862
Views
45
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Oxidation and modification of extracellular matrix and its role in disease

, &
Pages 970-989 | Received 26 Feb 2014, Accepted 27 Apr 2014, Published online: 21 Jul 2014

References

  • Comper WD (ed.). Extracellular Matrix. Amsterdam: Harwood Academic Press; 1996.
  • Iozzo RV. Basement membrane proteoglycans: from cellar to ceiling. Nat Rev Mol Cell Biol 2005;6:646–656.
  • Rees MD, Kennett EC, Whitelock JM, Davies MJ. Oxidative damage to extracellular matrix and its role in human pathologies. Free Radic Biol Med 2008;44:1973–2001.
  • Whitelock JM, Murdoch AD, Iozzo RV, Underwood PA. The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem 1996;271:10079–10086.
  • Fu X, Kassim SY, Parks WC, Heinecke JW. Hypochlorous acid oxygenates the cysteine switch domain of pro- matrilysin (MMP-7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase. J Biol Chem 2001;276:41279–41287.
  • Wang Y, Rosen H, Madtes DK, Shao B, Martin TR, Heinecke JW, Fu X. Myeloperoxidase inactivates TIMP-1 by oxidizing its N-terminal cysteine residue: an oxidative mechanism for regulating proteolysis during inflammation. J Biol Chem 2007;282:31826–31834.
  • Whitelock JM, Iozzo RV. Heparan sulfate: a complex polymer charged with biological activity. Chem Rev 2005;105:2745–2764.
  • Murdoch AD, Dodge GR, Cohen I, Tuan RS, Iozzo RV. Primary structure of the human heparan sulfate proteoglycan from basement membrane (HSPG2/perlecan). A chimeric molecule with multiple domains homologous to the low density lipoprotein receptor, laminin, neural cell adhesion molecules, and epidermal growth factor. J Biol Chem 1992;267:8544–8557.
  • Whitelock JM, Melrose J, Iozzo RV. Diverse cell signaling events modulated by perlecan. Biochemistry 2008;47: 11174–11183.
  • Knox S, Fosang AJ, Last K, Melrose J, Whitelock J. Perlecan from human epithelial cells is a hybrid heparan/chondroitin/keratan sulfate proteoglycan. FEBS Lett 2005;579: 5019–5023.
  • Whitelock JM, Graham LD, Melrose J, Murdoch AD, Iozzo RV, Underwood PA. Human perlecan immunopurified from different endothelial cell sources has different adhesive properties for vascular cells. Matrix Biol 1999;18:163–178.
  • Chuang CY, Lord MS, Melrose J, Rees MD, Knox SM, Freeman C, et al. Heparan sulfate-dependent signaling of fibroblast growth factor 18 by chondrocyte-derived perlecan. Biochemistry 2010;49:5524–5532.
  • Hacker U, Nybakken K, Perrimon N. Heparan sulphate proteoglycans: the sweet side of development. Nat Rev Mol Cell Biol 2005;6:530–541.
  • Theocharis AD, Tsolakis I, Hjerpe A, Karamanos NK. Human abdominal aortic aneurysm is characterized by decreased versican concentration and specific downregulation of versican isoform V(0). Atherosclerosis 2001;154: 367–376.
  • Merrilees MJ, Beaumont B, Scott LJ. Comparison of deposits of versican, biglycan and decorin in saphenous vein and internal thoracic, radial and coronary arteries: correlation to patency. Coronary Artery Dis 2001;12:7–16.
  • Ito K, Shinomura T, Zako M, Ujita M, Kimata K. Multiple forms of mouse PG-M, a large chondroitin sulfate proteoglycan generated by alternative splicing. J Biol Chem 1995;270:958–965.
  • Schönherr E, Järveläinen HT, Sandell LJ, Wight TN. Effects of platelet-derived growth factor and transforming growth factor-beta 1 on the synthesis of a large versican-like chondroitin sulfate proteoglycan by arterial smooth muscle cells. J Biol Chem 1991;266:17640–17647.
