1,183
Views
30
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Glucose-6-phosphate dehydrogenase – beyond the realm of red cell biology

, &
Pages 1028-1048 | Received 23 Mar 2014, Accepted 07 Apr 2014, Published online: 07 May 2014

References

  • Luzzatto L, Battistuzzi G. Glucose-6-phosphate dehydrogenase. Adv Hum Genet 1985;14:217–329, 386–388.
  • Scott MD, Zuo L, Lubin BH, Chiu DT. NADPH, not glutathione, status modulates oxidant sensitivity in normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes. Blood 1991;77:2059–2064.
  • Beutler E. The genetics of glucose-6-phosphate dehydrogenase deficiency. Semin Hematol 1990;27:137–164.
  • Beutler E. Glucose-6-phosphate dehydrogenase deficiency. N Engl J Med 1991;324:169–174.
  • WHO Working Group. Glucose-6-phosphate dehydrogenase deficiency. WHO Working Group. Bull World Health Organ 1989;67:601–611.
  • Standardization of procedures for the study of glucose-6-phosphate dehydrogenase. Report of a WHO Scientific Group. World Health Organ Tech Rep Ser 1967;366: 1–53.
  • Beutler E. Glucose-6-phosphate dehydrogenase deficiency and red cell glutathione peroxidase. Blood 1977;49: 467–469.
  • Allison AC. Glucose-6-phosphate dehydrogenase deficiency in red blood cells of East Africans. Nature 1960;186: 531–532.
  • Adam A. Linkage between deficiency of glucose-6- phosphate dehydrogenase and colour-blindness. Nature 1961;189:686.
  • Boyer SH, Porter IH, Weilbacher RG. Electrophoretic heterogeneity of glucose-6-phosphate dehydrogenase and its relationship to enzyme deficiency in man. Proc Natl Acad Sci U S A 1962;48:1868–1876.
  • Persico MG, Viglietto G, Martini G, Toniolo D, Paonessa G, Moscatelli C, et al. Isolation of human glucose-6-phosphate dehydrogenase (G6PD) cDNA clones: primary structure of the protein and unusual 5’ non-coding region. Nucleic Acids Res 1986;14:2511–2522.
  • Martini G, Toniolo D, Vulliamy T, Luzzatto L, Dono R, Viglietto G, et al. Structural analysis of the X-linked gene encoding human glucose 6-phosphate dehydrogenase. Embo J 1986;5:1849–1855.
  • Toniolo D, Persico MG, Battistuzzi G, Luzzatto L. Partial purification and characterization of the messenger RNA for human glucose-6-phosphate dehydrogenase. Mol Biol Med 1984;2:89–103.
  • Takizawa T, Huang IY, Ikuta T, Yoshida A. Human glucose-6-phosphate dehydrogenase: primary structure and cDNA cloning. Proc Natl Acad Sci U S A 1986;83: 4157–4161.
  • Hirono A, Beutler E. Molecular cloning and nucleotide sequence of cDNA for human glucose-6-phosphate dehydrogenase variant A(-). Proc Natl Acad Sci U S A 1988; 85:3951–3954.
  • Beutler E, Vulliamy TJ. Hematologically important mutations: glucose-6-phosphate dehydrogenase. Blood Cells Mol Dis 2002;28:93–103.
  • Vulliamy TJ, D’Urso M, Battistuzzi G, Estrada M, Foulkes NS, Martini G, et al. Diverse point mutations in the human glucose-6-phosphate dehydrogenase gene cause enzyme deficiency and mild or severe hemolytic anemia. Proc Natl Acad Sci U S A 1988;85:5171–5175.
  • Arese P, De Flora A. Pathophysiology of hemolysis in glucose-6-phosphate dehydrogenase deficiency. Semin Hematol 1990;27:1–40.
  • Beutler E. G6PD deficiency. Blood 1994;84:3613–3636.
  • Beutler E. Glucose-6-phosphate dehydrogenase deficiency: a historical perspective. Blood 2008;111:16–24.
  • Du SD. Favism in west China. Chin Med J 1952;70:17–26.
  • Du CS, Xu YK, Hua XY, Wu QL, Liu LB. Glucose-6- phosphate dehydrogenase variants and their frequency in Guangdong, China. Hum Genet 1988;80:385–388.
  • Du CS, Liu LB, Liu B, Tokunaga K, Omoto K. Glucose- 6-phosphate dehydrogenase deficiency among three national minorities in Hainan Island, China. Gene Geogr 1988;2: 71–74.
  • Lai HC, Lai MP, Leung KS. Glucose-6-phosphate dehydrogenase deficiency in Chinese. J Clin Pathol 1968;21:44–47.
  • Chan TK, Todd D, Wong CC. Erythrocyte glucose-6- phosphate dehydrogenase deficiency in chinese. Br Med J 1964;2:102.
  • Yue PC, Strickland M. Glucose-6-phosphate-dehydrogenase deficiency and neonatal jaundice in Chinese male infants in Hong Kong. Lancet 1965;285:350–351.
  • Chen SH, Chen CL.[Clinical observation of kernicterus in Chinese newborns.]. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi 1963;4:39–44.
  • Chen HC. Kernicterus in the Chinese newborn. A morphological and spectrophotometric study J Neuropathol Exp Neurol 1964;23:527–549.
  • Lin TM, Lin KS, Song ST, Su HY. A study of an outbreak of acute hemolytic anemia possibly caused by fava beans. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi 1961;2:99–105.
  • McCurdy PR, Kirkman HN, Naiman JL, Jim RT, Pickard BM. A Chinese variant of glucose-6-phosphate dehydrogenase. J Lab Clin Med 1966;67:374–385.
  • McCurdy PR, Blackwell RQ, Todd D, Tso SC, Tuchinda S. Further studies on glucose-6-phosphate dehydrogenase deficiency in Chinese subjects. J Lab Clin Med 1970;75: 788–797.
  • Howes RE, Piel FB, Patil AP, Nyangiri OA, Gething PW, Dewi M, et al. G6PD deficiency prevalence and estimates of affected populations in malaria endemic countries: a geostatistical model-based map. PLoS Med 2012;9:e1001339.
  • Nkhoma ET, Poole C, Vannappagari V, Hall SA, Beutler E. The global prevalence of glucose-6-phosphate dehydrogenase deficiency: a systematic review and meta-analysis. Blood Cells Mol Dis 2009;42:267–278.
