406
Views
44
CrossRef citations to date
0
Altmetric
Research Article

Reversible inactivation of dihydrolipoamide dehydrogenase by mitochondrial hydrogen peroxide

, , &
Pages 123-133 | Received 25 May 2012, Accepted 19 Nov 2012, Published online: 12 Dec 2012

References

  • Williams CH Jr. Lipoamide dehydrogenase, glutathione reductase, thioredoxin reductase, and mercuric ion reductase-a family of flavoenzyme transhydrogenases. In: Muller F (ed.). Chemistry and Biochemistry of Flavoenzymes, Vol. III. Boca Raton: CRC Press; 1992. 121–212.
  • Vettakkorumakankav NN, Patel MS. Dihydrolipoamide dehydrogenase: structural and mechanistic aspects. Indian J Biochem Biophys1996;33:168–176.
  • Patel MS, Vettakkorumakankav NN, Liu TC. Dihydrolipoamide dehydrogenase: activity assays. Methods Enzymol1995;252: 186–195.
  • Yan LJ, Yang SH, Shu H, Prokai L, Forster MJ. Histochemical staining and quantification of dihydrolipoamide dehydrogenase diaphorase activity using blue native PAGE. Electrophoresis2007;28:1036–1045.
  • Hussain SN, Matar G, Barreiro E, Florian M, Divangahi M, Vassilakopoulos T. Modifications of proteins by 4-hydroxy- 2-nonenal in the ventilatory muscles of rats. Am J Physiol Lung Cell Mol Physiol2006;290:L996–1003.
  • Lee HM, Reed J, Greeley GH Jr, Englander EW. Impaired mitochondrial respiration and protein nitration in the rat hippocampus after acute inhalation of combustion smoke. Toxicol Appl Pharmacol2009;235:208–215.
  • Tyther R, Ahmeda A, Johns E, Sheehan D. Proteomic identification of tyrosine nitration targets in kidney of spontaneously hypertensive rats. Proteomics2007;7:4555–4564.
  • Tyther R, Ahmeda A, Johns E, Sheehan D. Protein carbonylation in kidney medulla of the spontaneously hypertensive rat. Proteomics Clin Appl2009;3:338–346.
  • Brautigam CA, Chuang JL, Tomchick DR, Machius M, Chuang DT. Crystal structure of human dihydrolipoamide dehydrogenase: NAD+/NADH binding and the structural basis of disease-causing mutations. J Mol Biol2005;350: 543–552.
  • Barford D. The role of cysteine residues as redox-sensitive regulatory switches. Curr Opin Struct Biol2004;14: 679–686.
  • Becker K, Savvides SN, Keese M, Schirmer RH, Karplus PA. Enzyme inactivation through sulfhydryl oxidation by physiologic NO-carriers. Nat Struct Biol1998;5:267–271.
  • Biswas S, Chida AS, Rahman I. Redox modifications of protein-thiols: emerging roles in cell signaling. Biochem Pharmacol2006;71:551–564.
  • Yan LJ, Thangthaeng N, Forster MJ. Changes in dihydrolipoamide dehydrogenase expression and activity during postnatal development and aging in the rat brain. Mech Ageing Dev2008;129:282–290.
  • Pankotai E, Lacza Z, Muranyi M, Szabo C. Intra-mitochondrial poly(ADP-ribosyl)ation: potential role for alpha-ketoglutarate dehydrogenase. Mitochondrion2009;9:159–164.
  • Foster MW, Stamler JS. New insights into protein S-nitrosylation. Mitochondria as a model system. J Biol Chem2004;279: 25891–25897.
  • Rhee KY, Erdjument-Bromage H, Tempst P, Nathan CF. S-nitroso proteome of Mycobacterium tuberculosis: enzymes of intermediary metabolism and antioxidant defense. Proc Natl Acad Sci U S A2005;102:467–472.
  • Ortega-Galisteo AP, Rodriguez-Serrano M, Pazmino DM, Gupta DK, Sandalio LM, Romero-Puertas MC. S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress. J Exp Bot2012;63:2089–2103.
