922
Views
127
CrossRef citations to date
0
Altmetric
Review Article

Susceptibility of mitochondrial electron-transport complexes to oxidative damage. Focus on cytochrome c oxidase

&
Pages 1313-1326 | Received 27 Mar 2012, Accepted 28 Jul 2012, Published online: 05 Sep 2012

References

  • Turrens JF, Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 1980;191:421–427.
  • Turrens JF, Alexandre A, Lehninger AL. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys 1985;237: 408–414.
  • Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 2009;417:1–13.
  • Stadtman ER. Protein oxidation and aging. Science 1992;257:1220–1224.
  • Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev 2007;87:315–424.
  • Leeuwenburgh C, Rasmussen JE, Hsu FF, Mueller DM, Pennathur S, Heinecke JW. Mass spectrometric quantification of markers for protein oxidation by tyrosyl radical, cooper, and hydroxyl radical in low density lipoprotein isolated from human atherosclerotic plaques. J Biol Chem 1997;272:3520–3526.
  • Yoritaka A, Hattori N, Uchida K, Tanaka M, Stadtman ER, Mizuno Y. Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc Natl Acad Sci USA 1996;93:2696–2701.
  • Murphy ME, Kherer JP. Oxidation state of tissue thiol groups and content of protein carbonyl groups in chickens with inherited muscular dystrophy. Biochem J 1989;260:359–364.
  • Shigenaga MK, Hagen TM, Ames BN. Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA 1994;91:10771–10778.
  • Wallace DC. Mitochondrial DNA mutations and bioenergetic defects in aging and degenerative diseases. In: Rosenberg RN, Prusiner SB, DiMauro S, Barchi RL (eds). The molecular and genetic basis of neurological disease. Boston: Butterworth-Heinemann; 1993. pp. 237–269.
  • McMillin JB, Dowhan W. Cardiolipin and apoptosis. Biochem Biophys Acta 2002;1585:97–107.
  • Lesnefsky EJ, Hoppel CL. Ischemia-reperfusion injury in the aged heart: role of mitochondria. Arch Biochem Biophys 2003;420:287–297.
  • Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, . The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science 1996;272:1136–1144.
  • Kadenbach B, Merle P. On the function of multiple subunits of cytochrome c oxidase from higher eukaryotes. FEBS Lett 1981;135:1–11.
  • Hosler JP, Fetter J, Tecklenburg MM, Espe M, Lerma C, Ferguson-Miller S. Cytochrome aa3 of Rhodobacter sphaeroides as a model for mitochondrial cytochrome c oxidase. Purification, kinetics, proton pumping, and spectral analysis. J Biol Chem 1992;267:24264–24272.
  • Abramson J, Svensson-Ek M, Byrne B, Iwata S. Structure of cytochrome c oxidase: a comparison of the bacterial and mitochondrial enzymes. Biochim Biophys Acta 2001;1544: 1–9.
  • Svensson-Ek M, Abramson J, Larsson G, Törnroth S, Brzezinski P, Iwata S. The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides. J Mol Biol 2002;321:329–339.
  • Morgan JE, Verchovsky MI, Palmer G, Wikström M. Role of the PR intermediate in the reaction of cytochrome c oxidase with O2. Biochemistry 2001;40:6882–6892.
  • Pecoraro C, Gennis RB, Vygodina TV, Konstantinov AA. Role of the K-channel in the pH-dependence of the reaction of cytochrome c oxidase with hydrogen peroxide. Biochemistry 2001;40:9695–9708.
  • Fabian M, Palmer G. The interaction of cytochrome oxidase with hydrogen peroxide: the relationship of compounds P and F. Biochemistry 1995;34:13802–13810.
  • Tsukihara T, Shimokata K, Katayama Y, Shimada H, Muramoto K, Aoyama H, . The low-spin heme of cytochrome c oxidase as the driving element of the proton-pumping process. Proc Natl Acad Sci USA 2003;100:15304–15309.
  • Robinson NC, Strey F, Talbert L. Investigation of the essential boundary layer phospholipids of cytochrome c oxidase using Triton X-100 delipidation. Biochemistry 1980;19:3656–3661.