  • Ho HY, Daniel DTY. Molecular diagnosis of G6PD deficiency. In: Wu JJ, (ed.). Textbook of Molecular Diagnosis in Medicine. Taipei: Wu Nan Book Inc.; 2009. pp. 183–212.
  • Chien YH, Lee NC, Wu ST, Liou JJ, Chen HC, Hwu WL. Changes in incidence and sex ratio of glucose-6-phosphate dehydrogenase deficiency by population drift in Taiwan. Southeast Asian J Trop Med Public Health 2008;39: 154–161.
  • Chiang SH, Wu SJ, Wu KF, Hsiao KJ. Neonatal screening for glucose-6-phosphate dehydrogenase deficiency in Taiwan. Southeast Asian J Trop Med Public Health 1999; 30:72–74.
  • Hsiao KJ. Genetic disorders and neonatal screening. In: Miyai K, Kanno T, Ishikawa E, (eds.). Clinical Biochemistry. Amsterdam: Elsevier; 1992. pp. 289–292.
  • Cheng HY, Fu YJ, Lee CB, Lo SK, Hung CM, Chiu DTY. Incidence of glucose-6-phosphate dehydrogenase deficiency in blood donors of Taiwan. J Biomed Lab Sci 1994;6: 43–48.
  • Kaplan M, Hammerman C. Neonatal screening for glucose-6-phosphate dehydrogenase deficiency: biochemical versus genetic technologies. Semin Perinatol 2011;35:155–161.
  • Stevens DJ, Wanachiwanawin W, Mason PJ, Vulliamy TJ, Luzzatto L. G6PD Canton a common deficient variant in South East Asia caused by a 459 Arg----Leu mutation. Nucleic Acids Res 1990;18:7190.
  • Vulliamy TJ, Kaeda JS, Ait-Chafa D, Mangerini R, Roper D, Barbot J, et al. Clinical and haematological consequences of recurrent G6PD mutations and a single new mutation causing chronic nonspherocytic haemolytic anaemia. Br J Haematol 1998;101:670–675.
  • Vulliamy T, Luzzatto L, Hirono A, Beutler E. Hematologically important mutations: glucose-6-phosphate dehydrogenase. Blood Cells Mol Dis 1997;23:302–313.
  • Chen EY, Cheng A, Lee A, Kuang WJ, Hillier L, Green P, et al. Sequence of human glucose-6-phosphate dehydrogenase cloned in plasmids and a yeast artificial chromosome. Genomics 1991;10:792–800.
  • Kanno H, Kondoh T, Yoshida A. 5’ structure and expression of human glucose-6-phosphate dehydrogenase mRNA. DNA Cell Biol 1993;12:209–215.
  • Franze A, Ferrante MI, Fusco F, Santoro A, Sanzari E, Martini G, Ursini MV. Molecular anatomy of the human glucose 6-phosphate dehydrogenase core promoter. FEBS Lett 1998;437:313–318.
  • Toniolo D, Filippi M, Dono R, Lettieri T, Martini G. The CpG island in the 5’ region of the G6PD gene of man and mouse. Gene 1991;102:197–203.
  • Trask BJ, Massa H, Kenwrick S, Gitschier J. Mapping of human chromosome Xq28 by two-color fluorescence in situ hybridization of DNA sequences to interphase cell nuclei. Am J Hum Genet 1991;48:1–15.
  • Jin DY, Jeang KT. Isolation of full-length cDNA and chromosomal localization of human NF-kappaB modulator NEMO to Xq28. J Biomed Sci 1999;6:115–120.
  • Galgoczy P, Rosenthal A, Platzer M. Human-mouse comparative sequence analysis of the NEMO gene reveals an alternative promoter within the neighboring G6PD gene. Gene 2001;271:93–98.
  • Minucci A, Moradkhani K, Hwang MJ, Zuppi C, Giardina B, Capoluongo E. Glucose-6-phosphate dehydrogenase (G6PD) mutations database: review of the “old” and update of the new mutations. Blood Cells Mol Dis 2012; 48:154–165.
  • Mazieres S, Petit F, Dugoujon JM, Iriart X, Berry A, Carme B, et al. Subtle adjustments of the glucose-6- phosphate dehydrogenase (G6PD) mutation database and reference sequence. Blood Cells Mol Dis 2014;52: 55–56.
  • Hirono A, Fujii H, Shima M, Miwa S. G6PD Nara: a new class 1 glucose-6-phosphate dehydrogenase variant with an eight amino acid deletion. Blood 1993;82: 3250–3252.
  • Manco L, Pereira J, Relvas L, Rebelo U, Crisostomo AI, Bento C, Ribeiro ML. Chronic hemolytic anemia is associated with a new glucose-6-phosphate dehydrogenase in-frame deletion in an older woman. Blood Cells Mol Dis 2011;46:288–293.
  • Longo L, Vanegas OC, Patel M, Rosti V, Li H, Waka J, et al. Maternally transmitted severe glucose 6-phosphate dehydrogenase deficiency is an embryonic lethal. Embo J 2002; 21:4229–4239.
  • Xu W, Westwood B, Bartsocas CS, Malcorra-Azpiazu JJ, Indrak K, Beutler E. Glucose-6 phosphate dehydrogenase mutations and haplotypes in various ethnic groups. Blood 1995;85:257–263.
  • Efferth T, Bachli EB, Schwarzl SM, Goede JS, West C, Smith JC, Beutler E. Glucose-6-phosphate dehydrogenase (G6PD) deficiency-type Zurich: a splice site mutation as an uncommon mechanism producing enzyme deficiency. Blood 2004;104:2608.
  • Cheng YS, Tang TK, Hwang M. Amino acid conservation and clinical severity of human glucose-6-phosphate dehydrogenase mutations. J Biomed Sci 1999;6:106–114.
  • Notaro R, Afolayan A, Luzzatto L. Human mutations in glucose 6-phosphate dehydrogenase reflect evolutionary history. FASEB J 2000;14:485–494.
  • Kotaka M, Gover S, Vandeputte-Rutten L, Au SW, Lam VM, Adams MJ. Structural studies of glucose-6-phosphate and NADP+ binding to human glucose-6-phosphate dehydrogenase. Acta Crystallogr D Biol Crystallogr 2005; 61:495–504.
  • Rowland P, Basak AK, Gover S, Levy HR, Adams MJ. The three-dimensional structure of glucose 6-phosphate dehydrogenase from Leuconostoc mesenteroides refined at 2.0 A resolution. Structure 1994;2:1073–1087.
