1,417
Views
96
CrossRef citations to date
0
Altmetric
Original Article

Role of reactive oxygen species in the regulation of HIF-1 by prolyl hydroxylase 2 under mild hypoxia

, , , , &
Pages 705-717 | Received 20 Jan 2012, Accepted 20 Feb 2012, Published online: 03 Apr 2012

References

  • Semenza GL. Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev 1998;8:588–594.
  • Wang GL, Semenza GL, Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 1995;270: 1230–1237.
  • Huang LE, Arany Z, Livingston DM, Bunn HF. Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem 1996;271:32253–32259.
  • Masson N, Willam C, Maxwell PH, Pugh CW, Ratcliffe PJ. Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. Embo J, 2001;20:5197–5206.
  • Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J, Mole DR, . C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 2001;107:43–54.
  • Berra E, Benizri E, Ginouves A, Volmat V, Roux D, Pouyssegur J. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1α in normoxia. EMBO J 2003;22:4082–4089.
  • Marxsen JH, Stengel P, Doege K, Heikkinen P, Jokilehto T, Wagner T, . Hypoxia-inducible factor-1 (HIF-1) promotes its degradation by induction of HIF-alpha-prolyl-4-hydroxylases. Biochem J 2004;381(Pt 3):761–767.
  • Stiehl DP, Wirthner R, Koditz J, Spielmann P, Camenisch G, Wenger RH. Increased prolyl 4-hydroxylase domain proteins compensate for decreased oxygen levels. Evidence for an autoregulatory oxygen-sensing system. J Biol Chem 2006;281:23482–23491.
  • Berchner-Pfannschmidt U, Tug S, Trinidad B, Oehme F, Yamac H, Wotzlaw C, . Nuclear oxygen sensing: induction of endogenous prolyl-hydroxylase 2 activity by hypoxia and nitric oxide. J Biol Chem 2008;283:31745–31753.
  • Bel Aiba RS, Dimova EY, Gorlach A, Kietzmann T. The role of hypoxia inducible factor-1 in cell metabolism – a possible target in cancer therapy. Expert Opin Ther Targets 2006;10:583–599.
  • Mahon PC, Hirota K, Semenza GL, FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 2001;15: 2675–2686.
  • Lisy K, Peet DJ. Turn me on: regulating HIF transcriptional activity. Cell Death Differ 2008;15:642–649.
  • Liu YV, Semenza GL, RACK1 vs. HSP90: competition for HIF-1 alpha degradation vs. stabilization. Cell Cycle 2007; 6:656–659.
  • Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q, . Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev, 2000;14:34–44.
  • Koh MY, Powis G. HAF: the new player in oxygen- independent HIF-1alpha degradation. Cell Cycle 2009;8: 1359–1366.
  • Zhou J, Kohl R, Herr B, Frank R, Brune B, . Calpain mediates a von Hippel–Lindau protein-independent destruction of hypoxia-inducible factor-1alpha. Mol Biol Cell 2006; 17:1549–1558.
  • Katschinski DM, Le L, Schindler SG, Thomas T, Voss AK, Wenger RH, . Interaction of the PAS B domain with HSP90 accelerates hypoxia-inducible factor-1alpha stabilization. Cell Physiol Biochem 2004;14:351–360.
  • Richard DE, Berra E, Pouyssegur J. Nonhypoxic pathway mediates the induction of hypoxia-inducible factor 1alpha in vascular smooth muscle cells. J Biol Chem 2000;275: 26765–26771.
  • Acker T, Fandrey J, Acker H, The good, the bad and the ugly in oxygen-sensing: ROS, cytochromes and prolyl-hydroxylases. Cardiovasc Res 2006;71:195–207.
  • Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev 1979;59:527–605.
  • Genestra M. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Signal 2007;19:1807–1819.
  • Forman HJ, Torres M. Redox signaling in macrophages. Mol Aspects Med 2001;22:p. 189–216.
  • Brunelle JK, Bell EL, Quesada NM, Vercauteren K, Tiranti V, Zeviani M, . Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab 2005;1: 409–414.
  • Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, . Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1 alpha during hypoxia – a mechanism of O-2 sensing. J Biol Chem 2000;275:25130–25138.
  • Gerald D, Berra E, Frapart YM, Chan DA, Giaccia AJ, Mansuy D, . JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 2004;118:781–794.