  • Richardson AR, Payne EC, Younger N, Karlinsey JE, Thomas VC, Becker LA, . Multiple targets of nitric oxide in the tricarboxylic acid cycle of Salmonella enterica serovar typhimurium. Cell Host Microbe2011;10:33–43.
  • Yan LJ, Liu L, Forster MJ. Reversible inactivation of dihydrolipoamide dehydrogenase by Angeli's salt. Acta Biophysica Sinica2012;28:341–350.
  • Bando Y, Aki K. Mechanisms of generation of oxygen radicals and reductive mobilization of ferritin iron by lipoamide dehydrogenase. J Biochem (Tokyo)1991;109:450–454.
  • Sreider CM, Grinblat L, Stoppani AO. Catalysis of nitrofuran redox-cycling and superoxide anion production by heart lipoamide dehydrogenase. Biochem Pharmacol1990;40: 1849–1857.
  • Gazaryan IG, Krasnikov BF, Ashby GA, Thorneley RN, Kristal BS, Brown AM. Zinc is a potent inhibitor of thiol oxidoreductase activity and stimulates reactive oxygen species production by lipoamide dehydrogenase. J Biol Chem2002; 277:10064–10072.
  • Tahara EB, Barros MH, Oliveira GA, Netto LE, Kowaltowski AJ. Dihydrolipoyl dehydrogenase as a source of reactive oxygen species inhibited by caloric restriction and involved in Saccharomyces cerevisiae aging. Faseb J2007;21:274–283.
  • Ambrus A, Torocsik B, Tretter L, Ozohanics O, Adam-Vizi V. Stimulation of reactive oxygen species generation by disease-causing mutations of lipoamide dehydrogenase. Hum Mol Genet2011;20:2984–2995.
  • Zhang Q, Zou P, Zhan H, Zhang M, Zhang L, Ge RS, Huang Y. Dihydrolipoamide dehydrogenase and cAMP are associated with cadmium-mediated Leydig cell damage. Toxicol Lett2011;205:183–189.
  • Kareyeva AV, Grivennikova VG, Cecchini G, Vinogradov AD. Molecular identification of the enzyme responsible for the mitochondrial NADH-supported ammonium-dependent hydrogen peroxide production. FEBS Lett2011;585:385–389.
  • Kareyeva AV, Grivennikova VG, Vinogradov AD. Mitochondrial hydrogen peroxide production as determined by the pyridine nucleotide pool and its redox state. Biochim Biophys Acta2012;1817:1879–1885.
  • Korotchkina LG, Yang H, Tirosh O, Packer L, Patel MS. Protection by thiols of the mitochondrial complexes from 4-hydroxy- 2-nonenal. Free Radic Biol Med2001;30:992–999.
  • Igamberdiev AU, Bykova NV, Ens W, Hill RD. Dihydrolipoamide dehydrogenase from porcine heart catalyzes NADH-dependent scavenging of nitric oxide. FEBS Lett2004;568: 146–150.
  • Nilsen J, Irwin RW, Gallaher TK, Brinton RD. Estradiol in vivo regulation of brain mitochondrial proteome. J Neurosci2007;27:14069–14077.
  • Li W, Rong R, Zhao S, Zhu X, Zhang K, Xiong X, . Proteomic analysis of metabolic, cytoskeletal and stress response proteins in human heart failure. J Cell Mol Med2012;16:59–71.
  • Ames BN, Shigenaga MK. Oxidants are a major contributor to aging. Ann N Y Acad Sci1992;663:85–96.
  • St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem2002;277: 44784–44790.
  • Gutierrez-Correa J, Stoppani AO. Inactivation of heart dihydrolipoamide dehydrogenase by copper Fenton systems. Effect of thiol compounds and metal chelators. Free Radic Res1995;22:239–250.
  • Gutierrez-Correa J, Stoppani AO. Inactivation of myocardial dihydrolipoamide dehydrogenase by myeloperoxidase systems: effect of halides, nitrite and thiol compounds. Free Radic Res1999;30:105–117.
  • Gutierrez-Correa J. Trypanosoma cruzi dihydrolipoamide dehydrogenase as target of reactive metabolites generated by cytochrome c/hydrogen peroxide (or linoleic acid hydroperoxide)/phenol systems. Free Radic Res2010;44:1345–1358.