  • Robinson NC. Functional binding of cardiolipin to cytochrome c oxidase. J Bioenerg Biomembr 1993;25:153–163.
  • Robinson NC. The specificity and affinity of phospholipids for cytochrome c oxidase. Biophys J 1982;37:65–66.
  • Sedlák E, Robinson NC. Phospholipase A(2) digestion of cardiolipin bound to bovine cytochrome c oxidase alters both activity and quaternary structure. Biochemistry 1999;38:14966–14972.
  • Bickar D, Bonaventura J, Bonaventura C. Cytochrome c oxidase binding of hydrogen peroxide. Biochemistry 1982;24: 2661–2666.
  • Wrigglesworth JM. Formation and reduction of a “peroxy” intermediate of cytochrome c oxidase by hydrogen peroxide. Biochem J 1984;217:715–719.
  • Vygodina T, Konstantinov AA. Effect of pH on the spectrum of cytochrome c oxidase hydrogen peroxide complex. Biochim Biophys Acta 1989;973:390–398.
  • Weng L, Baker GM. Reaction of hydrogen peroxide with the rapid form of resting cytochrome oxidase. Biochemistry 1991;30:5727–5733.
  • Musatov A, Hebert E, Robinson NC. Modification of nuclear-coded subunits of oxidized bovine heart cytochrome c oxidase by hydrogen peroxide. Biochem Biophys Acta 2002;12(Supplement):96.
  • Musatov A, Hebert E, Carrol CA, Weintraub ST, Robinson NC. Specific modification of two tryptophans within the nuclear-encoded subunits of bovine cytochrome c oxidase by hydrogen peroxide. Biochemistry 2004;43:1003–1009.
  • Lemma-Gray P, Weintraub ST, Carroll CA, Musatov A, Robinson NC. Tryptophan 334 oxidation in bovine cytochrome c oxidase subunit I involves free radical migration. FEBS Lett 2007;581:437–442.
  • Taylor SW, Fahy E, Murray J, Capaldi RA, Ghosh SS. Oxidative post-translational modification of tryptophan residues in cardiac mitochondrial proteins. J Biol Chem 2003;22: 19587–19590.
  • Paradies G, Petrosillo G, Pistolese M, Ruggiero FM. The effect of reactive oxygen species generated from the mitochondrial electron transport chain on the cytochrome c oxidase activity and on the cardiolipin content in bovine heart submitochondrial particles. FEBS Lett 2000;466:323–326.
  • Zhang Y, Marcillat O, Giulivi C, Ernster L, Davies KJA. The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J Biol Chem 1990;265: 16330–16336.
  • Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991;43: 109–142.
  • Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J 2001;357: 593–615.
  • Brown GC, Cooper CE. Nanomolar concetrations of nitric oxide reversibly inhibit synaptosomal cytochrome oxidase respiration by competing with oxygen at cytochrome oxidase. FEBS Lett 2001;356:295–298.
  • Cleeter MWJ, Cooper CE, Darley-Usmar VM, Moncada S, Schapira AHV. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett 1994;345:50–54.
  • Shiva S, Oh JY, Landar AL, Ulasova E, Venkatraman A, Bailey SM, Darley-Usmar VM. Nitroxia: the pathological consequence of disfunction in the nitric oxide-cytochrome c oxidase signaling pathway. Free Radic Biol Med 2005;38:297–306.
  • Blough NV, Zafiriou OC. Reaction of superoxide with nitric oxide to form peroxynitrite in alkaline aqueous solution. Inorg Chem 1985;24:3502–3504.
  • Murray J, Taylor SW, Zhang B, Ghosh SS, Capaldi RA. Oxidative damage to mitochondrial complex I due to peroxynitrite. J Biol Chem 2003;278:37223–37230.
  • Brown GC. Nitric oxide and mitochondrial respiration. Biochim Biophys Acta 1999;1411:351–369.
  • Cassina A, Radi R. Different inhibitory actions of NO and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 1996;328:309–316.