  • Wight TN, Merrilees MJ. Proteoglycans in atherosclerosis and restenosis: key roles for versican. Circ Res 2004;94: 1158–1167.
  • Wagner WD, Salisbury GJ, Rowe HA. A proposed structure of chondroitin 6-sulfate proteoglycan of human normal and adjacent atherosclerotic plaque. Arteriosclerosis 1986;6: 407–417.
  • Dalferes ER Jr, Radhakrishnamurthy B, Ruiz HA, Berenson GS. Composition of proteoglycans from human atherosclerotic lesions. Exp Mol Pathol 1987;47:363–376.
  • Cherchi GM, Coinu R, Demuro P, Formato M, Sanna G, Tidore M, et al. Structural and functional modifications of human aorta proteoglycans in atherosclerosis. Matrix 1990;10:362–372.
  • Yamakawa T, Bai HZ, Masuda J, Sawa Y, Shirakura R, Ogata J, Matsuda H. Differential expression of proteoglycans biglycan and decorin during neointima formation after stent implantation in normal and atherosclerotic rabbit aortas. Atherosclerosis 2000;152:287–298.
  • Olin-Lewis K, Krauss RM, La Belle M, Blanche PJ, Barrett PHR, Wight TN, Chait A. ApoC-III content of apoB-containing lipoproteins is associated with binding to the vascular proteoglycan biglycan. J Lipid Res 2002;43:1969–1977.
  • O’Brien KD, Lewis K, Fischer JW, Johnson P, Hwang JY, Knopp EA, et al. Smooth muscle cell biglycan overexpression results in increased lipoprotein retention on extracellular matrix: implications for the retention of lipoproteins in atherosclerosis. Atherosclerosis 2004;177:29–35.
  • Kunjathoor VV, Chiu DS, O’Brien KD, LeBoeuf RC. Accumulation of biglycan and perlecan, but not versican, in lesions of murine models of atherosclerosis. Arterioscler Thromb Vasc Biol 2002;22:462–468.
  • Williams KJ. Arterial wall chondroitin sulfate proteoglycans: diverse molecules with distinct roles in lipoprotein retention and atherogenesis. Curr Opin Lipidol 2001;12: 477–487.
  • Radhakrishnamurthy B, Tracy RE, Dalferes ER Jr, Berenson GS. Proteoglycans in human coronary arteriosclerotic lesions. Exp Mol Pathol 1998;65:1–8.
  • Evanko SP, Raines EW, Ross R, Gold LI, Wight TN. Proteoglycan distribution in lesions of atherosclerosis depends on lesion severity, structural characteristics, and the proximity of platelet-derived growth factor and transforming growth factor-beta. Am J Pathol 1998;152:533–546.
  • Strom A, Ahlqvist E, Franzen A, Heinegard D, Hultgardh-Nilsson A. Extracellular matrix components in atherosclerotic arteries of Apo E/LDL receptor deficient mice: an immunohistochemical study. Histol Histopathol 2004;19: 337–347.
  • Kolodgie FD, Burke AP, Farb A, Weber DK, Kutys R, Wight TN, Virmani R. Differential accumulation of proteoglycans and hyaluronan in culprit lesions: insights into plaque erosion. Arterioscler Thromb Vasc Biol 2002;22:1642–1648.
  • Al Haj Zen A, Caligiuri G, Sainz J, Lemitre M, Demerens C, Lafont A. Decorin overexpression reduces atherosclerosis development in apolipoprotein E-deficient mice. Atherosclerosis 2006;187:31–39.
  • Takahashi S, Leiss M, Moser M, Ohashi T, Kitao T, Heckmann D, et al. The RGD motif in fibronectin is essential for development but dispensable for fibril assembly. J Cell Biol 2007;178:167–178.
