604
Views
84
CrossRef citations to date
0
Altmetric
Review Article

Are oxidative stress and mitochondrial dysfunction the key players in the neurodegenerative diseases?

, , , &
Pages 1327-1338 | Received 24 May 2012, Accepted 18 Jul 2012, Published online: 14 Aug 2012

References

  • Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends Pharmacol Sci 1991;12:383–388.
  • Beal MF. Parkinson's disease: a model dilemma. Nature 2010;466:S8–S10.
  • Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, . Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993;362:59–62.
  • Bruijn LI, Miller TM, Cleveland DW. Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci 2004;27:723–749.
  • Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 2003;300:486–489.
  • Picone P, Carrotta R, Montana G, Nobile MR, San Biagio PL, Di Carlo M.Aβ oligomers and fibrillar aggregates induce different apoptotic pathways in LAN5 neuroblastoma cell cultures. Biophys J 2009;96:1133–1145.
  • Yuan J, Yanker B. Apoptosis in the nervous system. Nature 2000;407:802–809.
  • Kawahara M, Ohtsuka I, Yokoyama S, Kato-Negishi M, Sadakane Y. Membrane incorporation, channel formation and disruption of calcium homeostasis by Alzheimer's b-amyloid protein. Int J Alz Dis 2011; Article ID 304583 (17 pages).
  • Butterfield DA, Bush AI. Alzheimer's amyloid beta-peptide (1–42): involvement of methionine residue 35 in the oxidative stress and neurotoxic properties of this peptide. Neurobiol Aging 2004;25:563–568.
  • Butterfield DA, Kanski J. Brain protein oxidation in age- related neurodegenerative disorders that are associated with aggregated proteins. Mech Ageing Dev 2002;122:945–962.
  • Kanski J, Aksenova M, Schoneich C, Butterfield DA. Substitution of isoleucine-31 by helical-breaking proline abolishes oxidative stress and neurotoxic properties of Alzheimer's amyloid h-peptide (1–42). Free Radic Biol Med 2002;32:1205–1211.
  • Huang X, Atwood CS, Hartshorn MA, Multhaup G, Goldstein LE, Scarpa RC, . The A peptide of Alzheimer's disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 1999;38:7609–7616.
  • Allsop D, Mayes J, Moore S, Masad A, Tabner BJ. Metal-dependent generation of reactive oxygen species from amyloid proteins implicated in neurodegenerative disease. Biochem Soc Trans 2008;36:1293–1298.
  • Moreira PI, Duarte AI, Santos MS, Rego MS, Oliveira CR. An integrative view of the role of oxidative stress, mitochondria and insulin in Alzheimer's disease. J Alzheimers Dis 2009;17:741–761.
  • Shukla V, Mishra SK, Pant HC. Oxidative stress in neurodegeneration. Adv Pharm Sci 2011; Article ID 572634, 13 pages.
  • Picone P, Giacomazza D, Vetri V, Carrotta R, Militello V, San Biagio PL, Di Carlo M. Insulin-activated Akt rescues Aβ oxidative stress-induced cell death by orchestrating molecular trafficking. Aging Cell 2011;10:832–843.
  • Good PF, Hsu A, Werner P, Perl DP, Olanow CW. Protein nitration in Parkinson disease. J Neuropathol Exp Neurol 1998;56:338–342.
  • Zemlan FP, Thienhaus OJ, Bosmann HB. Superoxide dismutase activity in Alzheimer's disease: possible mechanism for paired helical filament formation. Brain Res 1989;476:160–162.
  • Pappolla MA, Omar RA, Kim KS, Robakis NK. Immunohistocheical evidence of oxidative stress in Alheimer's disease. Am J Pathol 1992;140:621–628.
  • Gabbita SP, Aksenov MY, Lovell MA, Markesbery WR. Decrease in peptide methionine sulfoxide reductase in Alzheimer's disease brain. J Neurochem 1999;73:1660–1666.
  • Chabrier PE, Demerle-Pallardy C, Auguet M. Nitric oxide synthases: targets for therapeutic strategies in neurological diseases. Cell Mol Life Sci 1999;55:1029–1035.
  • Schulz JB, Lindenau J, Seyfried J, Dichgans J. Glutathione, oxidative stress and neurodegeneration. Eur J Biochem 2000;267:4904–4911.