  • Au SW, Gover S, Lam VM, Adams MJ. Human glucose-6-phosphate dehydrogenase: the crystal structure reveals a structural NADP(+) molecule and provides insights into enzyme deficiency. Structure 2000;8:293–303.
  • Wang XT, Chan TF, Lam VM, Engel PC. What is the role of the second “structural” NADP+-binding site in human glucose 6-phosphate dehydrogenase?Protein Sci 2008;17:1403–1411.
  • Roos D, van Zwieten R, Wijnen JT, Gomez-Gallego F, de Boer M, Stevens D, et al. Molecular basis and enzymatic properties of glucose 6-phosphate dehydrogenase volendam, leading to chronic nonspherocytic anemia, granulocyte dysfunction, and increased susceptibility to infections. Blood 1999;94:2955–2962.
  • Gomez-Gallego F, Garrido-Pertierra A, Bautista JM. Structural defects underlying protein dysfunction in human glucose-6-phosphate dehydrogenase A(-) deficiency. J Biol Chem 2000;275:9256–9262.
  • Hirono A, Kawate K, Honda A, Fujii H, Miwa S. A single mutation 202G> A in the human glucose-6-phosphate dehydrogenase gene (G6PD) can cause acute hemolysis by itself. Blood 2002;99:1498.
  • Abdel Fattah M, Abdel Ghany E, Adel A, Mosallam D, Kamal S. Glucose-6-phosphate dehydrogenase and red cell pyruvate kinase deficiency in neonatal jaundice cases in Egypt. Pediatr Hematol Oncol 2010;27:262–271.
  • Ronquist G, Theodorsson E. Inherited, non-spherocytic haemolysis due to deficiency of glucose-6-phosphate dehydrogenase. Scand J Clin Lab Invest 2007;67:105–111.
  • Lee DH, Warkentin TE, Neame PB, Ali MA. Acute hemolytic anemia precipitated by myocardial infarction and pericardial tamponade in G6PD deficiency. Am J Hematol 1996;51:174–175.
  • Kaplan M, Hammerman C. Glucose-6-phosphate dehydrogenase deficiency and severe neonatal hyperbilirubinemia: a complexity of interactions between genes and environment. Semin Fetal Neonatal Med 2010;15:148–156.
  • Kaplan M, Renbaum P, Levy-Lahad E, Hammerman C, Lahad A, Beutler E. Gilbert syndrome and glucose-6- phosphate dehydrogenase deficiency: a dose-dependent genetic interaction crucial to neonatal hyperbilirubinemia. Proc Natl Acad Sci U S A 1997;94:12128–12132.
  • Kaplan M. Gilbert's syndrome and jaundice in glucose-6-phosphate dehydrogenase deficient neonates. Haematologica 2000;85:E01.
  • Kaplan M, Hammerman C. Glucose-6-phosphate dehydrogenase deficiency: a potential source of severe neonatal hyperbilirubinaemia and kernicterus. Semin Neonatol 2002; 7:121–128.
  • Kaplan M, Hammerman C. Glucose-6-phosphate dehydrogenase deficiency: a hidden risk for kernicterus. Semin Perinatol 2004;28:356–364.
  • Beutler E, Duparc S, G6PD Deficiency Working Group. Glucose-6-phosphate dehydrogenase deficiency and antimalarial drug development. Am J Trop Med Hyg 2007; 77:779–789.
  • Youngster I, Arcavi L, Schechmaster R, Akayzen Y, Popliski H, Shimonov J, et al. Medications and glucose-6-phosphate dehydrogenase deficiency: an evidence-based review. Drug Saf 2010;33:713–726.
  • Rochford R, Ohrt C, Baresel PC, Campo B, Sampath A, Magill AJ, et al. Humanized mouse model of glucose 6- phosphate dehydrogenase deficiency for in vivo assessment of hemolytic toxicity. Proc Natl Acad Sci U S A 2013; 110:17486–17491.
  • Yang Y, Li Z, Nan P, Zhang X. Drug-induced glucose-6-phosphate dehydrogenase deficiency-related hemolysis risk assessment. Comput Biol Chem 2011;35:189–192.
  • Siddiqui T, Khan AH. Hepatitis A and cytomegalovirus infection precipitating acute hemolysis in glucose-6- phosphate dehydrogenase deficiency. Mil Med 1998;163: 434–435.
  • Au WY, Ngai CW, Chan WM, Leung RY, Chan SC. Hemolysis and methemoglobinemia due to hepatitis E virus infection in patient with G6PD deficiency. Ann Hematol 2011;90:1237–1238.
  • Thapa R, Pramanik S, Biswas B, Mallick D. Hepatitis E virus infection in a 7-year-old boy with glucose 6-phosphate dehydrogenase deficiency. J Pediatr Hematol Oncol 2009; 31:223–224.
  • Schuurman M, van Waardenburg D, Da Costa J, Niemarkt H, Leroy P. Severe hemolysis and methemoglobinemia following fava beans ingestion in glucose-6-phosphatase dehydrogenase deficiency: case report and literature review. Eur J Pediatr 2009;168:779–782.
  • Matthay KK, Mentzer WC. Erythrocyte enzymopathies in the newborn. Clin Haematol 1981;10:31–55.
  • Kaplan M, Hammerman C, Vreman HJ, Stevenson DK, Beutler E. Acute hemolysis and severe neonatal hyperbilirubinemia in glucose-6-phosphate dehydrogenase-deficient heterozygotes. J Pediatr 2001;139:137–140.
  • Sgro M, Campbell D, Shah V. Incidence and causes of severe neonatal hyperbilirubinemia in Canada. CMAJ 2006; 175:587–590.
  • Watchko JF, Lin Z. Exploring the genetic architecture of neonatal hyperbilirubinemia. Semin Fetal Neonatal Med 2010;15:169–175.
  • Kaplan M, Vreman HJ, Hammerman C, Leiter C, Abramov A, Stevenson DK. Contribution of haemolysis to jaundice in Sephardic Jewish glucose-6-phosphate dehydrogenase deficient neonates. Br J Haematol 1996;93:822–827.
  • Seidman DS, Shiloh M, Stevenson DK, Vreman HJ, Gale R. Role of hemolysis in neonatal jaundice associated with glucose-6 phosphate dehydrogenase deficiency. J Pediatr 1995;127:804–806.
  • Winterbourn CC. Inhibition of autoxidation of divicine and isouramil by the combination of superoxide dismutase and reduced glutathione. Arch Biochem Biophys 1989;271: 447–455.