  • Gadelha FR, Thomson L, Fagian MM, Costa ADT, Radi R, Vercesi AE. Calcium-independent permeabilization of the inner mitochondrial membrane by peroxynitrite is mediated by membrane protein thiol cross-linking and lipid peroxidation. Arch Biochem Biophys 1997;345:243–250.
  • Bolaños JP, Heales SJR, Land JM, Clark JB. Effect of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurones and astrocytes in primary culture. J Neurochem 1995;64:1965–1972.
  • Sharpe MA, Cooper CE. Interaction of peroxinitrite with mitochondrial cytochrome oxidase. J Biol Chem 1998;273: 30961–30972.
  • Radi R, Rodriguesz M, Castro L, Telleri R. Inhibition of mitochondrial electron transport by peroxynitrite. Arch Biochem Biophys 1994;308:89–95.
  • Radi R, Cassina A, Hodara R, Quijano C, Castro L. Peroxynitrite reactions and formation in mitochondria. Free Radic Biol Med 2002;33:1451–1464.
  • Radi R, Cassina A, Hodara R. Nitric oxide and peroxynitrite interactions with mitochondria. Biol Chem 2002;383:401–409.
  • Pearce LL, Pitt BR, Peterson J. The peroxynitrite reductase activity of cytochrome c oxidase involves a two-electron redox reaction at the heme a3-CuB site. J Biol Chem 1999;274: 35763–35767.
  • Pearce LL, Kanai AJ, Birder LA, Pitt BR, Peterson J. The catabolic fate of nitric oxide. J Biol Chem 2002;277: 13556–13562.
  • Dubuisson M, Stricht DV, Clippe A, Etienne F, Nauser T, Kissner R, . Human peroxiredoxin 5 is a peroxynitrite reductase. FEBS Lett 2004;571:161–165.
  • Schöpfer F, Riobó N, Carreras MC, Alvarez B, Radi R, Boveris A, . Oxidation of ubiquinol by peroxynitrite : implications for protection of mitochondria against nitrosative damage. Biochem J 2000;349:35–42.
  • Pope S, Land JM, Heales SJR. Oxidative stress and mitochondrial dysfunction in neurodegeneration: cardiolipin, a critical target?Biochem Biophys Acta 2008;1777:794–799.
  • Lesnefsky EJ, Hoppel CL. Cardiolipin as an oxidative target in cardiac mitochondria in the aged rat. Biochem Biophys Acta 2008;1777:1020–1027.
  • Sedlák E, Robinson NC. Removal of bound cardiolipin destabilizes the quaternary structure of bovine heart cytochrome c oxidase. Biochim Biophys Acta (Suppl.) 2002;12:119.
  • Mizushima T, Yao M, Inoue N, Aoyama H, Yamashita E, Yamaguchi H, . Structure of phospholipids in a membrane protein complex, bovine heart cytochrome c oxidase. Acta Crystallogr A (Suppl.) 1999;55:P06.04.069.
  • Sedlák E, Panda M, Dale MP, Weintraub ST, Robinson NC. Photolabeling of cardiolipin binding subunits within bovine heart cytochrome c oxidase. Biochemistry 2006;45: 746–754.
  • Matsuo M, Kaneko T. Lipid peroxidation. In: Yu BP (ed). Methods in aging research. Boca Raton, FL: CRC Press; 1998. pp. 571–606.
  • Kim J, Minkler PE, Salomon RG, Anderson VE, Hoppel CL. Cardiolipin: characterization of distinct oxidized molecular species. J Lipid Res 2011;52:125–135.
  • Musatov A. Contribution of peroxidized cardiolipin to inactivation of bovine heart cytochrome c oxidase. Free Radic Biol Med 2006;41:238–246.
  • Robinson NC, Zborowski J, Talbert LH. Cardiolipin-depleted bovine heart cytochrome c oxidase: binding stoichiometry and affinity for cardiolipin derivatives. Biochemistry 1990;29:8962–8969.