  • Cho J, Mosher DF. Enhancement of thrombogenesis by plasma fibronectin cross-linked to fibrin and assembled in platelet thrombi. Blood 2006;107:3555–3563.
  • Pankov R, Yamada KM. Fibronectin at a glance. J Cell Sci 2002;115:3861–3863.
  • Allio AE, McKeown-Longo PJ. Extracellular matrix assembly of cell-derived and plasma-derived fibronectins by substrate-attached fibroblasts. J Cell Physiol 1988;135: 459–466.
  • Gui L, Wojciechowski K, Gildner CD, Nedelkovska H, Hocking DC. Identification of the heparin-binding determinants within fibronectin repeat III1: role in cell spreading and growth. J Biol Chem 2006;281:34816–34825.
  • Rozario T, Dzamba B, Weber GF, Davidson LA, DeSimone DW. The physical state of fibronectin matrix differentially regulates morphogenetic movements in vivo. Dev Biol 2009;327:386–398.
  • Wang R, Clark RA, Mosher DF, Ren XD. Fibronectin's central cell-binding domain supports focal adhesion formation and Rho signal transduction. J Biol Chem 2005;280: 28803–28810.
  • Thyberg J, Hultgardh-Nilsson A. Fibronectin and the basement membrane components laminin and collagen type IV influence the phenotypic properties of subcultured rat aortic smooth muscle cells differently. Cell Tissue Res 1994;276:263–271.
  • Aumailley M, Bruckner-Tuderman L, Carter WG, Deutzmann R, Edgar D, Ekblom P, et al. A simplified laminin nomenclature. Matrix Biol 2005;24:326–332.
  • Colognato H, Yurchenco PD. Form and function: the laminin family of heterotrimers. Dev Dyn 2000;218:213–234.
  • Hamill KJ, Kligys K, Hopkinson SB, Jones JCR. Laminin deposition in the extracellular matrix: a complex picture emerges. J Cell Sci 2009;122:4409–4417.
  • Beck K, Hunter I, Engel J. Structure and function of laminin: anatomy of a multidomain glycoprotein. FASEB J 1990;4:148–160.
  • Miner JH, Li C, Mudd JL, Go G, Sutherland AE. Compositional and structural requirements for laminin and basement membranes during mouse embryo implantation and gastrulation. Development 2004;131:2247–2256.
  • Smyth N, Vatansever HS, Murray P, Meyer M, Frie C, Paulsson M, Edgar D. Absence of basement membranes after targeting the LAMC1 gene results in embryonic lethality due to failure of endoderm differentiation. J Cell Biol 1999;144:151–160.
  • Petajaniemi N, Korhonen M, Kortesmaa J, Tryggvason K, Sekiguchi K, Fujiwara H, et al. Localization of laminin alpha4-chain in developing and adult human tissues. J Histochem Cytochem 2002;50:1113–1130.
  • Thyboll J, Kortesmaa J, Cao R, Soininen R, Wang L, Iivanainen A, et al. Deletion of the laminin alpha4 chain leads to impaired microvessel maturation. Mol Cell Biol 2002;22:1194–1202.
  • Miner JH, Cunningham J, Sanes JR. Roles for laminin in embryogenesis: exencephaly, syndactyly, and placentopathy in mice lacking the laminin alpha5 chain. J Cell Biol 1998;143:1713–1723.
  • Scheele S, Nystrom A, Durbeej M, Talts JF, Ekblom M, Ekblom P. Laminin isoforms in development and disease. J Mol Med (Berl) 2007;85:825–836.
  • Maghzal GJ, Krause KH, Stocker R, Jaquet V. Detection of reactive oxygen species derived from the family of NOX NADPH oxidases. Free Radic Biol Med 2012;53: 1903–1918.
  • Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007;87:245–313.
  • Xia Y, Zweier JL. Substrate control of free radical generation from xanthine oxidase in the postischemic heart. J Biol Chem 1995;270:18797–18803.
