195
Views
22
CrossRef citations to date
0
Altmetric
Research Article

A mechanistic mathematical model for the catalytic action of glutathione peroxidase

, , &
Pages 487-502 | Received 24 Sep 2013, Accepted 20 Jan 2014, Published online: 24 Feb 2014

References

  • Loschen G, Flohé L, Chance B. Respiratory chain linked H2O2 production in pigeon heart mitochondria. FEBS Letters 1971;18:261–264.
  • Loschen G, Azzi A, Richter C, Flohé L. Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Letters 1974;42:68–72.
  • Freeman BA, Crapo JD. Biology of disease. Free radicals and tissue injury. Laboratory Investigation 1982;47: 412–426.
  • Rosen GM, Pou S, Ramos CL, Cohen MS, Britigan BE. Free radicals and phagocytic cells. FASEB Journal 1995;9: 200–209.
  • Ichihashi M, Ueda M, Budiyanto A, Bito T, Oka M, Fukunaga M, et al. UV-induced skin damage. Toxicology 2003;189:21–39.
  • Szocs K. Endothelial dysfunction and reactive oxygen species production in ischemia/reperfusion and intrate tolerance. Gen Physiol Biophys 2004;23:265–295.
  • Novo E, Parola M. The role of redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis Tissue Repair. 2012;5 Suppl 1:S4.
  • Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol 2003;552:335–344.
  • Andreyev AY, Kushnareva YE, Starkov AA. Mitochondrial metabolism of reactive oxygen species. Biochemistry (Moscow) 2005;70:200–214.
  • Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 2009;417:1–13.
  • Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, et al. Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 2004;37:755–767.
  • Kamata H, Hirata H. Redox regulation of cellular signalling. Cell Signal 1999;11:1–14.
  • Rhee SG. H2O2, a necessary evil for cell signaling. Science 2006;312:1882–1883.
  • Veal EA, Day AM, Morgan BA. Hydrogen Peroxide Sensing and Signaling. Mol Cell. 2007;26:1–14.
  • Andersen JK. Oxidative stress in neurodegeneration: cause or consequence?Nat Med 2004;10:S18–S25.
  • Jones DP. Disruption of mitochondrial redox circuitry in oxidative stress. Chem Biol Interact 2006;163:38–53.
  • Lesnefsky EJ, Moghaddas S, Tandler B, Kerner J, Hoppel CL. Mitochondrial dysfunction in cardiac disease: ischemia—reperfusion, aging, and heart failure. J Mol Cell Cardiol 2001;33:1065–1089.
  • Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 2005;39:359–407.
  • Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell 2005;120:483–495.
  • Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006;443: 787–795.
  • Arnér ESJ, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 2000;267:6102–6109.
  • Chaudière J, Ferrari-Iliou R. Intracellular antioxidants: from chemical to biochemical mechanisms. Food Chem Toxicol 1999;37:949–962.
  • Hayes JD, McLellan LI. Glutathione and glutathione- dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res 1999;31: 273–300.
  • Toppo S, Flohé L, Ursini F, Vanin S, Maiorino M. Catalytic mechanisms and specificities of glutathione peroxidases: variations of a basic scheme. Biochim Biophys Acta 2009;1790:1486–1500.
  • Epp O, Ladenstein R, Wendel A. The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution. Eur J Biochem 1983;133:51–69.
  • Flohé L, Loschen G, Günzler WA, Eichele E. Glutathione peroxidase, V. The kinetic mechanism. Hoppe Seylers Z Physiol Chem 1972;353:987–999.
  • Tosatto SCE, Bosello V, Fogolari F, Mauri P, Roveri A, Toppo S, et al. The catalytic site of glutathione peroxidases. Antioxid Redox Signal 2008;10:1515–1525.
  • Luo G, Zhu Z, Ding L, Gao G, Sun Q, Liu Z, et al. Generation of selenium-containing abzyme by using chemical mutation. Biochem Biophys Res Commun 1994;198:1240–1247.
  • Mugesh G, Singh HB. Synthetic organoselenium compounds as antioxidants: glutathione peroxidase activity. Chem Soc Rev 2000;29:347–357.
  • Ren X, Jemth P, Board PG, Luo G, Mannervik B, Liu J, et al. A semisynthetic glutathione peroxidase with high catalytic efficiency: selenoglutathione transferase. Chem Biol 2002;9: 789–794.
  • Yu H, Liu J, Liu X, Zang T, Luo G, Shen J. Kinetic studies on the glutathione peroxidase activity of selenium-containing glutathione transferase. Comp Biochem Physiol B Biochem Mol Biol 2005;141:382–389.