  • Musatov A, Carrol CA, Liu YC, Henderson GI, Weintraub ST, Robinson NC. Identification of bovine heart cytochrome c oxidase subunits modified by the lipid peroxidation product 4-hydroxy-2 nonenal. Biochemistry 2002;41:8212–8229.
  • Chen J, Schenker S, Frosto TA, Henderson GI. Inhibition of cytochrome c oxidase activity by 4-hydroxynonenal (HNE): role of HNE adduct formation with the enzyme subunits. Biochim Biophys Acta 1988;1380:336–344.
  • Chen J, Robinson NC, Schenker S, Frosto TA, Henderson GI. Formation of 4-hydroxynonenal adducts with cytochrome c oxidase in rats following short-term ethanol intake. Hepatology 1999;29:1792–1798.
  • Chen J, Henderson GI, Freeman GL. Role of 4-hydroxynonenal in modification of cytochrome c oxidase in ischemia/reperfused rat heart. J Mol Cell Cardiol 2001;33:1919–1927.
  • Choksi KB, Boylston WH, Rabek JP, Widger WR, Papaconstantino J. Oxidatively damaged proteins of heart mitochondrial electron transport complexes. Biochim Biophys Acta 2004;1688:95–101.
  • Humphries KM, Szweda LI. Selective inactivation of α- ketoglutarate dehydrogenase and pyruvate dehydrogenase: reaction of lipoic acid with 4-hydroxy-2-nonenal. Biochemistry 1998;37:15835–15841.
  • Chen J, Petersen DR, Schenker S, Henderson GI. Formation of malondialdehyde adducts in livers of rats exposed to ethanol: role in ethanol-mediated inhibition of cytochrome c oxidase. Alcohol Clin Exp Res 2000;24:544–552.
  • Long J, Wang X, Gao H, Liu Z, Liu C, Miao M, Liu J. Malonaldehyde acts as a mitochondrial toxin: inhibitory effects on respiratory function and enzyme activities in isolated rat liver mitochondria. Life Sci 2006;79:1466–1472.
  • Paradies G, Petrosillo G, Pistolese M, Di Venosa N, Serena D, Ruggiero FM. Lipid peroxidation and alterations to oxidative metabolism in mitochondria isolated from rat heart subjected to ischemia and reperfusion. Free Radic Biol Med 1999;27:42–50.
  • Melov S, Coskun P, Patel M, Tuinstar R, Cottrell B, Jun AS, . Mitochondrial disease in superoxide dismutase 2 mutant mice. Proc Natl Acad Sci USA 1999;96:846–851.
  • Van Remmen H, Richardson A. Oxidative damage to mitochondria and aging. Exp Gerontol 2001;36:957–968.
  • Mansouri A, Muller FL, Liu Y, Ng R, Faulkner J, Hamilton M, . Alterations in mitochondrial function, hydrogen peroxide release and oxidative damage in mouse hind-limb skeletal muscle during aging. Mech Ageing Dev 2006;127: 298–306.
  • Capela F, Rimbertb V, Liogerb D, Diota A, Roussetb P, Patureau Miranda P, . Due to reverse electron transfer, mitochondrial H2O2 release increases with age in human vastus lateralis muscle although oxidative capacity is preserve. Mech Ageing Dev 2005;126:505–511.
  • Desai VG, Weindruch R, Hart RW, Feuers RJ. Influences of age and dietary restriction on gastrocnemius electron transport system activities in mice. Arch Biochem Biophys 1996; 333:145–151.
  • Ren JC, Rebrin I, Klichko V, Orr WC, Sohal RS. Cytochrome c oxidase loses catalytic activity and structural integrity during the aging process in Drosophila melanogaster. Biochem Biophys Res Commun 2010;401:64–68.
  • Sohal RS, Toroser D, Brégère C, Mockett RJ, Orr WC. Age-related decrease in expression of mitochondrial DNA encoded subunits of cytochrome c oxidase in Drosophila melanogaster. Mech Ageing Dev 2008;129:558–561.
