroiminodihydantoin and guanidinohydantoin on proofreading by Escherichia coli DNA polymerase I (klenow fragment) in different sequence contexts. Biochemistry 2003;42:13008–13018.
  • Aller P, Ye Y, Wallace SS, Burrows CJ, Doublie S. Crystal structure of a replicative DNA polymerase bound to the oxidized guanine lesion guanidinohydantoin. Biochemistry 2010;49:2502–2509.
  • Kino K, Sugiyama H. Possible cause of G-C→C-G transversion mutation by guanine oxidation product, imidazolone. Chem Biol 2001;8:369–378.
  • Duarte V, Gasparutto D, Jaquinod M, Cadet J. In vitro DNA synthesis opposite oxazolone and repair of this DNA damage using modified oligonucleotides. Nucleic Acids Res 2000;28:1555–1563.
  • Duarte V, Gasparutto D, Jaquinod M, Ravanat J, Cadet J. Repair and mutagenic potential of oxaluric acid, a major product of singlet oxygen-mediated oxidation of 8-oxo-7,8-dihydroguanine. Chem Res Toxicol 2001;14:46–53.
  • McNulty JM, Jerkovic B, Bolton PH, Basu AK. Replication inhibition and miscoding properties of DNA templates containing a site-specific cis-thymine glycol or urea residue. Chem Res Toxicol 1998;11:666–673.
  • Henderson PT, Delaney JC, Gu F, Tannenbaum SR, Essigmann JM. Oxidation of 7,8-dihydro-8-oxoguanine affords lesions that are potent sources of replication errors in vivo. Biochemistry 2002;41:914–921.
  • Henderson PT, Delaney JC, Muller JG, Neeley WL, Tannenbaum SR, Burrows CJ, Essigmann JM. The hydantoin lesions formed from oxidation of 7,8-dihydro-8-oxoguanine are potent sources of replication errors in vivo. Biochemistry 2003;42:9257–9262.
  • Neeley WL, Delaney JC, Henderson PT, Essigmann JM. In vivo bypass efficiencies and mutational signatures of the guanine oxidation products 2-aminoimidazolone and 5-guanidino-4-nitroimidazole. J Biol Chem 2004;279:43568–43573.
  • Delaney S, Neeley WL, Delaney JC, Essigmann JM. The substrate specificity of MutY for hyperoxidized guanine lesions in vivo. Biochemistry 2007;46:1448–1455.
  • Delaney S, Delaney JC, Essigmann JM. Chemical-biological fingerprinting: probing the properties of DNA lesions formed by peroxynitrite. Chem Res Toxicol 2007;20:1718–1729.
  • Neeley WL, Delaney S, Alekseyev YO, Jarosz DF, Delaney JC, Walker GC, Essigmann JM. DNA polymerase V allows bypass of toxic guanine oxidation products in vivo. J Biol Chem 2007;282:12741–12748.
  • Hori M, Suzuki T, Minakawa N, Matsuda A, Harashima H, Kamiya H. Mutagenicity of secondary oxidation products of 8-oxo-7,8-dihydro-2′-deoxyguanosine 5′-triphosphate (8-hydroxy-2′-deoxyguanosine 5′-triphosphate). Mutat Res 2011;714:11–16.
  • Hussain SP, Hofseth LJ, Harris CC. Radical causes of cancer. Nat Rev Cancer 2003;3:276–285.
  • Olinski R, Siomek A, Rozalski R, Gackowski D, Foksinski M, Guz J, Dziaman T, Szpila A, Tudek B. Oxidative damage to DNA and antioxidant status in aging and age-related diseases. Acta Biochim Pol 2007;54:11–26.
  • Malik Q, Herbert KE. Oxidative and non-oxidative DNA damage and cardiovascular disease. Free Rad Res 2012.
  • Santos RX, Correia SC, Zhu X, Lee H-G, Petersen RB, Nunomura A, Smith MA, Perry G, Moreira PI. Nuclear and mitochondrial DNA oxidation in Alzheimer's disease. Free Rad Res2012.
  • Cerda S, Weitzman SA. Influence of oxygen radical injury on DNA methylation. Mutat Res. 1997;386:141–152.
  • David SS, O'Shea VL, Kundu S. Base-excision repair of oxidative DNA damage. Nature 2007;447:941–950.