  • Winterbourn CC, Cowden WB, Sutton HC. Auto-oxidation of dialuric acid, divicine and isouramil. Superoxide dependent and independent mechanisms.Biochem Pharmacol 1989;38:611–618.
  • Fischer TM, Meloni T, Pescarmona GP, Arese P. Membrane cross bonding in red cells in favic crisis: a missing link in the mechanism of extravascular haemolysis. Br J Haematol 1985;59:159–169.
  • Arese P, Gallo V, Pantaleo A, Turrini F. Life and death of glucose-6-phosphate dehydrogenase (G6PD) deficient erythrocytes - role of redox stress and band 3 modifications. Transfus Med Hemother 2012;39:328–334.
  • Walsh SB, Stewart GW. Anion exchanger 1: protean function and associations. Int J Biochem Cell Biol 2010;42: 1919–1922.
  • Ferru E, Giger K, Pantaleo A, Campanella E, Grey J, Ritchie K, et al. Regulation of membrane-cytoskeletal interactions by tyrosine phosphorylation of erythrocyte band 3. Blood 2011;117:5998–6006.
  • Pantaleo A, Ferru E, Carta F, Mannu F, Simula LF, Khadjavi A, et al. Irreversible AE1 tyrosine phosphorylation leads to membrane vesiculation in G6PD deficient red cells. PLoS One 2011;6:e15847.
  • Pantaleo A, De Franceschi L, Ferru E, Vono R, Turrini F. Current knowledge about the functional roles of phosphorylative changes of membrane proteins in normal and diseased red cells. J Proteomics 2010;73:445–455.
  • Turrini F, Arese P, Yuan J, Low PS. Clustering of integral membrane proteins of the human erythrocyte membrane stimulates autologous IgG binding, complement deposition, and phagocytosis. J Biol Chem 1991;266:23611–23617.
  • Pantaleo A, Ferru E, Giribaldi G, Mannu F, Carta F, Matte A, et al. Oxidized and poorly glycosylated band 3 is selectively phosphorylated by Syk kinase to form large membrane clusters in normal and G6PD-deficient red blood cells. Biochem J 2009;418:359–367.
  • Arese P, Turrini F, Schwarzer E. Band 3/complement- mediated recognition and removal of normally senescent and pathological human erythrocytes. Cell Physiol Biochem 2005;16:133–146.
  • Tian WN, Braunstein LD, Pang J, Stuhlmeier KM, Xi QC, Tian X, Stanton RC. Importance of glucose-6-phosphate dehydrogenase activity for cell growth. J Biol Chem 1998;273:10609–10617.
  • Koh WS, Choi WH, Lee SJ, Park C, Park CH. Enhancement of plasmacytoma cell growth by ascorbic acid is mediated via glucose 6-phosphate dehydrogenase. Cancer Res Treat 2007;39:22–29.
  • Raineri R, Levy HR. On the specificity of steroid interaction with mammary glucose 6-phosphate dehydrogenase. Biochemistry 1970;9:2233–2243.
  • Oertel GW, Benes P. The effects of steroids on glucose- 6-phosphate dehydrogenase. J Steroid Biochem 1972;3: 493–496.
  • Oertel GW, Rebelein I. Effects of dehydroepiandrosterone and its conjugates upon the activity of glucose-6-phosphate dehydrogenase in human erythrocytes. Biochim Biophys Acta 1969;184:459–460.
  • Cheng ML, Shiao MS, Chiu DT, Weng SF, Tang HY, Ho HY. Biochemical disorders associated with antiproliferative effect of dehydroepiandrosterone in hepatoma cells as revealed by LC-based metabolomics. Biochem Pharmacol 2011;82:1549–1561.
  • Ho HY, Cheng ML, Chiu HY, Weng SF, Chiu DT. Dehydroepiandrosterone induces growth arrest of hepatoma cells via alteration of mitochondrial gene expression and function. Int J Oncol 2008;33:969–977.
  • Ho HY, Cheng ML, Lu FJ, Chou YH, Stern A, Liang CM, Chiu DT. Enhanced oxidative stress and accelerated cellular senescence in glucose-6-phosphate dehydrogenase (G6PD)-deficient human fibroblasts. Free Radic Biol Med 2000; 29:156–169.
  • Cheng ML, Ho HY, Wu YH, Chiu DT. Glucose-6-phosphate dehydrogenase-deficient cells show an increased propensity for oxidant-induced senescence. Free Radic Biol Med 2004; 36:580–591.
  • Johnson FB, Sinclair DA, Guarente L. Molecular biology of aging. Cell 1999;96:291–302.
  • Beckman KB, Ames BN. Oxidants, antioxidants and aging. In: Scandalios JG, (ed.). Oxidative stress, and the Molecular Biology of Antioxidant Defenses. New York: Cold Spring Harbour Laboratory Press; 1997. pp. 201–272.
  • Cheng ML, Ho HY, Liang CM, Chou YH, Stern A, Lu FJ, Chiu DT. Cellular glucose-6-phosphate dehydrogenase (G6PD) status modulates the effects of nitric oxide (NO) on human foreskin fibroblasts. FEBS Lett 2000;475: 257–262.
  • Ho HY, Wei TT, Cheng ML, Chiu DT. Green tea polyphenol epigallocatechin-3-gallate protects cells against peroxynitrite-induced cytotoxicity: modulatory effect of cellular G6PD status. J Agric Food Chem 2006;54:1638–1645.
  • Gao LP, Cheng ML, Chou HJ, Yang YH, Ho HY, Chiu DT. Ineffective GSH regeneration enhances G6PD-knockdown Hep G2 cell sensitivity to diamide-induced oxidative damage. Free Radic Biol Med 2009;47:529–535.
  • Pandolfi PP, Sonati F, Rivi R, Mason P, Grosveld F, Luzzatto L. Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress. Embo J 1995;14:5209–5215.
  • Zhang W, Ni C, Sheng J, Hua Y, Ma J, Wang L, et al. TLQP-21 protects human umbilical vein endothelial cells against high-glucose-induced apoptosis by increasing G6PD expression. PLoS One 2013;8:e79760.
  • Davies KJ. The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB Life 1999;48:41–47.
  • Marinho HS, Real C, Cyrne L, Soares H, Antunes F. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol 2014;2:535–562.
  • Wiese AG, Pacifici RE, Davies KJ. Transient adaptation of oxidative stress in mammalian cells. Arch Biochem Biophys 1995;318:231–240.