  • Babior BM, Lambeth JD, Nauseef W. The neutrophil NADPH oxidase. Arch Biochem Biophys 2002;397: 342–344.
  • Ignarro LJ. Nitric oxide: A unique endogenous signaling molecule in vascular biology. Biosci Rep 1999;19:51–71.
  • Radomski MW, Palmer RM, Moncada S. An L-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci U S A 1990;87: 5193–5197.
  • Squadrito GL, Pryor WA. Oxidative chemistry of nitric oxide: The roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic Biol Med 1998;25:392–403.
  • Kone BC. Nitric oxide in renal health and disease. Am J Kidney Dis 1997;30:311–333.
  • Vasquez-Vivar J, Kalyanaraman B, Martasek P. The role of tetrahydrobiopterin in superoxide generation from eNOS: enzymology and physiological implications. Free Radic Res 2003;37:121–127.
  • Huie RE, Padmaja S. The reaction of NO with superoxide. Free Radic Res Commun 1993;18:195–199.
  • Beckmann JS, Ye YZ, Anderson PG, Chen J, Accavitti MA, Tarpey MM, White CR. Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. Biol Chem Hoppe Seyler 1994;375:81–88.
  • Good PF, Hsu A, Werner P, Perl DP, Olanow CW. Protein nitration in Parkinson's disease. J Neuropath Exp Neurol 1998;57:338–342.
  • Smith MA, Harris PLR, Sayre LM, Beckman JS, Perry G. Widespread peroxynitrite-mediated damage in Alzheimer's disease. J Neurosci 1997;17:2653–2657.
  • Radi R, Peluffo G, Alvarez MN, Naviliat M, Cayota A. Unraveling peroxynitrite formation in biological systems. Free Radic Biol Med 2001;30:463–488.
  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 1990;87:1620–1624.
  • Ferrer-Sueta G, Radi R. Chemical biology of peroxynitrite: kinetics, diffusion, and radicals. ACS Chem Biol 2009;4: 161–177.
  • Quijano C, Castro L, Peluffo G, Valez V, Radi R. Enhanced mitochondrial superoxide in hyperglycemic endothelial cells: direct measurements and formation of hydrogen peroxide and peroxynitrite. Am J Physiol Heart Circ Physiol 2007;293:H3404–H3414.
  • Alvarez MN, Trujillo M, Radi R. Peroxynitrite formation from biochemical and cellular fluxes of nitric oxide and superoxide. Methods Enzymol 2002;359:353–366.
  • Carballal S, Bartesaghi S, Radi R. Kinetic and mechanistic considerations to assess the biological fate of peroxynitrite. Biochim Biophys Acta 2013;1840:768–780.
  • Goldstein S, Czapski G. Direct and indirect oxidations by peroxynitrite. Inorg Chem 1995;34:4041–4048.
  • Gerasimov OV, Lymar SV. The yield of hydroxyl radical from the decomposition of peroxynitrous acid. Inorg Chem 1999;38:4317–4321.
  • Radi R, Beckman JS, Bush KM, Freeman BA. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 1991;266:4244–4250.
  • Ferrer-Sueta G, Batinic-Haberle I, Spasojevic I, Fridovich I, Radi R. Catalytic scavenging of peroxynitrite by isomeric Mn(III) N-methylpyridylporphyrins in the presence of reductants. Chem Res Toxicol 1999;12:442–449.
  • Lymar SV, Hurst JK. Radical nature of peroxynitrite reactivity. Chem Res Toxicol 1998;11:714–715.
  • Bonini MG, Radi R, Ferrer-Sueta G, Ferreira AM, Augusto O. Direct EPR detection of the carbonate radical anion produced from peroxynitrite and carbon dioxide. J Biol Chem 1999;274:10802–10806.
  • Denicola A, Freeman BA, Trujillo M, Radi R. Peroxynitrite reaction with carbon dioxide/bicarbonate: kinetics and influence on peroxynitrite-mediated oxidations. Arch Biochem Biophys 1996;333:49–58.