  • Skulachev VP. Mitochondrial physiology and pathology; concepts of programmed death of organelles, cells and organisms. Mol Aspects Med 1999;20:139–184.
  • Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science 1993;262:689–695.
  • Takahashi S, Takahashi I, Sato H, Kubota Y, Yoshida S, Muramatsu Y. Age related changes in the concentrations of major and trace elements in the brain of rats and mice. Biol Trace Elem Res 2001;80:145–158.
  • Linnane AW, Marzuki S, Ozawa T, Tanaka M. Mitochondrial DNA mutations as an important contributor to ageing and degenerative disease. Lancet 1989;333:642–645.
  • Harman D. Free radical theory of aging. Mutat Res 1992;275:257–266.
  • Knight JA. The biochemistry of aging. Adv Clin Chem 2000;35:1–62.
  • Ku HH, Brunk UT, Sohal RS. Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free Radic Biol Med 1993;15:621–627.
  • Mockett RJ, Sohal RJ, Sohal RS. Temperature-dependent trade-offs between longevity and fertility in the Drosophila mutant, Methuselah. Exp Gerontol 2006;41:566–573.
  • Jackson MJ, McArdle A. Age-related changes in skeletal muscle reactive oxygen species generation and adaptive responses to reactive oxygen species. J Physiol 2011;589:2139–2145.
  • Sohal RS, Allen RG. Oxidative stress as a causal factor in differentiation and aging: a unifying hypothesis. Exp Gerontol 1990;25:499–522.
  • Gruber J, Schaffer S, Halliwell B. The mitochondrial free radical theory of ageing–where do we stand?Front Biosci 2008;13:6554–6579.
  • Ames BN, Shigenaga MK, Hagen TM. Mitochondrial decay in aging. Biochim Biophys Acta 1995;1271:165–170.
  • Sohal RS, Sohal BH. Hydrogen peroxide release by mitochondria increases during aging. Mech Ageing Dev 1991;57:187–202.
  • Sohal RS, Ku HH, Agarwal S, Forster MJ, Lal H. Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech Ageing Dev 1994;74:121–133.
  • Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev 1998;78:547–581.
  • Farmer KJ, Sohal RS. Effect of ambient temperature on free radical generation, antioxidant defenses and life span in the adult housefly, Musca domestica. Exp Gerontol 1987;22:59–65.
  • Bandy B, Davison AJ. Mitochondrial mutations may increase oxidative stress: Implications for carcinogenesis and aging?Free Radic Biol Med 1990;8:523–539.
  • Takuma K, Yao J, Huang J, Xu H, Chen X, Luddy J, . ABAD enhances Abeta-induced cell stress via mitochondrial dysfunction. FASEB J 2005;19:597–598.
  • Caspersen C, Wang N, Yao J, Sosunov A, Chen X, Lustbader JW, . Mitochondrial Abeta: a potential focal point for neuronal metabolic dysfunction in Alzheimer's disease. FASEB J 2005;19:2040–2041.
  • Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH. Mitochondria are a direct site of A beta accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet 2006;15:1437–1449.
  • Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, . ABAD directly links Abeta to mitochondrial toxicity in Alzheimer's disease. Science 2004;304:448–452.
  • Lin MT, Beal MF. Alzheimer's APP mangles mitochondria. Nat Med 2006;12:1241–1243.
  • Swerdlow RH. The neurodegenerative mitochondriopathies. J Alzheimers Dis 2009;17:737–751.
  • Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer's disease brain is associated with mitochondrial dysfunction. J Neurosci 2006;26:9057–9068.
  • Hansson Petersen CA, Alikhani N, Behbahani H, Wiehager B, Pavlov PF, Alafuzoff I, . The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc Natl Acad Sci USA 2008;105:13145–13150.
  • Du H, Guo L, Fang F, Chen D, Sosunov AA, McKhann GM, . Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer's disease. Nat Med 2008;14:1097–1105.
  • Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, . Mitochondrial abnormalities in Alzheimer's disease. J Neurosci 2001;21:3017–3023.
  • Crouch PJ, Blake R, Duce JA, Ciccotosto GD, Li QX, Barnham KJ, . Copper-dependent inhibition of human cytochrome c oxidase by a dimeric conformer of amyloid-beta1–42. J Neurosci 2005;25:672–679.