  • Leopold JA, Walker J, Scribner AW, Voetsch B, Zhang YY, Loscalzo AJ, et al. Glucose-6-phosphate dehydrogenase modulates vascular endothelial growth factor-mediated angiogenesis. J Biol Chem 2003;278:32100–32106.
  • Leopold JA, Zhang YY, Scribner AW, Stanton RC, Loscalzo J. Glucose-6-phosphate dehydrogenase overexpression decreases endothelial cell oxidant stress and increases bioavailable nitric oxide. Arterioscler Thromb Vasc Biol 2003;23:411–417.
  • Ham M, Lee JW, Choi AH, Jang H, Choi G, Park J, et al. Macrophage glucose-6-phosphate dehydrogenase stimulates proinflammatory responses with oxidative stress. Mol Cell Biol 2013;33:2425–2435.
  • Yang HC, Cheng ML, Ho HY, Chiu DT. The microbicidal and cytoregulatory roles of NADPH oxidases. Microbes Infect 2011;13:109–120.
  • Forman HJ, Torres M. Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am J Respir Crit Care Med 2002;166:S4–S8.
  • Shapiro BM. The control of oxidant stress at fertilization. Science 1991;252:533–536.
  • Swezey RR, Epel D. Enzyme stimulation upon fertilization is revealed in electrically permeabilized sea urchin eggs. Proc Natl Acad Sci U S A 1988;85:812–816.
  • Spencer NY, Yan Z, Boudreau RL, Zhang Y, Luo M, Li Q, et al. Control of hepatic nuclear superoxide production by glucose 6-phosphate dehydrogenase and NADPH oxidase-4. J Biol Chem 2011;286:8977–8987.
  • Gupte RS, Floyd BC, Kozicky M, George S, Ungvari ZI, Neito V, et al. Synergistic activation of glucose-6-phosphate dehydrogenase and NAD(P)H oxidase by Src kinase elevates superoxide in type 2 diabetic, Zucker fa/fa, rat liver. Free Radic Biol Med 2009;47:219–228.
  • Lin CJ, Ho HY, Cheng ML, You TH, Yu JS, Chiu DT. Impaired dephosphorylation renders G6PD-knockdown HepG2 cells more susceptible to H(2)O(2)-induced apoptosis. Free Radic Biol Med 2010;49:361–373.
  • Lin HR, Wu CC, Wu YH, Hsu CW, Cheng ML, Chiu DT. Proteome-wide dysregulation by glucose-6-phosphate dehydrogenase (G6PD) reveals a novel protective role for G6PD in aflatoxin B1-mediated cytotoxicity. J Proteome Res 2013;12:3434–3448.
  • Hu T, Zhang C, Tang Q, Su Y, Li B, Chen L, et al. Variant G6PD levels promote tumor cell proliferation or apoptosis via the STAT3/5 pathway in the human melanoma xenograft mouse model. BMC Cancer 2013;13:251.
  • Ho HY, Cheng ML, Shiao MS, Chiu DT. Characterization of global metabolic responses of glucose-6-phosphate dehydrogenase-deficient hepatoma cells to diamide-induced oxidative stress. Free Radic Biol Med 2013;54:71–84.
  • Yeh GC, Daschner PJ, Lopaczynska J, MacDonald CJ, Ciolino HP. Modulation of glucose-6-phosphate dehydrogenase activity and expression is associated with aryl hydrocarbon resistance in vitro. J Biol Chem 2001;276: 34708–34713.
  • Wagle A, Jivraj S, Garlock GL, Stapleton SR. Insulin regulation of glucose-6-phosphate dehydrogenase gene expression is rapamycin-sensitive and requires phosphatidylinositol 3-kinase. J Biol Chem 1998;273:14968–14974.
  • Katsurada A, Iritani N, Fukuda H, Matsumura Y, Noguchi T, Tanaka T. Effects of nutrients and insulin on transcriptional and post-transcriptional regulation of glucose-6-phosphate dehydrogenase synthesis in rat liver. Biochim Biophys Acta 1989;1006:104–110.
  • Amir-Ahmady B, Salati LM. Regulation of the processing of glucose-6-phosphate dehydrogenase mRNA by nutritional status. J Biol Chem 2001;276:10514–10523.
  • Tao H, Szeszel-Fedorowicz W, Amir-Ahmady B, Gibson MA, Stabile LP, Salati LM. Inhibition of the splicing of glucose-6-phosphate dehydrogenase precursor mRNA by polyunsaturated fatty acids. J Biol Chem 2002;277: 31270–31278.
  • Szeszel-Fedorowicz W, Talukdar I, Griffith BN, Walsh CM, Salati LM. An exonic splicing silencer is involved in the regulated splicing of glucose 6-phosphate dehydrogenase mRNA. J Biol Chem 2006;281:34146–34158.
  • Walsh CM, Suchanek AL, Cyphert TJ, Kohan AB, Szeszel-Fedorowicz W, Salati LM. Serine arginine splicing factor 3 is involved in enhanced splicing of glucose-6- phosphate dehydrogenase RNA in response to nutrients and hormones in liver. J Biol Chem 2013;288:2816–2828.
  • Donohue TM Jr, Barker KL. Glucose-6-phosphate dehydrogenase. Translational regulation of synthesis and regulation of processing of the enzyme in the uterus by estradiol.Biochim Biophys Acta 1983;739:148–157.
  • Stanton RC, Seifter JL, Boxer DC, Zimmerman E, Cantley LC. Rapid release of bound glucose-6-phosphate dehydrogenase by growth factors. Correlation with increased enzymatic activity. J Biol Chem 1991;266:12442–12448.
  • Tian WN, Pignatare JN, Stanton RC. Signal transduction proteins that associate with the platelet-derived growth factor (PDGF) receptor mediate the PDGF-induced release of glucose-6-phosphate dehydrogenase from permeabilized cells. J Biol Chem 1994;269:14798–14805.
  • Pan S, World CJ, Kovacs CJ, Berk BC. Glucose 6-phosphate dehydrogenase is regulated through c-Src-mediated tyrosine phosphorylation in endothelial cells. Arterioscler Thromb Vasc Biol 2009;29:895–901.
  • Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 2006;126:107–120.
  • Du W, Jiang P, Mancuso A, Stonestrom A, Brewer MD, Minn AJ, et al. TAp73 enhances the pentose phosphate pathway and supports cell proliferation. Nat Cell Biol 2013;15:991–1000.