  • Koppenol WH, Moreno JJ, Pryor WA, Ischiropoulos H, Beckman JS. Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol 1992;5: 834–842.
  • Santos CX, Bonini MG, Augusto O. Role of the carbonate radical anion in tyrosine nitration and hydroxylation by peroxynitrite. Arch Biochem Biophys 2000;377:146–152.
  • Szabo C, Ohshima H. DNA damage induced by peroxynitrite: subsequent biological effects. Nitric Oxide 1997;1: 373–385.
  • Moore KP, Darley-Usmar V, Morrow J, Roberts LJ II. Formation of F2-isoprostanes during oxidation of human low-density lipoprotein and plasma by peroxynitrite. Circ Res 1995;77:335–341.
  • Kennett EC, Rees MD, Malle E, Hammer A, Whitelock JM, Davies MJ. Peroxynitrite modifies the structure and function of the extracellular matrix proteoglycan perlecan by reaction with both the protein core and the heparan sulfate chains. Free Radic Biol Med 2010;49:282–293.
  • Kennett EC, Davies MJ. Glycosaminoglycans are fragmented by hydroxyl, carbonate, and nitrogen dioxide radicals in a site-selective manner: implications for peroxynitrite-mediated damage at sites of inflammation. Free Radic Biol Med 2009;47:389–400.
  • Kennett E, Chuang CY, Degendorfer G, Rees MD, Hammer A, Malle E, et al. Extracellular matrix proteoglycans are a major target for peroxynitrite in the artery wall. Free Radic Biol Med 2010;49:S113.
  • Ischiropoulos H. Biological selectivity and functional aspects of protein tyrosine nitration. Biochem Biophys Res Commun 2003;305:776–783.
  • Ischiropoulos H, al-mehdi AB. Peroxynitrite-mediated oxidative protein modifications. FEBS Lett 1995;364:279–282.
  • Leeuwenburgh C, Hardy MM, Hazen SL, Wagner P, Oh-ishi S, Steinbrecher UP, Heinecke JW. Reactive nitrogen intermediates promote low density lipoprotein oxidation in human atherosclerotic intima. J Biol Chem 1997;272:1433–1436.
  • Baldus S, Eiserich JP, Brennan ML, Jackson RM, Alexander CB, Freeman BA. Spatial mapping of pulmonary and vascular nitrotyrosine reveals the pivotal role of myeloperoxidase as a catalyst for tyrosine nitration in inflammatory diseases. Free Radic Biol Med 2002;33:1010–1019.
  • Vadseth C, Souza JM, Thomson L, Seagraves A, Nagaswami C, Scheiner T, et al. Pro-thrombotic state induced by post- translational modification of fibrinogen by reactive nitrogen species. J Biol Chem 2004;279:8820–8826.
  • van der Veen BS, de Winther MP, Heeringa P. Myeloperoxidase: molecular mechanisms of action and their relevance to human health and disease. Antioxid Redox Signal 2009;11:2899–2937.
  • Davies MJ, Hawkins CL, Pattison DI, Rees MD. Mammalian heme peroxidases: from molecular mechainsms to health implications. Antioxid Redox Signal 2008;10:1199–1234.
  • Davies MJ. Myeloperoxidase-derived oxidation: mechanisms of biological damage and its prevention. J Clin Biochem Nutr 2011;48:8–19.
  • Daugherty A, Dunn J, Rateri D, Heinecke J. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest 1994;94: 437–444.
  • Eiserich JP, Baldus S, Brennan ML, Ma W, Zhang C, Tousson A, et al. Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science 2002;296:2391–2394.
  • Hazen SL, Heinecke JW. 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Invest 1997;99:2075–2081.
  • Malle E, Waeg G, Schreiber R, Grone EF, Sattler WS, Grone HJ. Immunohistochemical evidence for the myeloperoxidase/H2O2/halide system in human atherosclerotic lesions – colocalization of myeloperoxidase and hypochlorite- modified proteins. Eur J Biochem 2000;267:4495–4503.