  • Takuma K, Fang F, Zhang W, Yan S, Fukuzaki E, Du H. RAGE-mediated signaling contributes to intraneuronal transport of amyloid-beta and neuronal dysfunction. Proc Natl Acad Sci USA 2009;106:20021–20026.
  • Fujiwara T, Oda K, Yokota S, Takatsuki A, Ikehara Y. Brefeldin A causes disassembly of the Golgi complex and accumulation of secretory proteins in the endoplasmic reticulum. J Biol Chem 1988;263:18545–18552.
  • Du H, Guo L, Zhang H, Rydzewska M, Yan Y. Cyclophilin D deficiency improves mitochondrial function and learning/memory in aging Alzheimer disease mouse model. Neurobiol Aging 2011;32:398–406.
  • Reddy PH, McWeeney S, Park BS, Manczak M, Gutala RV, Partovi D, . Gene expression profiles of transcripts in amyloid precursor protein transgenic mice: up-regulation of mitochondrial metabolism and apoptotic genes is an early cellular change in Alzheimer's disease. Hum Mol Genet 2004;13:1225–1240.
  • Li F, Calingasan NY, Yu F, Mauck WM, Toidze M, Almeida CG, . Increased plaque burden in brains of APP mutant MnSOD heterozygous knockout mice. J Neurochem 2004;89:1308–1312.
  • Tamagno E, Parola M, Bardini P, Piccini A, Borghi R, Guglielmotto M, . β-Site APP cleaving enzyme up-regulation induced by 4-hydroxynonenal is mediated by stress-activated protein kinases pathways. J Neurochem 2005;92:628–636.
  • Lovell MA, Xiong S, Xie C, Davies P, Markesbery WR. Induction of hyperphosphorylated tau in primary rat cortical neuron cultures mediated by oxidativestress and glycogen synthase kinase-3. J Alzheimers Dis 2004;6:659–671.
  • Sung S, Yao Y, Uryu K, Yang H, Lee VM, Trojanowski JQ, Pratico D. Early vitamin E supplementation in young but not aged mice reduces Abeta levels and amyloid deposition in a transgenic model of Alzheimer's disease. FASEB J 2004;18:323–325.
  • Harrison FE, Allard J, Bixler R, Usoh C, Li L, May JM, McDonald MP. Antioxidants and cognitive training interact to affect oxidative stress and memory in APP/PSEN1 mice. Nutr Neurosci 2009;12:203–218.
  • Picone P, Bondì ML, Montana G, Bruno A, Pitarresi G, Giammona G, Di Carlo M. Ferulic acid inhibits oxidative stress and cell death induced by Aβ oligomers: improved delivery by solid lipid nanoparticles. Free Rad Res 2009;3:4200–4211.
  • Obrenovich ME, Smith MA, Siedlak SL, Chen SG, de la Torre JC, Perry G, Aliev G. The role of polyfenolic antioxidants in health, disease and aging. Neurotox Res 2006;10:43–56.
  • Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nature Neurosci 2000;3:1301–1306.
  • Fornai F, Schlüter OM, Lenzi P, Gesi M, Ruffoli R, Ferrucci M, . Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin–proteasome system and α-synuclein. Proc Natl Acad Sci USA 2005;102:3413–3418.
  • Kalivendi SV, Kotamraju S, Cunningham S, Shang T, Hillard CJ, Kalyanaraman B. 1-Methyl-4-phenylpyridinium (MPPu)-induced apoptosis and mitochondrial oxidant generation: role of transferrin-receptor-dependent iron and hydrogen peroxide. Biochem 2003;371:151–164.
  • Schapira AHV, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD. Mitochondrial complex I deficiency in Parkinson's disease. J Neurochem 1990;54:823–827.
  • Song DD, Shults CW, Sisk A, Rockenstein E, Masliah E. Enhanced substantia nigra mitochondrial pathology in human α-synuclein transgenic mice after treatment with MPTP. Exp Neurol 2004;186:158–172.
  • Martin LJ, Pan Y, Price AC, Sterling W, Copeland NG, Jenkins NA, . Parkinson's disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci 2006;4:41–50.
  • Casali C, Bonifati V, Santorelli FM, Casari G, Fortini D, Patrignani A, . Mitochondrial myopathy, parkinsonism, and multiple mtDNA deletions in a Sephardic Jewish family. Neurology 2001;56:802–805.