  • Cosentino C, Grieco D, Costanzo V. ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. EMBO J 2011;30:546–555.
  • Costa Rosa LF, Curi R, Murphy C, Newsholme P. Effect of adrenaline and phorbol myristate acetate or bacterial lipopolysaccharide on stimulation of pathways of macrophage glucose, glutamine and O2 metabolism. Evidence for cyclic AMP- dependent protein kinase mediated inhibition of glucose-6-phosphate dehydrogenase and activation of NADP+-dependent ‘malic’ enzyme. Biochem J 1995;310:709–714.
  • Xu Y, Osborne BW, Stanton RC. Diabetes causes inhibition of glucose-6-phosphate dehydrogenase via activation of PKA, which contributes to oxidative stress in rat kidney cortex. Am J Physiol Renal Physiol 2005;289: F1040–F1047.
  • Zhang Z, Apse K, Pang J, Stanton RC. High glucose inhibits glucose-6-phosphate dehydrogenase via cAMP in aortic endothelial cells. J Biol Chem 2000;275:40042–40047.
  • Talukdar I, Szeszel-Fedorowicz W, Salati LM. Arachidonic acid inhibits the insulin induction of glucose-6-phosphate dehydrogenase via p38 MAP kinase. J Biol Chem 2005; 280:40660–40667.
  • Kohan AB, Talukdar I, Walsh CM, Salati LM. A role for AMPK in the inhibition of glucose-6-phosphate dehydrogenase by polyunsaturated fatty acids. Biochem Biophys Res Commun 2009;388:117–121.
  • Jiang P, Du W, Wang X, Mancuso A, Gao X, Wu M, Yang X. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol 2011;13:310–316.
  • Cai J, Chen Y, Seth S, Furukawa S, Compans RW, Jones DP. Inhibition of influenza infection by glutathione. Free Radic Biol Med 2003;34:928–936.
  • Beck MA. The influence of antioxidant nutrients on viral infection. Nutr Rev 1998;56:S140–S146.
  • Beck MA, Levander OA, Handy J. Selenium deficiency and viral infection. J Nutr 2003;133:1463S–7S.
  • Beck MA, Kolbeck PC, Rohr LH, Shi Q, Morris VC, Levander OA. Benign human enterovirus becomes virulent in selenium-deficient mice. J Med Virol 1994;43: 166–170.
  • Beck MA, Kolbeck PC, Rohr LH, Shi Q, Morris VC, Levander OA. Vitamin E deficiency intensifies the myocardial injury of coxsackievirus B3 infection of mice. J Nutr 1994;124:345–358.
  • Ho HY, Cheng ML, Weng SF, Chang L, Yeh TT, Shih SR, Chiu DT. Glucose-6-phosphate dehydrogenase deficiency enhances enterovirus 71 infection. J Gen Virol 2008;89: 2080–2089.
  • Wu YH, Tseng CP, Cheng ML, Ho HY, Shih SR, Chiu DT. Glucose-6-phosphate dehydrogenase deficiency enhances human coronavirus 229E infection. J Infect Dis 2008;197: 812–816.
  • Ho HY, Cheng ML, Weng SF, Leu YL, Chiu DT. Antiviral effect of epigallocatechin gallate on enterovirus 71. J Agric Food Chem 2009;57:6140–6147.
  • Chao YC, Huang CS, Lee CN, Chang SY, King CC, Kao CL. Higher infection of dengue virus serotype 2 in human monocytes of patients with G6PD deficiency. PLoS One 2008;3:e1557.
  • Hsieh YT, Lin MH, Ho HY, Chen LC, Chen CC, Shu JC. Glucose-6-phosphate dehydrogenase (G6PD)-deficient epithelial cells are less tolerant to infection by Staphylococcus aureus. PLoS One 2013;8:e79566.
  • Wilmanski J, Villanueva E, Deitch EA, Spolarics Z. Glucose-6-phosphate dehydrogenase deficiency and the inflammatory response to endotoxin and polymicrobial sepsis. Crit Care Med 2007;35:510–518.
  • Ozolins TR, Siksay DL, Wells PG. Modulation of embryonic glutathione peroxidase activity and phenytoin teratogenicity by dietary deprivation of selenium in CD-1 mice. J Pharmacol Exp Ther 1996;277:945–953.
  • Wells PG, Kim PM, Laposa RR, Nicol CJ, Parman T, Winn LM. Oxidative damage in chemical teratogenesis. Mutat Res 1997;396:65–78.
  • Wells PG, Winn LM. Biochemical toxicology of chemical teratogenesis. Crit Rev Biochem Mol Biol 1996;31: 1–40.
  • Winn LM, Wells PG. Evidence for embryonic prostaglandin H synthase-catalyzed bioactivation and reactive oxygen species-mediated oxidation of cellular macromolecules in phenytoin and benzo[a]pyrene teratogenesis. Free Radic Biol Med 1997;22:607–621.
  • Nicol CJ, Zielenski J, Tsui LC, Wells PG. An embryoprotective role for glucose-6-phosphate dehydrogenase in developmental oxidative stress and chemical teratogenesis. FASEB J 2000; 14:111–127.
  • Filosa S, Fico A, Paglialunga F, Balestrieri M, Crooke A, Verde P, et al. Failure to increase glucose consumption through the pentose-phosphate pathway results in the death of glucose-6-phosphate dehydrogenase gene-deleted mouse embryonic stem cells subjected to oxidative stress. Biochem J 2003;370:935–943.
  • Fico A, Paglialunga F, Cigliano L, Abrescia P, Verde P, Martini G, et al. Glucose-6-phosphate dehydrogenase plays a crucial role in protection from redox-stress-induced apoptosis. Cell Death Differ 2004;11:823–831.
  • Paglialunga F, Fico A, Iaccarino I, Notaro R, Luzzatto L, Martini G, Filosa S. G6PD is indispensable for erythropoiesis after the embryonic-adult hemoglobin switch. Blood 2004;104:3148–3152.
  • Pretsch W, Charles DJ, Merkle S. X-linked glucose-6- phosphate dehydrogenase deficiency in Mus musculus. Biochem Genet 1988;26:89–103.
  • Perez-Crespo M, Ramirez MA, Fernandez-Gonzalez R, Rizos D, Lonergan P, Pintado B, Gutierrez-Adan A. Differential sensitivity of male and female mouse embryos to oxidative induced heat-stress is mediated by glucose-6-phosphate dehydrogenase gene expression. Mol Reprod Dev 2005;72:502–510.
