319
Views
37
CrossRef citations to date
0
Altmetric
Research Article

S-allyl cysteine protects against MPTP-induced striatal and nigral oxidative neurotoxicity in mice: Participation of Nrf2

, , , , , , , & show all
Pages 159-167 | Received 17 Jul 2013, Accepted 14 Oct 2013, Published online: 14 Nov 2013

References

  • Santamaría A, Jiménez ME. Oxidative/nitrosative stress, a common factor in different neurotoxic paradigms: an overview. Curr Top Neurochem 2005;4:1–20.
  • Nunomura A, Moreira PI, Lee HG, Zhu X, Castellani RJ, Smith MA, Perry G. Neuronal death and survival under oxidative stress in Alzheimer and Parkinson diseases. CNS Neurol Disord Drug Targets 2007;6:411–423.
  • Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983;219:979–980.
  • Emborg ME. Nonhuman primate models of Parkinson's disease. ILAR J 2007;48:339–355.
  • Vázquez-Claverie M, Garrido-Gil P, San-Sebastián W, Izal-Azcárate A, Belzunegui S, Marcilla I, et al. Acute and chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administrations elicit similar microglial activation in the substantia nigra of monkeys. J Neuropathol Exp Neurol 2009;68:977–984.
  • Kim KM, Chun SB, Koo MS, Choi WJ, Kim TW, Kwon YG, et al. Differential regulation of NO availability from macrophages and endothelial cells by the garlic component S-allyl cysteine. Free Radic Biol Med 2001;30:747–756.
  • Maldonado PD, Barrera D, Rivero I, Mata R, Medina- Campos ON, Hernández-Pando R, Pedraza-Chaverrí J. Antioxidant S-allylcysteine prevents gentamicin-induced oxidative stress and renal damage. Free Radic Biol Med 2003;35:317–324.
  • Medina-Campos ON, Barrera D, Segoviano-Murillo S, Rocha D, Maldonado PD, Mendoza-Patiño N, Pedraza-Chaverrí J. S-allylcysteine scavenges singlet oxygen and hypochlorous acid and protects LLC-PK1 cells of potassium dichromate-induced toxicity. Food Chem Toxicol 2007;45:2030–2039.
  • Ide N, Lau BH. Garlic compounds minimize intracellular oxidative stress and inhibit nuclear factor-κB activation. J Nutr 2001;131:1020–1026.
  • Tobón-Velasco JC, Vázquez-Victorio G, Macías-Silva M, Cuevas E, Ali SF, Maldonado PD, et al. S-allyl cysteine protects against 6-hydroxydopamine-induced neurotoxicity in the rat striatum: Involvement of Nrf2 transcription factor activation and modulation of signaling kinase cascades. Free Radic Biol Med 2012;53:1024–1040.
  • Pérez-Severiano F, Salvatierra-Sánchez R, Rodríguez-Pérez M, Cuevas-Martínez EY, Guevara J, Limón D, et al. S-Allylcysteine prevents amyloid-β peptide-induced oxidative stress in rat hippocampus and ameliorates learning deficits. Eur J Pharmacol 2004;489:197–202.
  • Peng Q, Buz’Zard AR, Lau BH. Neuroprotective effect of garlic compounds in amyloid-beta peptide-induced apoptosis in vitro. Med Sci Monit 2002;8:BR328–BR337.
  • Pérez-Severiano F, Rodríguez-Pérez M, Pedraza-Chaverrí J, Maldonado PD, Medina-Campos ON, Ortíz-Plata A, et al. S-Allylcysteine, a garlic derived antioxidant, ameliorates quinolinic acid-induced neurotoxicity and oxidative damage in rats. Neurochem Int 2004;45:1175–1183.
  • Herrera-Mundo MN, Silva-Adaya D, Maldonado PD, Galván-Arzate S, Andrés-Martínez L, Pérez-De La Cruz V, et al. S-Allyl cysteine prevents the rat from 3-nitropropionic acid-induced hyperactivity, early markers of oxidative stress and mitochondrial dysfunction. Neurosci Res 2006;56:39–44.
  • García E, Limón D, Pérez-De La Cruz V, Giordano M, Díaz-Muñoz M, Maldonado PD, et al. Lipid peroxidation, mitochondrial dysfunction and neurochemical and behavioural deficits in different neurotoxic models: Protective role of S-allylcysteine. Free Radic Res 2008;42:892–902.