  • Kovtun IV, Liu Y, Bjoras M, Klungland A, Wilson SH, McMurray CT. OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells. Nature 2007;447: 447–452.
  • Liu Y, Prasad R, Beard WA, Hou EW, Horton JK, McMurray CT, Wilson SH. Coordination between polymerase β and FEN1 can modulate CAG repeat expansion. J Biol Chem 2009;284:28352–28366.
  • Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 1993;72:971–983.
  • Wilson SH, Kunkel TA. Passing the baton in base excision repair. Nat Struct Biol 2000;7:176–178.
  • Prasad R, Shock DD, Beard WA, Wilson SH. Substrate channeling in mammalian base excision repair pathways: passing the baton. J Biol Chem 2010;285:40479–40488.
  • Horton JK, Prasad R, Hou E, Wilson SH. Protection against methylation-induced cytotoxicity by DNA polymerase beta-dependent long patch base excision repair. J Biol Chem 2000;275:2211–2218.
  • Sung JS, DeMott MS, Demple B. Long-patch base excision DNA repair of 2-deoxyribonolactone prevents the formation of DNA-protein cross-links with DNA polymerase beta. J Biol Chem 2005;280:39095–39103.
  • Mitas M. Trinucleotide repeats associated with human disease. Nucleic Acids Res 1997;25:2245–2254.
  • Paiva AM, Sheardy RD. Influence of sequence context and length on the structure and stability of triplet repeat DNA oligomers. Biochemistry 2004;43:14218–14227.
  • Petruska J, Arnheim N, Goodman MF. Stability of intrastrand hairpin structures formed by the CAG/CTG class of DNA triplet repeats associated with neurological diseases. Nucleic Acids Res 1996;24:1992–1998.
  • Mitas M, Yu A, Dill J, Kamp TJ, Chambers EJ, Haworth IS. Hairpin properties of single-stranded DNA containing a GC-rich triplet repeat: (CTG)15. Nucleic Acids Res 1995;23:1050–1059.
  • Smith GK, Jie J, Fox GE, Gao X. DNA CTG triplet repeats involved in dynamic mutations of neurologically related gene sequences form stable duplexes. Nucleic Acids Res 1995;23:4303–4311.
  • Gacy AM, Goellner G, Juranic N, Macura S, Mcmurray CT. Trinucleotide repeats that expand in human-disease form hairpin structures in vitro. Cell 1995;81:533–540.
  • Liu G, Chen X, Bissler JJ, Sinden RR, Leffak M. Replication-dependent instability at (CTG)•(CAG) repeat hairpins in human cells. Nat Chem Biol 2010;6:652–659.
  • Jarem DA, Wilson NR, Delaney S. Structure-dependent DNA damage and repair in a trinucleotide repeat sequence. Biochemistry 2009;48:6655–6663.
  • Jarem DA, Wilson NR, Schermerhorn KM, Delaney S. Incidence and persistence of 8-oxo-7,8-dihydroguanine within a hairpin intermediate exacerbates a toxic oxidation cycle associated with trinucleotide repeat expansion. DNA Repair 2011;10:887–896.
  • Singer MS, Gottschling DE. TLC1: template RNA component of saccharomyces cerevisiae telomerase. Science 1994;266:404–409.
  • McEachern MJ, Blackburn EH. Runaway telomere elongation caused by telomerase RNA gene mutations. Nature 1995;376:403–409.
  • Collins K. Mammalian telomeres and telomerase. Curr Opin Cell Biol 2000;12:378–383.
  • Wright WE, Tesmer VM, Huffman KE, Levene SD, Shay JW. Normal human chromosomes have long G-rich telomeric overhangs at one end. Gene Dev 1997;11:2801–2809.
  • Gilbert DE, Feigon J. Multistranded DNA structures. Curr Opin Struct Biol 1999;9:305–314.
  • Williamson JR, Raghuraman MK, Cech TR. Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Cell 1989;59:871–880.
  • Schaffitzel C, Berger I, Postberg J, Hanes J, Lipps HJ, Pluckthun A. In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with stylonychia lemnae macronuclei. Proc Natl Acad Sci USA 2001;98: 8572–8577.