  • Maiorino M, Roveri A, Coassin M, Ursini F. Kinetic mechanism and substrate specificity of glutathione peroxidase activity of ebselen (PZ51). Biochem Pharmacol 1988;37: 2267–2271.
  • Little C, Olinescu R, Reid KG, O’Brien PJ. Properties and regulation of glutathione peroxidase. J Biol Chem 1970;245: 3632–3636.
  • Günzler WA, Vergin H, Müller I, Flohé L. Glutathione peroxidase VI: the reaction of glutahione peroxidase with various hydroperoxides. Hoppe Seylers Z Physiol Chem 1972;353: 1001–1004.
  • Martinez JI, Garcia RD, Galarza AM. The kinetic mechanism of glutathione peroxidase from human platelets. Thromb Res 1982;27:197–203.
  • Forstrom JW, Stults FH, Tappel AL. Rat liver cytosolic glutathione peroxidase: reactivity with linoleic acid hydroperoxide and cumene hydroperoxide. Arch Biochem Biophys 1979;193:51–55.
  • Takebe G, Yarimizu J, Saito Y, Hayashi T, Nakamura H, Yodoi J, et al. A comparative study on the hydroperoxide and thiol specificity of the glutathione peroxidase family and selenoprotein P. J Biol Chem 2002;277:41254–41258.
  • Chiu DTY, Stults FH, Tappel AL. Purification and properties of rat lung soluble glutathione peroxidase. Biochim Biophys Acta. 1976;445:558–566.
  • Carsol MA, Pouliquen-Sonaglia I, Lesgards G, Marchis-Mouren G, Puigserver A, Santimone M. A new kinetic model for the mode of action of soluble and membrane- immobilized glutathione peroxidase from bovine erythrocytes: effects of selenium. Eur J Biochem 1997;247: 248–255.
  • Antunes F, Han D, Cadenas E. Relative contributions of heart mitochondria glutathione peroxidase and catalase to H2O2 detoxification in in vivo conditions. Free Radic Biol Med 2002;33:1260–1267.
  • Ng CF, Schafer FQ, Buettner GR, Rodgers VGJ. The rate of cellular hydrogen peroxide removal shows dependency on GSH: mathematical insight into in vivo H2O2 and GPx concentrations. Free Radic Res 2007;41:1201–1211.
  • Aon MA, Stanley BA, Sivakumaran V, Kembro JM, O’Rourke B, Paolocci N, et al. Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: an experimental-computational study. J Gen Physiol 2012;139:479–491.
  • Cortassa S, Aon MA, Winslow RL, O’Rourke B. A mitochondrial oscillator dependent on reactive oxygen species. Biophys J 2004;87:2060–2073.
  • Qi F, Dash RK, Han Y, Beard DA. Generating rate equations for complex enzyme systems by a computer-assisted systematic method. BMC Bioinformatics 2009;10:238.
  • Cleland WW. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim Biophys Acta 1963;67:104–137.
  • Segel IH. Enzyme kinetics: behavior and analysis of rapid equilibrium and steady-state enzyme systems. London: Informa Healthcare 1975. p. xxii, 957 p.
  • Dalziel K. Initial steady state velocities in the evaluation of enzyme–coenzyme–substrate reaction mechanisms. Acta Chem Scand 1957;11:1706–1723.
  • Alberty RA. Thermodynamics of biochemical reactions. London: Informa Healthcare; 2003.
  • Griffith OW, Meister A. Origin and turnover of mitochondrial glutathione. Proc Natl Acad Sci USA. 1985;82:4668–4672.
  • Mueller S, Riedel HD, Stremmel W. Direct evidence for catalase as the predominant H2O2-removing enzyme in human erythrocytes. Blood 1997;90:4973–4978.
  • Yang L, Korge P, Weiss JN, Qu Z. Mitochondrial oscillations and waves in cardiac myocytes: insights from computational models. Biophys J 2010;98:1428–1438.
  • Zhou L, Aon MA, Almas T, Cortassa S, Winslow RL, O’Rourke B. A reaction-diffusion model of ROS-induced ROS release in a mitochondrial network. PLoS Comput Biol 2010;6:e1000657.
  • Flohé L, Schaich E, Voelter W, Wendel A. Glutathione peroxidase. 3. Spectral characteristics and experiments for the reaction mechanism. Hoppe Seylers Z Physiol Chem 1971; 352:170–180.
  • Aldakkak M, Stowe DF, Lesnefsky EJ, Heisner JS, Chen Q, Camara AKS. Modulation of mitochondrial bioenergetics in the isolated guinea pig beating heart by potassium and lidocaine cardioplegia: implications for cardioprotection. J Cardiovasc Pharmacol 2009;54:298–309.
  • Camara AKS, Bienengraeber M, Stowe DF. Mitochondrial approaches to protect against cardiac ischemia and reperfusion injury. Front Physiol 2011;2:13.
  • Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev 1979;59:527–605.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.