  • Ohta S, Ohsawa I. Dysfunction of mitochondria and oxidative stress in the pathogenesis of Alzheimer's disease: On defects in the cytochrome c oxidase complex and aldehyde detoxification. J Alzheimer's Dis 2006;9:155–166.
  • Prabu SK, Anandatheerthavarada HK, Raza H, Srinivasan S, Spear JF, Avadhani NG. Protein kinase A-mediated phosphorylation modulates cytochrome c oxidase function and augments hypoxia and myocardial ischemia-related injury. J Biol Chem 2006;281:2061–2070.
  • Wilson MT, Jensen P, Aasa R, Malmström PG, Vänngård T. An investigation by EPR and optical spectroscopy of cytochrome oxidase during turnover. Biochem J 1982;203: 483–492.
  • Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol 2003;552:335–344.
  • Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ. Production of reactive oxygen species by mitochondria. Central role of complex III. J Biol Chem 2003;278: 36027–36031.
  • Kadenbach B, Ramzan R, Vogt S. Degenerative diseases, oxidative stress and cytochrome c oxidase function. Trends Mol Med 2009;15:139–147.
  • Yu MA, Egawa T, Shinzawa-Itoh K, Yoshikawa S, Yeh SR, Rousseau DL, Gerfen GJ. Radical formation in cytochrome c oxidase. Biochim Biophys Acta 2011;1807:1295–1304.
  • Bratton MR, Pressler MA, Hosler JP. Suicide inactivation of cytochrome c oxidase: catalytic turnover in the absence of subunit III alters the active site. Biochemistry 1999;38: 16236–16245.
  • Barone MC, Darley-Usmar VM, Brookes PS. Reversible inhibition of cytochrome c oxidase by peroxynitrite proceeds through ascorbate-dependent generation of nitric oxide. J Biol Chem 2003;278:27520–27524.
  • Sedlák E, Fabian M, Robinson NC, Musatov A. Ferricytochrome c protects mitochondrial cytochrome c oxidase against hydrogen peroxide-induced oxidative damage. Free Radic Biol Med 2010;49:1574–1581.
  • Bolshakov IA, Vygodina TV, Gennis R, Karyakin AA, Konstantinov AA. Catalase activity of cytochrome c oxidase assayed with hydrogen peroxide-sensitive electrode microsensor. Biochemistry (Moscow) 2010;75:1352–1360.
  • Iwata S, Lee JW, Okada K, Lee JK, Iwata M, Rasmussen B, . Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science 1998;281:64–71.
  • Trumpower BL. The protonmotive Q cycle. J Biol Chem 1990;265:11409–1141.
  • Yu CA, Xia JZ, Kachurin AM, Yu L, Xia D, Kim H, Deisenhofer J. Crystallization and preliminary structure of beef heart mitochondrial cytochrome-bc1 complex. Biochem Biophys Acta 1996;1275:47–53.
  • Gomez B Jr, Robinson NC. Phospholipase digestion of bound cardiolipin reversibly inactivates bovine cytochrome bc1. Biochemistry 1999;38:9031–9038.
  • Lange C, Nett JH, Trumpower BL, Hunte C. Specific roles of protein-phospholipid interactions in the yeast cytochrome bc1 complex structure. EMBO J 2001;20:6591–6600.
  • Sun J, Trumpower BL. Superoxide anion generation by the cytochrome bc1 complex. Arch Biochem Biophys 2003;419:198–206.
  • Boveris A, Oshino N, Chance B. The cellular production of hydrogen peroxide. Biochem J 1972;128:617–130.
  • Zhang L, Yu L, Yu CA. Generation of superoxide anion by succinate-cytochrome c reductase from bovine heart mitochondria. J Biol Chem 1998;273:33972–33976.
  • Yin Y, Yang S, Yu L, Yu CA. Reaction mechanism of superoxide generation during ubiquinol oxidation by the cytochrome bc1 complex. J Biol Chem 2010;285:17038–17045.
  • Muller FL, Liu Y, Van Remmen H. Complex III releases superoxide to both sides of the inner mitochondrial membrane J Biol Chem 2004;279:49064–49073.