  • Siciliano G, Mancuso M, Ceravolo R, Lombardi V, Iudice A, Bonuccelli U. Mitochondrial DNA rearrangements in young onset Parkinsonism: two case reports. J Neurol Neurosurg Psychiat 2001;71:685–687.
  • Thyagarajan D, Bressman S, Bruno C, Przedborski S, Shanske S, Lynch T, . A novel mitochondrial 12S rRNA point mutation in Parkinsonism, deafness and neuropathy. Ann Neurol 2000;48:730–736.
  • Davidzon G, Greene P, Mancuso M, Klos KJ, Ahlskog JE, Hirano M, Di Mauro S. Early-onset familial parkinsonism due to POLG mutations. Ann Neurol 2006;59:859–862.
  • Luoma P, Melberg A, Rinne JO, Kaukonen JA, Nupponen NN, Chalmers RM, . Parkinsonism, premature menopause, and mitochondrial DNA polymerase gamma mutations: clinical and molecular genetic study. Lancet 2004;364:875–882.
  • Tiangyou W, Hudson G, Ghezzi D, Ferrari G, Zeviani M, Burn DJ, Chinnery PF. POLG1 in idiopathic Parkinson disease. Neurology 2006;67:1698–1700.
  • Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, . Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 2003;299:256–259.
  • Meulener MC, Graves CL, Sampathu DM, Armstrong-Gold CE, Bonini NM, Giasson BI. DJ-1 is present in a large molecular complex in human brain tissue and interacts with alpha-synuclein. J Neurochem 2005;93:1524–1532.
  • Moore DJ, Zhang L, Troncoso J, Lee MK, Hattori N, Mizuno Y. Association of DJ-1 and parkin mediated by pathogenic DJ-1 mutations and oxidative stress. Hum Mol Genet 2004;14:71–84.
  • Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, . Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 2004;304:1158–1160.
  • West AB, Moore DJ, Biskup S, Bugayenko A, Smith WW, Ross CA, . Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci USA 2005;102:16842–16847.
  • Strauss KM, Martins LM, Plun-Favreau H, Marx FP, Kautzmann S, Berg D, . Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson’s disease. Hum Mol Genet 2005;14:2099–2111.
  • Manfredi G, Xu Z. Mitochondrial dysfunction and its role in motor neuron degeneration in ALS. Mitochondrion 2005;5:77–87.
  • Wiedemann FR, Winkler K, Kuznetsov AV, Bartels C, Vielhaber S, Feistner H, Kunz WS. Impairment of mitochondrial function in skeletal muscle of patients with amyotrophic lateral sclerosis. J Neurol Sci 1998;156:65–72.
  • Vielhaber S, Kunz D, Winkler K, Wiedemann FR, Kirches E, Feistner H. Mitochondrial DNA abnormalities in skeletal muscle of patients with sporadic amyotrophic lateral sclerosis. Brain 2000;123:1339–1348.
  • Higgins CM, Jung C, Xu Z. ALS-associated mutant SOD1G93A causes mitochondrial vacuolation by expansion of the intermembrane space and by involvement of SOD1 aggregation and peroxisomes. BMC Neurosci 2003;4:16.
  • Vijayvergiya C, Beal MF, Buck J, Manfredi G. Mutant superoxide dismutase 1 forms aggregates in the brain mitochondrial matrix of amyotrophic lateral sclerosis mice. J. Neurosci 2005;25:2463–2470.
  • Raimondi A, Mangolini A, Rizzardini M, Tartari S, Massari S, Bendotti C, . Cell culture models to investigate the selective vulnerability of motoneuronal mitochondria to familial ALS-linked G93ASOD1. Eur J Neurosci 2006;24:387–399.
  • Menzies FM, Cookson MR, Taylor RW, Turnbull DM, Chrzanowska-Lightowlers ZM, Dong L, . Mitochondrial dysfunction in a cell culture model of familial amyotrophic lateral sclerosis. Brain 2002;125:1522–1533.
  • Borthwick GM, Johnson MA, Ince PG, Shaw PJ, Turnbull DM. Mitochondrial enzyme activity in amyotrophic lateral sclerosis: implications for the role of mitochondria in neuronal cell death. Ann Neurol 1999;46:787–790.