  • Takeshita J, Byun J, Nhan TQ, Pritchard DK, Pennathur S, Schwartz SM, et al. Myeloperoxidase generates 5-chlorouracil in human atherosclerotics tissue: A potential pathway for somatic mutagenesis by macrophages. J Biol Chem 2005;281:3096–3104.
  • Pattison DI, Davies MJ, Hawkins CL. Reactions and reactivity of myeloperoxidase-derived oxidants: differential biological effects of hypochlorous and hypothiocyanous acids. Free Radic Res 2012;46:975–995.
  • Thomas EL, Grisham MB, Jefferson MM. Cytotoxicity of chloramines. Meth Enzymol 1986;132:585–593.
  • Rees MD, Davies MJ. Heparan sulfate degradation via reductive homolysis of its N-chloro derivatives. J Am Chem Soc 2006;128:3085–3097.
  • Hawkins CL, Davies MJ. Hypochlorite-induced damage to proteins: formation of N-centred radicals from lysine residues and their role in protein fragmentation. Biochem J 1998;332:617–625.
  • Hawkins CL, Davies MJ. Hypochlorite-induced oxidation of proteins in plasma: formation of chloramines and nitrogen-centred radicals and their role in protein fragmentation. Biochem J 1999;340:539–548.
  • Pattison DI, O’Reilly RJ, Skaff O, Radom L, Anderson RF, Davies MJ. One-electron reduction of N-chlorinated and N-brominated species is a source of radicals and bromine atom formation. Chem Res Toxicol 2011;24:371–382.
  • Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. 4th ed. Oxford: Oxford University Press; 2007. pp. 1–704.
  • Stadler N, Lindner RA, Davies MJ. Direct detection and quantification of transition metal ions in human atherosclerotic plaques: evidence for the presence of elevated levels of iron and copper. Arterioscler Thromb Vasc Biol 2004;24: 949–954.
  • Fu S, Davies MJ, Stocker R, Dean RT. Evidence for roles of radicals in protein oxidation in advanced human atherosclerotic plaque. Biochem J 1998;333:519–525.
  • Stanley N, Stadler N, Woods AA, Bannon PG, Davies MJ. Concentrations of iron correlate with the extent of protein, but not lipid, oxidation in advanced human atherosclerotic lesions. Free Radic Biol Med 2006;40:1636–1643.
  • Verzijl N, DeGroot J, Oldehinkel E, Bank RA, Thorpe SR, Baynes JW, et al. Age-related accumulation of Maillard reaction products in human articular cartilage collagen. Biochem J 2000;350:381–387.
  • Pattison DI, Rahmanto AS, Davies MJ. Photo-oxidation of proteins. Photochem Photobiol Sci 2012;11:38–53.
  • Lesley J, Hascall VC, Tammi M, Hyman R. Hyaluronan binding by cell surface CD44. J Biol Chem 2000;275: 26967–26975.
  • Landmesser U, Spiekermann S, Dikalov S, Tatge H, Wilke R, Kohler C, et al. Vascular oxidative stress and endothelial dysfunction in patients with chronic heart failure: role of xanthine-oxidase and extracellular superoxide dismutase. Circulation 2002;106:3073–3078.
  • von Sonntag C. Free radical reactions of carbohydrates as studied by radiation techniques. Adv Carbohydr Chem Biochem 1980;37:7–77.
  • Kennett EC, Davies MJ. Degradation of matrix glycosaminoglycans by peroxynitrite/peroxynitrous acid: evidence for a hydroxyl-radical-like mechanism. Free Radic Biol Med 2007;42:1278–1289.
  • Davies MJ, Gilbert BC. Free radical reactions: fragmentation and rearrangements in aqueous solution. Adv Detailed React Mech 1991;1:35–81.