  • García E, Villeda-Hernández J, Pedraza-Chaverrí J, Maldonado PD, Santamaría A. S-allylcysteine reduces the MPTP-induced striatal cell damage via inhibition of pro- inflammatory cytokine tumor necrosis factor-α and inducible nitric oxide synthase expressions in mice. Phytomedicine 2010;18:65–73.
  • Nwanze E, Souverbie F, Jonsson G, Sundström E. Regional biotransformation of MPTP in the CNS of rodents and its relation to neurotoxicity. Neurotoxicology 1995;16:469–477.
  • Yan CK, Zeng FD. Pharmacokinetics and tissue distribution of Sallylcysteine in rats. Asian J Drug Metab Pharmacokin 2005;5:61–69.
  • García E, Ríos C, Sotelo J. Ventricular injection of nerve growth factor increases dopamine content in the striata of MPTP-treated mice. Neurochem Res 1992;17:979–982.
  • Carmona-Ramírez I, Santamaría A, Tobón-Velasco JC, Orozco-Ibarra M, González-Herrera IG, Pedraza-Chaverrí J, Maldonado PD. Curcumin restores Nrf2 levels and prevents quinolinic acid-induced neurotoxicity. J Nutr Biochem 2013; 24:14–24.
  • Virmani A, Gaetani F, Binienda Z, Xu A, Duhart H, Ali SF. Role of mitochondrial dysfunction in neurotoxicity of MPP+: partial protection of PC12 cells by acetyl-L-carnitine. Ann NY Acad Sci 2004;1025:267–273.
  • Xu Z, Cawthon D, McCastlain KA, Slikker W Jr, Ali SF. Selective alterations of gene expression in mice induced by MPTP. Synapse 2005;55:45–51.
  • Xu Z, Cawthon D, McCastlain KA, Duhart HM, Newport GD, Fang H, et al. Selective alterations of transcription factors in MPP+-induced neurotoxicity in PC12 cells. Neurotoxicology 2005;26:729–737.
  • Chera B, Schaecher KE, Rocchini A, Imam SZ, Sribnick EA, Ray SK, et al. Immunofluorescent labeling of increased calpain expression and neuronal death in the spinal cord of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice. Brain Res 2004;1006:150–156.
  • Zhang W, Wang T, Qin L, Gao HM, Wilson B, Ali SF, et al. Neuroprotective effect of dextromethorphan in the MPTP Parkinson's disease model: role of NADPH oxidase. FASEB J 2004;18:589–591.
  • Feng ZH, Wang TG, Li DD, Fung P, Wilson BC, Liu B, et al. Cyclooxygenase-2-deficient mice are resistant to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced damage of dopaminergic neurons in the substantia nigra. Neurosci Lett 2002;329:354–358.
  • Wang C, Sadovova N, Ali HK, Duhart HM, Fu X, Zou X, et al. L-Carnitine protects neurons from 1-methyl-4-phenylpyridinium-induced neuronal apoptosis in rat forebrain culture. Neuroscience 2007;144:46–55.
  • Ebady M, Ramana-Kumari MV, Hiramatsu M, Hao R, Pfeiffer RF, Rojas P. Metallothionein, neurotrophins and selegiline in providing neuroprotection in Parkinson's disease. Restor Neurol Neurosci 1998;12:103–111.
  • Chen CM, Yin MC, Hsu CC, Liu TC. Antioxidative and anti-inflammatory effects of four cysteine-containing agents in striatum of MPTP-treated mice. Nutrition 2007;23:589–597.
  • Kaidery NA, Banerjee R, Yang L, Smirnova NA, Hushpulian DM, Liby KT, et al. Targeting Nrf2-mediated gene transcription by extremely potent synthetic triterpenoids attenuate dopaminergic neurotoxicity in the MPTP mouse model of Parkinson's disease. Antioxid Redox Signal 2013;18:139–157.
  • Innamorato NG, Jazwa A, Rojo AI, García C, Fernández-Ruiz J, Grochot-Przeczek A, et al. Different susceptibility to the Parkinson's toxin MPTP in mice lacking the redox master regulator Nrf2 or its target gene heme oxygenase-1. PLoS One 2010;5:e11838.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.