  • Manganelli G, Fico A, Masullo U, Pizzolongo F, Cimmino A, Filosa S. Modulation of the pentose phosphate pathway induces endodermal differentiation in embryonic stem cells. PLoS One 2012;7:e29321.
  • Yang HC, Chen TL, Wu YH, Cheng KP, Lin YH, Cheng ML, et al. Glucose 6-phosphate dehydrogenase deficiency enhances germ cell apoptosis and causes defective embryogenesis in Caenorhabditis elegans. Cell Death Dis 2013;4:e616.
  • Patrinostro X, Carter ML, Kramer AC, Lund TC. A model of glucose-6-phosphate dehydrogenase deficiency in the zebrafish. Exp Hematol 2013;41:697–710.e2.
  • Manganelli G, Masullo U, Passarelli S, Filosa S. Glucose-6-phosphate dehydrogenase deficiency: disadvantages and possible benefits. Cardiovasc Hematol Disord Drug Targets 2013;13:73–82.
  • Tsai KJ, Hung IJ, Chow CK, Stern A, Chao SS, Chiu DT. Impaired production of nitric oxide, superoxide, and hydrogen peroxide in glucose 6-phosphate-dehydrogenase-deficient granulocytes. FEBS Lett 1998;436:411–414.
  • Leopold JA, Cap A, Scribner AW, Stanton RC, Loscalzo J. Glucose-6-phosphate dehydrogenase deficiency promotes endothelial oxidant stress and decreases endothelial nitric oxide bioavailability. FASEB J 2001;15:1771–1773.
  • Zhang Z, Yang Z, Zhu B, Hu J, Liew CW, Zhang Y, et al. Increasing glucose 6-phosphate dehydrogenase activity restores redox balance in vascular endothelial cells exposed to high glucose. PLoS One 2012;7:e49128.
  • Jain M, Brenner DA, Cui L, Lim CC, Wang B, Pimentel DR, et al. Glucose-6-phosphate dehydrogenase modulates cytosolic redox status and contractile phenotype in adult cardiomyocytes. Circ Res 2003;93:e9–e16.
  • Rawat DK, Hecker P, Watanabe M, Chettimada S, Levy RJ, Okada T, et al. Glucose-6-phosphate dehydrogenase and NADPH redox regulates cardiac myocyte L-type calcium channel activity and myocardial contractile function. PLoS One 2012;7:e45365.
  • Jain M, Cui L, Brenner DA, Wang B, Handy DE, Leopold JA, et al. Increased myocardial dysfunction after ischemia- reperfusion in mice lacking glucose-6-phosphate dehydrogenase. Circulation 2004;109:898–903.
  • Hecker PA, Lionetti V, Ribeiro RF Jr, Rastogi S, Brown BH, O’Connell KA, et al. Glucose 6-phosphate dehydrogenase deficiency increases redox stress and moderately accelerates the development of heart failure. Circ Heart Fail 2013;6: 118–126.
  • Hecker PA, Leopold JA, Gupte SA, Recchia FA, Stanley WC. Impact of glucose-6-phosphate dehydrogenase deficiency on the pathophysiology of cardiovascular disease. Am J Physiol Heart Circ Physiol 2013;304:H491–H500.
  • Matsui R, Xu S, Maitland KA, Mastroianni R, Leopold JA, Handy DE, et al. Glucose-6-phosphate dehydrogenase deficiency decreases vascular superoxide and atherosclerotic lesions in apolipoprotein E(−/−) mice. Arterioscler Thromb Vasc Biol 2006;26:910–916.
  • Gupte SA, Kaminski PM, Floyd B, Agarwal R, Ali N, Ahmad M, et al. Cytosolic NADPH may regulate differences in basal Nox oxidase-derived superoxide generation in bovine coronary and pulmonary arteries. Am J Physiol Heart Circ Physiol 2005;288:H13–H21.
  • Serpillon S, Floyd BC, Gupte RS, George S, Kozicky M, Neito V, et al. Superoxide production by NAD(P)H oxidase and mitochondria is increased in genetically obese and hyperglycemic rat heart and aorta before the development of cardiac dysfunction. The role of glucose-6-phosphate dehydrogenase-derived NADPH. Am J Physiol Heart Circ Physiol 2009;297:H153–H162.
  • Kato T, Niizuma S, Inuzuka Y, Kawashima T, Okuda J, Tamaki Y, et al. Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure. Circ Heart Fail 2010;3:420–430.
  • Gupte RS, Vijay V, Marks B, Levine RJ, Sabbah HN, Wolin MS, et al. Upregulation of glucose-6-phosphate dehydrogenase and NAD(P)H oxidase activity increases oxidative stress in failing human heart. J Card Fail 2007;13:497–506.
  • Assad RS, Atik FA, Oliveira FS, Fonseca-Alaniz MH, Abduch MC, Silva GJ, et al. Reversible pulmonary trunk banding. VI: Glucose-6-phosphate dehydrogenase activity in rapid ventricular hypertrophy in young goats.J Thorac Cardiovasc Surg 2011;142:1108–1113, 1113 e1.
  • Gupte SA. Glucose-6-phosphate dehydrogenase: a novel therapeutic target in cardiovascular diseases. Curr Opin Investig Drugs 2008;9:993–1000.
  • Zimmer HG. The oxidative pentose phosphate pathway in the heart: regulation, physiological significance, and clinical implications. Basic Res Cardiol 1992;87:303–316.
  • Zimmer HG. Regulation of and intervention into the oxidative pentose phosphate pathway and adenine nucleotide metabolism in the heart. Mol Cell Biochem 1996; 160–161:101–109.
  • Wolin MS, Ahmad M, Gupte SA. Oxidant and redox signaling in vascular oxygen sensing mechanisms: basic concepts, current controversies, and potential importance of cytosolic NADPH. Am J Physiol Lung Cell Mol Physiol 2005;289:L159–L173.
  • Brewer AC, Mustafi SB, Murray TV, Rajasekaran NS, Benjamin IJ. Reductive stress linked to small HSPs, G6PD, and Nrf2 pathways in heart disease. Antioxid Redox Signal 2013;18:1114–1127.
  • Matsui R, Xu S, Maitland KA, Hayes A, Leopold JA, Handy DE, et al. Glucose-6 phosphate dehydrogenase deficiency decreases the vascular response to angiotensin II. Circulation 2005;112:257–263.