  • Jung C, Higgins CM, Xu Z. A quantitative histochemical assay for activities of mitochondrial electron transport chain complexes in mouse spinal cord sections. J Neurosci Methods 2002;114:165–172.
  • Carri MT, Ferri A, Battistoni A, Famhy L, Gabbianelli R, Poccia F, Rotilio G. Expression of a Cu, Zn superoxide dismutase typical of familial amyotrophic lateral sclerosis induces mitochondrial alteration and increase of cytosolic Ca2+ concentration in transfected neuroblastoma SH-SY5Y cells. FEBS Lett 1997;414:365–368.
  • Mattiazzi M, D’Aurelio M, Gajewski CD, Martushova K, Kiaei M, Beal MF, Manfredi G. Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice. J Biol Chem 2002;277:29626–29633.
  • Bowling AC, Schulz JB, Brown RH Jr, Beal MF. Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. J Neurochem 1993;61:2322–2325.
  • Liu J, Lillo C, Jonsson PA, Van de Velde C, Ward CM, Miller TM, . Toxicity of familial ALS-linked SOD1 mutants from selective recruitment to spinal mitochondria. Neuron 2004;43:5–17.
  • Pasinelli P, Belford ME, Lennon N, Bacskai BJ, Hyman BT, Trotti D, Brown RH Jr. Amyotrophic lateral sclerosis- associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria. Neuron 2004;43:19–30.
  • Ferri A, Cozzolino M, Crosio C, Nenc ini M, Casciati A, Gralla EB, . Familial ALS-superoxide dismutases associate with mitochondria and shift their redox potentials. Proc Natl Acad Sci USA 2006;103:13860–13865.
  • Rabilloud T, Chevallet M, Luche S, Leize-Wagner E. Oxidative stress response: a proteomic view. Expert Rev Proteomics 2005;2:949–956.
  • Washburn MP, Wolters D, Yates JR 3rd. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 2001;19:242–247.
  • Butterfield DA. Proteomics: a new approach to investigate oxidative stress in Alzheimer's disease brain. Brain Res 2004;1000:1–7.
  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 1999;17:994–999.
  • Santoni V, Molloy M, Rabilloud T. Membrane proteins and proteomics: un amour impossible?. Electrophoresis 2000;21:1054–1070.
  • Butterfield DA, Sultana R. Redox proteomics identification of oxidatively modified brain proteins in Alzheimer's disease and mild cognitive impairment: insights into the progression of this dementing disorder. J Alzheimers Dis 2007;12:61–72.
  • Poon HF, Castegna A, Farr SA, Thongboonkerd V, Lynn BC, Banks WA, . Quantitative proteomics analysis of specific protein expression and oxidative modification in aged senescence-accelerated-prone 8 mice brain. Neuroscience 2004;126:915–926.
  • Korolainen MA, Goldsteins G, Alafuzoff I, Koistinaho J, Pirttila T. Proteomic analysis of protein oxidation in Alzheimer's disease brain. Electrophoresis 2002;23:3428–3433.
  • Castegna A, Thongboonkerd V, Klein JB, Lynn B, Markesbery WR, Butterfield DA. Proteomic identification of nitrated proteins in Alzheimer's disease brain. J Neurochem 2003;85:1394–1401.
  • Poon HF, Hensley K, Thongboonkerd V, Merchant ML, Lynn BC, Pierce WM, . Redox proteomics analysis of oxidatively modified proteins in G93A-SOD1 transgenic mice. A model of familial amyotrophic lateral sclerosis. Free Radic Biol Med 2005;39:453–462.
  • Magi B, Ettorre A, Liberatori S, Bini L, Andreassi M, Frosali S, . Selectivity of protein carbonylation in the apoptotic response to oxidative stress associated with photodynamic therapy: a cell biochemical and proteomic investigation. Cell Death Differ 2004;11:842–852.
  • Perluigi M, Fai Poon H, Hensley K, Pierce WM, Klein JB, Calabrese V, . Proteomic analysis of 4-hydroxy-2- nonenal-modified proteins in G93ASOD1 transgenic mice–a model of familial amyotrophic lateral sclerosis. Free Radic Biol Med 2005;38:960–968.
  • Bailey SM, Landar A, Darley-Usmar V. Mitochondrial proteomics in free radical research Free. Radic Biol Med 2005;38:175–188.
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281–297.
  • Kosik KS. The neuronal microRNA system. Nat Rev Neurosci 2006;7:911–920.