  • BelAiba RS, Djordjevic T, Bonello S, Flugel D, Hess J, Kietzmann T, . Redox-sensitive regulation of the HIF pathway under non-hypoxic conditions in pulmonary artery smooth muscle cells. Biol Chem 2004;385:249–257.
  • Liu Q, Berchner-Pfannschmidt U, Moller U, Brecht M, Wotzlaw C, Acker H, . A Fenton reaction at the endoplasmic reticulum is involved in the redox control of hypoxia-inducible gene expression. Proc Natl Acad Sci USA 2004; 101:4302–4307.
  • Gorlach A, Berchner-Pfannschmidt U, Wotzlaw C, Cool RH, Fandrey J, Acker H, . Reactive oxygen species modulate HIF-1 mediated PAI-1 expression: involvement of the GTPase Rac1. Thromb Haemost 2003;89:926–935.
  • Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, . Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 2000;275:25130–25138.
  • Bell EL, Klimova TA, Eisenbart J, Moraes CT, Murphy MP, Budinger GR, . The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J Cell Biol 2007;177: 1029–1036.
  • Goyal P, Weissmann N, Grimminger F, Hegel C, Bader L, Rose F, . Upregulation of NAD(P)H oxidase 1 in hypoxia activates hypoxia-inducible factor 1 via increase in reactive oxygen species. Free Radic Biol Med 2004;36:1279–1288.
  • Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, . Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 2005;1:401–408.
  • Mansfield KD, Guzy RD, Pan Y, Young RM, Cash TP, Schumacker PT, . Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metab 2005;1: 393–399.
  • Fandrey J, Frede S, Jelkmann W. Role of hydrogen peroxide in hypoxia-induced erythropoietin production. Biochem J 1994;303(Pt 2): 507–510.
  • Weir EK, Archer SL. The role of redox changes in oxygen sensing. Respir Physiol Neurobiol 2010;174:182–191.
  • Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 1987;162:156–159.
  • Oehme F, Jonghaus W, Narouz-Ott L, Huetter J, Flamme I. A nonradioactive 96-well plate assay for the detection of hypoxia-inducible factor prolyl hydroxylase activity. Anal Biochem 2004;330:74–80.
  • Gorlach A, Diebold I, Schini-Kerth VB, Berchner-Pfannschmidt U, Roth U, Brandes RP, . Thrombin activates the hypoxia-inducible factor-1 signaling pathway in vascular smooth muscle cells: role of the p22(phox)-containing NADPH oxidase. Circ Res 2001;89:47–54.
  • Nytko KJ, Spielmann P, Camenisch G, Wenger RH, Stiehl DP, . Regulated function of the prolyl-4-hydroxylase domain (PHD) oxygen sensor proteins. Antioxid Redox Signal 2007;9:1329–1338.
  • Knowles HJ, Mole DR, Ratcliffe PJ, Harris AL. Normoxic stabilization of hypoxia-inducible factor-1alpha by modulation of the labile iron pool in differentiating U937 macrophages: effect of natural resistance-associated macrophage protein 1. Cancer Res 2006;66:2600–2607.
  • Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 1995;270: 296–299.
  • Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB, . Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem 1997;272:217–221.
  • Wenner EJ. 2006. Untersuchungen zur Rolle von Sauerstoffradikalen in der Regulation von Hypoxie-induzierbaren Faktoren. Universitiv of Frankfurt.
  • Hagen T, Taylor CT, Lam F, Moncada S. Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1alpha. Science 2003;302:1975–1978.
  • Bonello S, Zahringer C, BelAiba RS, Djordjevic T, Hess J, Michiels C, . Reactive oxygen species activate the HIF-1alpha promoter via a functional NFkappaB site. Arterioscler Thromb Vasc Biol 2007;27:755–761.
  • Schmidt KN, Amstad P, Cerutti P, Baeuerle PA. The roles of hydrogen peroxide and superoxide as messengers in the activation of transcription factor NF-kappa B. Chem Biol 1995;2:13–22.
  • Barth S, Edlich F, Berchner-Pfannschmidt U, Gneuss S, Jahreis G, Hasgall PA. Hypoxia-inducible factor prolyl-4-hydroxylase PHD2 protein abundance depends on integral membrane anchoring of FKBP38. J Biol Chem 2009;284: 23046–23058.
  • Barth S, Nesper J, Hasgall PA, Wirthner R, Nytko KJ, Edlich F, . The peptidyl prolyl cis/trans isomerase FKBP38 determines hypoxia-inducible transcription factor prolyl-4-hydroxylase PHD2 protein stability. Mol Cell Biol 2007;27:3758–3768.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.