  • Gaskin RS, Estwick D, Peddi R. G6PD deficiency: its role in the high prevalence of hypertension and diabetes mellitus. Ethn Dis 2001;11:749–754.
  • Diaz-Flores M, Ibanez-Hernandez MA, Galvan RE, Gutierrez M, Duran-Reyes G, Medina-Navarro R, et al. Glucose-6-phosphate dehydrogenase activity and NADPH/NADP+ ratio in liver and pancreas are dependent on the severity of hyperglycemia in rat. Life Sci 2006;78:2601–2607.
  • Katare R, Caporali A, Emanueli C, Madeddu P. Benfotiamine improves functional recovery of the infarcted heart via activation of pro-survival G6PD/Akt signaling pathway and modulation of neurohormonal response. J Mol Cell Cardiol 2010;49:625–638.
  • Zhang Z, Liew CW, Handy DE, Zhang Y, Leopold JA, Hu J, et al. High glucose inhibits glucose-6- phosphate dehydrogenase, leading to increased oxidative stress and beta-cell apoptosis. FASEB J 2010;24 :1497–1505.
  • Niazi GA. Glucose-6-phosphate dehydrogenase deficiency and diabetes mellitus. Int J Hematol 1991;54:295–298.
  • Wan GH, Tsai SC, Chiu DT. Decreased blood activity of glucose-6-phosphate dehydrogenase associates with increased risk for diabetes mellitus. Endocrine 2002;19: 191–195.
  • Carette C, Dubois-Laforgue D, Gautier JF, Timsit J. Diabetes mellitus and glucose-6-phosphate dehydrogenase deficiency: from one crisis to another. Diabetes Metab 2011; 37:79–82.
  • Heymann AD, Cohen Y, Chodick G. Glucose-6-phosphate dehydrogenase deficiency and type 2 diabetes. Diabetes Care 2012;35:e58.
  • Cappai G, Songini M, Doria A, Cavallerano JD, Lorenzi M. Increased prevalence of proliferative retinopathy in patients with type 1 diabetes who are deficient in glucose-6-phosphate dehydrogenase. Diabetologia 2011;54: 1539–1542.
  • Park J, Rho HK, Kim KH, Choe SS, Lee YS, Kim JB. Overexpression of glucose-6-phosphate dehydrogenase is associated with lipid dysregulation and insulin resistance in obesity. Mol Cell Biol 2005;25:5146–5157.
  • Mailloux RJ, Harper ME. Glucose regulates enzymatic sources of mitochondrial NADPH in skeletal muscle cells; a novel role for glucose-6-phosphate dehydrogenase. FASEB J 2010;24:2495–2506.
  • Schaffer WT. Effects of growth hormone on lipogenic enzyme activities in cultured rat hepatocytes. Am J Physiol 1985;248:E719–E725.
  • Sun Y. Free radicals, antioxidant enzymes, and carcinogenesis. Free Radic Biol Med 1990;8:583–599.
  • Sulis E.G.-6-P.D. deficiency and cancer. Lancet 1972; 299:1185.
  • Bezwoda WR, Derman DP, See N, Mansoor N. Relative value of oestrogen receptor assay, lactoferrin content, and glucose-6-phosphate dehydrogenase activity as prognostic indicators in primary breast cancer. Oncology 1985;42: 7–12.
  • Kuo W, Lin J, Tang TK. Human glucose-6-phosphate dehydrogenase (G6PD) gene transforms NIH 3T3 cells and induces tumors in nude mice. Int J Cancer 2000;85: 857–864.
  • Forteleoni G, Argiolas L, Farris A, Ferraris AM, Gaetani GF, Meloni T. G6PD deficiency and breast cancer. Tumori 1988;74:665–667.
  • Pisano M, Cocco P, Cherchi R, Onnis R, Cherchi P. Glucose-6-phosphate dehydrogenase deficiency and lung cancer: a hospital based case-control study. Tumori 1991; 77:12–15.
  • Cocco P, Todde P, Fornera S, Manca MB, Manca P, Sias AR. Mortality in a cohort of men expressing the glucose-6- phosphate dehydrogenase deficiency. Blood 1998;91: 706–709.
  • Cheng AJ, Chiu DT, See LC, Liao CT, Chen IH, Chang JT. Poor prognosis in nasopharyngeal cancer patients with low glucose-6-phosphate-dehydrogenase activity. Jpn J Cancer Res 2001;92:576–581.
  • Zhang C, Zhang Z, Zhu Y, Qin S. Glucose-6-phosphate dehydrogenase: a biomarker and potential therapeutic target for cancer. Anticancer Agents Med Chem 2014;14:280–289.
  • Hui L, Hong Y, Jingjing Z, Yuan H, Qi C, Nong Z. HGF suppresses high glucose-mediated oxidative stress in mesangial cells by activation of PKG and inhibition of PKA. Free Radic Biol Med 2010;49:467–473.
  • Xu Y, Zhang Z, Hu J, Stillman IE, Leopold JA, Handy DE, et al. Glucose-6-phosphate dehydrogenase-deficient mice have increased renal oxidative stress and increased albuminuria. FASEB J 2010;24:609–616.
  • Assaf AA, Tabbara KF, el-Hazmi MA. Cataracts in glucose-6-phosphate dehydrogenase deficiency. Ophthalmic Paediatr Genet 1993;14:81–86.
  • Balaji M, Sasikala K, Sundararajulu G, Ravindran T, Sathar ML. Analysis of glucose-6-phosphate dehydrogenase in anterior subcapsular and mixed cataractous lenses. Br J Ophthalmol 1995;79:1124–1125.
  • Wan GH, Lin KK, Tsai SC, Chiu DT. Decreased glucose- 6-phosphate-dehydrogenase (G6PD) activity and risk of senile cataract in Taiwan. Ophthalmic Epidemiol 2006; 13:109–114.
  • Peiretti E, Mandas A, Cocco P, Norfo C, Abete C, Angius F, et al. Glucose-6-phosphate-dehydrogenase deficiency as a risk factor for pterygium. Invest Ophthalmol Vis Sci 2010; 51:2928–2935.
  • Ho HY, Cheng ML, Wang YH, Chiu DT. Flow cytometry for assessment of the efficacy of siRNA. Cytometry A 2006; 69:1054–1061.
  • Lant B, Derry WB. Methods for detection and analysis of apoptosis signaling in the C. elegans germline. Methods 2013;61:174–182.
  • Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 2003; 421:231–237.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.