  • Gutierrez-Correa J, Stoppani AO. Myeloperoxidase-generated phenothiazine cation radicals inactivate Trypanosoma cruzi dihydrolipoamide dehydrogenase. Rev Argent Microbiol2002; 34:83–94.
  • Patel MS, Hong YS. Lipoic acid as an antioxidant: the role of dihydrolipoamide dehydrogenase. In: Armstrong D (ed.). Free Radical and Antioxidant Protocols. Totowa, NJ: Humana Press; 1998. 337–346.
  • Poole LB, Klomsiri C, Knaggs SA, Furdui CM, Nelson KJ, Thomas MJ, . Fluorescent and affinity-based tools to detect cysteine sulfenic acid formation in proteins. Bioconjug Chem2007;18:2004–2017.
  • Sims NR. Methods in Toxicology: Mitochondrial Dysfunction, Vol. 2. San Diego: Academic Press; 1993.
  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, . Measurement of protein using bicinchoninic acid. Anal Biochem1985;150:76–85.
  • Turrens JF, Alexandre A, Lehninger AL. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys1985;237: 408–414.
  • Turrens JF. Superoxide production by the mitochondrial respiratory chain. Biosci Rep1997;17:3–8.
  • Schonfeld P, Reiser G. Rotenone-like action of the branched-chain phytanic acid induces oxidative stress in mitochondria. J Biol Chem2006;281:7136–7142.
  • Yan LJ, Rajasekaran NS, Sathyanarayanan S, Benjamin IJ. Mouse HSF1 disruption perturbs redox state and increases mitochondrial oxidative stress in kidney. Antioxid Redox Signal2005;7:465–471.
  • Piacenza L, Irigoin F, Alvarez MN, Peluffo G, Taylor MC, Kelly JM, . Mitochondrial superoxide radicals mediate programmed cell death in Trypanosoma cruzi: cytoprotective action of mitochondrial iron superoxide dismutase overexpression. Biochem J2007;403:323–334.
  • Yan LJ, Christians ES, Liu L, Xiao X, Sohal RS, Benjamin IJ. Mouse heat shock transcription factor 1 deficiency alters cardiac redox homeostasis and increases mitochondrial oxidative damage. EMBO J2002;21:5164–5172.
  • Saurin AT, Neubert H, Brennan JP, Eaton P. Widespread sulfenic acid formation in tissues in response to hydrogen peroxide. Proc Natl Acad Sci U S A2004;101:17982–17987.
  • Yan LJ, Levine RL, Sohal RS. Effects of aging and hyperoxia on oxidative damage to cytochrome c in the housefly, Musca domestica. Free Radic Biol Med2000;29:90–97.
  • Yan LJ. Analysis of oxidative modification of proteins. Curr Protoc Protein Sci2009; Chapter 14:Unit14 4.
  • Kang D, Gho YS, Suh M, Kang C. Highly sensitive and fast protein detection with Coomassie brilliant blue in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Bull Korean Chem Soc2002;23:1511–1512.
  • Miwa S, St-Pierre J, Partridge L, Brand MD. Superoxide and hydrogen peroxide production by Drosophila mitochondria. Free Radic Biol Med2003;35:938–948.
  • Kettenhofen NJ, Wood MJ. Formation, reactivity, and detection of protein sulfenic acids. Chem Res Toxicol2010; 23:1633–1646.
  • Poole LB, Karplus PA, Claiborne A. Protein sulfenic acids in redox signaling. Annu Rev Pharmacol Toxicol2004;44: 325–347.
  • Poole LB, Nelson KJ. Discovering mechanisms of signaling-mediated cysteine oxidation. Curr Opin Chem Biol2008;12: 18–24.
  • Poole LB. Formation and functions of protein sulfenic acids. Curr Protoc Toxicol2004;Chapter 17:Unit17 1.
  • Nakamura M, Yamazaki I. One-electron transfer reactions in biochemical systems. VI. Changes in electron transfer mechanism of lipoamide dehydrogenase by modification of sulfhydryl groups. Biochim Biophys Acta1972;267:249–257.