  • Kruk PA, Rampino NJ, Bohr VA. DNA damage and repair in telomeres: relation to aging. Proc Natl Acad Sci USA 1995;92:258–262.
  • Kawai K, Fujitsuka M, Majima T. Selective guanine oxidation by UVB-irradiation in telomeric DNA. Chem Comm 2005;1476–1477.
  • Rhee DB, Ghosh A, Lu J, Bohr VA, Liu Y. Factors that influence telomeric oxidative base damage and repair by DNA glycosylase OGG1. DNA Repair 2011;10:34–44.
  • Friedman KA, Heller A. On the non-uniform distribution of guanine in introns of human genes: possible protection of exons against oxidation by proximal intron poly-G sequences. J Phys Chem B 2001;105:11859–11865.
  • Delaney S, Barton JK. Charge transport in DNA duplex/quadruplex conjugates. Biochemistry 2003;42:14159–14165.
  • Jones S, Emmerson P, Maynard J, Best JM, Jordan S, Williams GT, . Biallelic germline mutations in myh predispose to multiple colorectal adenoma and somatic G:C→T:A mutations. Hum Mol Genet 2002;11: 2961–2967.
  • Cheadle JP, Sampson JR. Exposing the myth about base excision repair and human inherited disease. Hum Mol Genet 2003;12:R159–R165.
  • Al-Tassan N, Chmiel NH, Maynard J, Fleming N, Livingston AL, Williams GT, . Inherited variants of MYH associated with somatic G:C→T:A mutations in colorectal tumors. Nat Genet 2002;30:227–232.
  • Lipton L, Sieber OM, Crabtree M, Heinimann K, Fidalgo P, Phillips RKS, . Multiple colorectal adenomas, familial adenomatous polyposis and germline mutations in MYH. Gastroenterology 2003;124:A45–A45.
  • Sampson JR, Jones S, Dolwani S, Cheadle JP. MutYH (MYH) and colorectal cancer. Biochem Soc T 2005;33:679–683.
  • Michaels ML, Tchou J, Grollman AP, Miller JH. A repair system for 8-oxo-7,8-dihydrodeoxyguanine. Biochemistry 1992;31:10964–10968.
  • Zhou XL, Djureinovic T, Werelius B, Lindmark G, Sun XF, Lindblom A. Germline mutations in the MYH gene in swedish familial and sporadic colorectal cancer. Genet Test 2005;9:147–151.
  • Chmiel NH, Livingston AL, David SS. Insight into the functional consequences of inherited variants of the hmyh adenine glycosylase associated with colorectal cancer: complementation assays with hMYH variants and pre-steady-state kinetics of the corresponding mutated E. coli enzymes. J Mol Biol 2003;327:431–443.
  • Pope MA, Chmiel NH, David SS. Insight into the functional consequences of hMYH variants associated with colorectal cancer: distinct differences in the adenine glycosylase activity and the response to AP endonucleases of Y150C and G365D murine MYH. DNA Repair 2005;4:315–325.
  • Pope MA, David SS. DNA damage recognition and repair by the murine MutY homologue. DNA Repair 2005;4: 91–102.
  • Livingston AL, Kundu S, Henderson Pozzi M, Anderson DW, David SS. Insight into the roles of tyrosine 82 and glycine 253 in the Escherichia coli adenine glycosylase MutY. Biochemistry 2005;44:14179–14190.
  • Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000;403:41–45.
  • Jenuwein T, Allis CD. Translating the histone code. Science 2001;293:1074–1080.
  • Perillo B, Ombra MN, Bertoni A, Cuozzo C, Sacchetti S, Sasso A, . DNA oxidation as triggered by H3K9Me2 demethylation drives estrogen-induced gene expression. Science 2008;319:202–206.
  • Forneris F, Binda C, Vanoni MA, Mattevi A, Battaglioli E. Histone demethylation catalysed by LSD1 is a flavin-dependent oxidative process. FEBS lett 2005;579: 2203–2207.
  • Nguyen KV, Burrows CJ. A prebiotic role for 8-oxoguanosine as a flavin mimic in pyrimidine dimer photorepair. J Am Chem Soc 2011;133:14586–14589.
  • Heil K, Pearson D, Carell T. Chemical investigation of light induced DNA bipyrimidine damage and repair. Chem Soc Rev 2011;40:4271–4278.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.