  • Madesh M, Hajnóczky G. VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release. J Cell Biol 2001;155:1003–10015.
  • Lesnefsky EJ, Gudz TI, Migita CT, Ikeda-Saito M, Hassan MO, Turkaly PJ, Hoppel CL. Ischemic injury to mitochondrial electron transport in the aging heart: damage to the iron-sulfur protein subunit of electron transport complex III. Arch Biochem Biophys 2001;385:117–128.
  • Petrosillo G, Ruggiero FM, Di Venosa N, Paradies G. Decreased complex III activity in mitochondria isolated from rat heart subjected to ischemia and reperfusion: role of reactive oxygen species and cardiolipin. FASEB J 2003;17:714–716.
  • Petrosillo G, Di Venosa N, Ruggiero FM, Pistolese M, D’Agostino D, Tiravanti E, . Mitochondrial dysfunction associated with cardiac ischemia/reperfusion can be attenuated by oxygen tension control. Role of oxygen-free radicals and cardiolipin. Biochim Biophys Acta 2005:1710:78–86.
  • Lesnefsky EJ, Gudz TI, Moghaddas S, Migita CT, Ikeda-Saito M, Turkaly PJ, Hoppel CL. Aging decreases electron transport complex III activity in heart interfibrillar mitochondria by alteration of the cytochrome c binding site. J Mol Cell Cardiol 2001;33:37–41.
  • Moghaddas S, Hoppel CL, Lesnefsky EJ. Aging defect at the QO site of complex III augments oxyradical production in rat heart interfibrillar mitochondria. Arch Biochem Biophys 2003;414:59–66.
  • Castro L, Rodriguez M, Radi R. Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. J Biol Chem 1994;269:29409–29415.
  • Pearce LL, Kanai AJ, Epperly MW, Peterson J. Nitrosative stress results in irreversible inhibition of purified complexes I and III without modification of cofactors. Nitric Oxide 2005;13:254–263.
  • Picklo MJ, Amarnath V, McIntyre JO, Graham DG, Montine TJ. 4-Hydroxy-2(E)-nonenal inhibits CNS mitochondrial respiration at multiple sites. J Neurochem 1999;72:1617–1624.
  • Long J, Liu C, Sun L, Gao H, Liu J. Neuronal mitochondrial toxicity of malondialdehyde: inhibitory effects on respiratory function and enzyme activities in rat brain mitochondria. Neurochem Res 2009;34:786–794.
  • Rottenberg H, Covian R, Trumpower BL. Membrane potential greatly enhances superoxide generation by the cytochrome bc1 complex reconstituted into phospholipid vesicles. J Biol Chem 2009;284:19203–19210.
  • Lee DW, Selamoglu N, Lanciano P, Cooley JW, Forquer I, Kramer DM, Daldal F. Loss of a conserved tyrosine residue of cytochrome b induces reactive oxygen species production by cytochrome bc1. J Biol Chem 2011;286;18139–18148.
  • Walker JE. The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains. Q Rev Biophys 1992;25:253–324.
  • Weiss H, Friedrich T, Hofhaus G, Preis D. The respiratory-chain NADH dehydrogenase (complex I) of mitochondria. Eur J Biochem 1991;197:563–576.
  • Carroll J, Fearnley IM, Skehel JM, Shannon RJ, Hirst J, Walker JE. Bovine complex I is a complex of 45 different subunits. J Biol Chem 2006;281:32724–32727.
  • Lemma-Gray P, Valušová E, Carroll CA, Weintraub ST, Musatov A, Robinson NC. Subunit analysis of bovine heart complex I by reversed-phase HPLC, ESI-MS/MS and MALDI-TOF mass spectrometry. Anal Biochem 2008;382:116–121.
  • Hunte C, Zickermann V, Brandt U. Functional modules and structural basis of conformational coupling in mitochondrial complex I. Science 2010;329:448–451.
  • Efremov RG, Sazanov LA. Respiratory complex I: ‘steam engine’ of the cell?Curr Opin Struct Biol 2011;21: 532–540.