  • Burleigh BD Jr, Williams CH Jr.The isolation and primary structure of a paptide containing the oxidation-reduction active cystine of Escherichia coli lipoamide dehydrogenase. J Biol Chem1972;247:2077–2082.
  • Thorpe C, Williams CH Jr.Differential reactivity of the two active site cysteine residues generated on reduction of pig heart lipoamide dehydrogenase. J Biol Chem1976;251: 3553–3557.
  • Applegate MA, Humphries KM, Szweda LI. Reversible inhibition of alpha-ketoglutarate dehydrogenase by hydrogen peroxide: glutathionylation and protection of lipoic acid. Biochemistry2008;47:473–478.
  • Monera OD, Kay CM, Hodges RS. Protein denaturation with guanidine hydrochloride or urea provides a different estimate of stability depending on the contributions of electrostatic interactions. Protein Sci1994;3:1984–1991.
  • Wilkinson KD, Williams CH Jr.Interactions of guanidinium chloride and pyridine nucleotides with oxidized and two- electron-reduced lipoamide dehydrogenase from Escherichia coli. J Biol Chem1979;254:863–871.
  • Yan LJ, Forster MJ. Resolving mitochondrial protein complexes using nongradient blue native polyacrylamide gel electrophoresis. Anal Biochem2009;389:143–149.
  • Cleland WW. Dithiothreitol, a new protective reagent for SH groups. Biochemistry1963;3:480–482.
  • Shen D, Dalton TP, Nebert DW, Shertzer HG. Glutathione redox state regulates mitochondrial reactive oxygen production. J Biol Chem2005;280:25305–25312.
  • Stemmler TL, Lesuisse E, Pain D, Dancis A. Frataxin and mitochondrial FeS cluster biogenesis. J Biol Chem2010; 285:26737–26743.
  • Mesecke N, Terziyska N, Kozany C, Baumann F, Neupert W, Hell K, Herrmann JM. A disulfide relay system in the intermembrane space of mitochondria that mediates protein import. Cell2005;121:1059–1069.
  • Gutierrez Correa J, Stoppani AO. Inactivation of lipoamide dehydrogenase by cobalt(II) and iron(II) Fenton systems: effect of metal chelators, thiol compounds and adenine nucleotides. Free Radic Res Commun1993;19:303–314.
  • Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, . Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci U S A2002;99:16899–16903.
  • Millard SA, Kubose A, Gal EM. Brain lipoyl dehydrogenase. Purification, properties, and inhibitors. J Biol Chem1969; 244:2511–2515.
  • Ide S, Hayakawa T, Okabe K, Koike M. Lipoamide dehydrogenase from human liver. J Biol Chem1967;242:54–60.
  • Koike M, Hayakawa T. Purification and properties of lipoamide dehydrogenases from pig heart alpha-keto acid dehydrogenase complexes. Methods Enzymol1970;18:298–307.
  • Charles RL, Schroder E, May G, Free P, Gaffney PR, Wait R, . Protein sulfenation as a redox sensor: proteomics studies using a novel biotinylated dimedone analogue. Mol Cell Proteomics2007;6:1473–1484.
  • Salsbury FR Jr, Knutson ST, Poole LB, Fetrow JS. Functional site profiling and electrostatic analysis of cysteines modifiable to cysteine sulfenic acid. Protein Sci2008;17:299–312.
  • Rehder DS, Borges CR. Cysteine sulfenic acid as an intermediate in disulfide bond formation and nonenzymatic protein folding. Biochemistry2010;49:7748–7755.
  • Roos G, Messens J. Protein sulfenic acid formation: from cellular damage to redox regulation. Free Radic Biol Med2011;51:314–326.
  • Michalek RD, Nelson KJ, Holbrook BC, Yi JS, Stridiron D, Daniel LW, . The requirement of reversible cysteine sulfenic acid formation for T cell activation and function. J Immunol2007;179:6456–6467.
  • Claiborne A, Miller H, Parsonage D, Ross RP. Protein-sulfenic acid stabilization and function in enzyme catalysis and gene regulation. FASEB J1993;7:1483–1490.
  • Cox AG, Winterbourn CC, Hampton MB. Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem J2010;425:313–325.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.