  • Barbato C, Giorgi C, Catalanotto C, Cogoni C. Thinking about RNA? MicroRNAs in the brain. Mammalian Genome 2008;19:541–551.
  • Lukiw WJ, Pogue AI. Induction of specific micro RNA(miRNA) species by ROS-generating metal sulfates in primary human brain cells. J Inorg Biochem 2007;101:1265–1269.
  • Lukiw WJ. MicroRNA speciation in fetal, adult and Alzheimer's disease hippocampus. Neuroreport 2007;18:297–300.
  • Venkataraman S, Alimova I, Fan R, Harris P, Foreman N, Vibhakar R. MicroRNA 128a increases intracellular ROS level by targeting Bmi-1 and inhibits medulloblastoma cancer cell growth by promoting senescence. PloSONE 2010;5:1–10.
  • Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, Regazzi R. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem 2006;281:26932–26942.
  • Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL. The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington's disease. J Neurosci 2008;28:14341–14346.
  • Zhao C, Sun G, Li S, Shi Y. A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol 2009;16:365–371.
  • Guo LM, Pu Y, Han Z, Liu T, Li YX, Liu M, . MicroRNA-9 inhibits ovarian cancer cell growth through regulation of NF-kappaB1. FEBS J 2009;276:5537–5546.
  • Miñones-Moyano E, Porta S, Escaramís G, Rabionet R, Iraola S, Kagerbauer B, . MicroRNA profiling of Parkinson's disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet 2011;20:3067–3078.
  • Holliday R. Epigenetics: a historical overview. Epigenetics 2006;1:76–80.
  • Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002;16:6–21.
  • Mulero-Navarro S, Esteller M. Epigenetic biomarkers for human cancer: the time is now. Crit Rev Oncol Hematol 2008;68:1–11.
  • Wang SC, Oelze B, Schumacher A. Age-specific epigenetic drift in late-onset Alzheimer's disease. PLoS ONE 2008;3:e2698.
  • Ames BN, Shigenaga MK. Oxidants are a major contributor to aging. Ann NY Acad Sci 1992;663:85–96.
  • Valinluck V, Tsai HH, Rogstad DK, Burdzy A, Bird A, Sowers LC. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl- CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res 2004;32:4100–4108.
  • Radicella JP, Dherin C, Desmaze C, Fox MS, Boiteux S. Cloning and characterization of hOGG1, a human homolog of the OGG1 gene of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 1997;94:8010–8015.
  • Mao G, Pan X, Zhu BB, Zhang Y, Yuan F, Huang J, . Identification and characterization of OGG1 mutations in patients with Alzheimer's disease. Nucleic Acids Res 2007;35:2759–2766.
  • Lovell MA, Markesbery WR. Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer's disease. Nucleic Acids Res 2007;35:7497–7504.
  • Winneke G, Kramer U, Brockhaus A, Ewers U, Kujanek G, Lechner H, Janke W. Neuropsychological studies in children with elevated tooth-lead concentrations. II. Extended study. Int Arch Occup Environ Health 1983;51:231–252.
  • Gorell JM, Rybicki BA, Cole Johnson C, Peterson EL. Occupational metal exposures and the risk of Parkinson's disease. Neuroepidemiology 1999;18:303–308.
  • Kamel F, Umbach DM, Munsat TL, Shefner JM, Hu H, Sandler DP. Lead exposure and amyotrophic lateral sclerosis. Epidemiology 2002;13:311–319.
  • Stewart WF, Schwartz BS, Simon D, Kelsey K, Todd AC. ApoE genotype, past adult lead exposure, and neuro behavioral function. Environ Health Perspect 2002;110:501–505.
  • Wu J, Basha MR, Brock B, Cox DP, Cardozo-Pelaez F, McPherson CA, . Alzheimer's disease (AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb): evidence for a developmental origin and environmental link for AD. J Neurosci 2008;28:3–9.
  • Bolin CM, Basha R, Cox D, Zawia NH, Maloney B, Lahiri DK, Cardozo-Pelaez F. Exposure to lead and the developmental origin of oxidative DNA damage in the aging brain. FASEB J 2006;20:788–790.
  • Evans MD, Cooke MS. Factors contributing to the outcome of oxidative damage to nucleic acids. Bioessays 2004;26:533–542.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.