  • Fry M, Green M. Cardiolipin requirement for electron transfer in complex I and III of the mitochondrial respiratory chain. J Biol Chem 1981;256:1874–1880.
  • Dröse S, Zwicker K, Brandt U. Full recovery of the NADH:ubiquinone activity of complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica by the addition of phospholipids. Biochim Biophys Acta 2002;1556:65–67.
  • Sharpley MS, Shannon RJ, Draghi F, Hirst J. Interactions between phospholipids and NADH:ubiquinone oxidoreductase (complex I) from bovine mitochondria. Biochemistry 2006;45:241–248.
  • Schägger H, Pfeiffer K. The ratio of oxidative phosphorylation complexes I-V in bovine heart mitochondria and the composition of respiratory chain supercomplexes. J Biol Chem 2001;276:37861–37867.
  • Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL, . Dilated cardiomyophathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 1995;11:376–381.
  • Raha S, Robinson BH. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 2000;25: 502–508.
  • Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell 2005;120:483–495.
  • Genova ML, Ventura B, Giuliano G, Bovina C, Formiggini G, Castelli GP, Lenaz G. The site of production of superoxide radical in mitochondrial complex I is not a bound ubisemiquinone but presumably iron-sulfur cluster N2. FEBS Lett 2001;505:364–368.
  • Cadenas E, Boveris A, Ragan CI, Stoppani AO. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch Biochem Biophys 1977;180:248–257.
  • Kussmaul L, Hirst J. The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci USA 2006;103:7607–7612.
  • Paradies G, Petrosillo G, Pistolese M, Ruggiero FM. Reactive oxygen species affect mitochondrial electron transport complex I activity through oxidative cardiolipin damage. Gene 2002;286:135–141.
  • Paradies G, Petrosillo G, Pistolese M, Di Venosa N, Federici A, Ruggiero FM. Decrease in mitochondrial complex I activity in ischemic/reperfused rat heart involvement of reactive oxygen species and cardiolipin. Circ Res 2004;94:53–59.
  • Sadek HA, Szweda PA, Szweda LI. Modulation of mitochondrial complex I activity by reversible Ca2+ and NADH mediated superoxide anion dependent inhibition. Biochemistry 2004;43:8494–8502.
  • Sousa SC, Maciel EN, Vercesi AE, Castilho RF. Ca2+ -induced oxidative stress in brain mitochondria treated with the respiratory chain inhibitor rotenone. FEBS Lett 2003;543:179–183.
  • Brown GC, Borutaite V. Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S- nitrosothiols. Biochim Biophys Acta 2004;1658:44–49.
  • Szabó C, Ischiropoulos H, Radi R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 2007;6:662–680.
  • Borutaite V, Budriunaite A, Brown GC. Reversal of nitric oxide-, peroxynitrite- and S-nitrosothiol-induced inhibition of mitochondrial respiration or complex I activity by light and thiols. Biochim Biophys Acta 2000;1459:405–412.
  • Riobo NA, Clementi E, Melani M, Boveris A, Cadenas E, Moncada S, Poderoso JJ. Nitric oxide inhibits mitochondrial NADH: ubiquinone reductase activity through peroxynitrite formation. Biochem J 2001;359:139–145.
  • Requejo R, Hurd TR, Costa NJ, Murphy MP. Cysteine residues exposed on protein surfaces are the dominant intramitochondrial thiol and may protect against oxidative damage. FEBS J 2010;277:1465–1480.
  • Weintraub ST, Valušová E, Carroll CA, Musatov A, Robinson NC. Mass spectrometry analysis of subunit composition and ROS-induced modification sites within bovine heart NADH-dehydrogenase. A 53rd American Society Mass Spectrometry Conference, San Antonio, TX (USA), June, 2005.
  • Hirst J. Why does mitochondrial complex I have so many subunits?Biochem J 2011;437:e1–e3.
  • Raha S, Myint AT, Johnstone L, Robinson BH. Control of oxygen free radical formation from mitochondrial complex I: roles for protein kinase A and pyruvate dehydrogenase kinase. Free Radic Biol Med 2002;32:421–430.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.