  • Rees MD, Hawkins CL, Davies MJ. Hypochlorite-mediated fragmentation of hyaluronan, chondroitin sulfates, and related N-acetyl glycosamines: evidence for chloramide intermediates, free radical transfer reactions, and site-specific fragmentation. J Am Chem Soc 2003;125:13719–13733.
  • Parsons BJ, Sibanda S, Heyes DJ, Paterson AW. Reaction of superoxide radicals with glycosaminoglycan chloramides: a kinetic study. Free Radic Biol Med 2013;61C:111–118.
  • Sibanda S, Akeel A, Martin SW, Paterson AW, Edge R, Al-Assaf S, Parsons BJ. Efficiencies of fragmentation of glycosaminoglycan chloramides of the extracellular matrix by oxidising and reducing radicals: potential site-specific targets in inflammation?Free Radic Biol Med 2013;65:280–290.
  • Sibanda S, Parsons BJ, Houee-Levin C, Marignier JL, Paterson AW, Heyes DJ. One-electron oxidation and reduction of glycosaminoglycan chloramides: a kinetic study. Free Radic Biol Med 2013;63:126–134.
  • Al-Assaf S, Navaratnam S, Parsons BJ, Phillips GO. Chain scission of hyaluronan by peroxynitrite. Arch Biochem Biophys 2003;411:73–82.
  • Al-Assaf S, Navaratnam S, Parsons BJ, Phillips GO. Chain scission of hyaluronan by carbonate and dichloride radical anions: potential reactive species in inflammation?Free Radic Biol Med 2006;40:2018–2027.
  • Alvarez B, Radi R. Peroxynitrite reactivity with amino acids and proteins. Amino Acids 2003;25:295–311.
  • Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev 2007;87: 315–424.
  • Yamakura F, Taka H, Fujimura T, Murayama K. Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. J Biol Chem 1998;273:14085–14089.
  • Hawkins CL, Davies MJ. Generation and propagation of radical reactions on proteins. Biochim Biophys Acta 2001;1504:196–219.
  • Davies MJ. The oxidative environment and protein damage. Biochim Biophys Acta 2005;1703:93–109.
  • Pattison DI, Davies MJ. Absolute rate constants for the reaction of hypochlorous acid with protein side-chains and peptide bonds. Chem Res Toxicol 2001;14:1453–1464.
  • Pattison DI, Davies MJ. Reactions of myeloperoxidase- derived oxidants with biological substrates: gaining chemical insight into human inflammatory diseases. Curr Med Chem 2006;13:3271–3290.
  • Winterbourn CC, Kettle AJ. Biomarkers of myeloperoxidase-derived hypochlorous acid. Free Radic Biol Med 2000;29:403–409.
  • Herold S. Nitrotyrosine, dityrosine, and nitrotryptophan formation from metmyoglobin, hydrogen peroxide, and nitrite. Free Radic Biol Med 2004;36:565–579.
  • Stocker R, Keaney JF Jr. Role of oxidative modifications in atherosclerosis. Physiol Rev 2004;84:1381–1478.
  • Woods AA, Linton SM, Davies MJ. Detection of HOCl-mediated protein oxidation products in the extracellular matrix of human atherosclerotic plaques. Biochem J 2003;370:729–735.
  • Nakashima Y, Fujii H, Sumiyoshi S, Wight TN, Sueishi K. Early human atherosclerosis: accumulation of lipid and proteoglycans in intimal thickenings followed by macrophage infiltration. Arterioscler Thromb Vasc Biol 2007;27: 1159–1165.
  • Kinsella MG, Tran PK, Weiser-Evans MC, Reidy M, Majack RA, Wight TN. Changes in perlecan expression during vascular injury – role in the inhibition of smooth muscle cell proliferation in the late lesion. Arterioscler Thromb Vasc Biol 2003;23:608–614.
  • Geary RL, Wong JM, Rossini A, Schwartz SM, Adams LD. Expression profiling identifies 147 genes contributing to a unique primate neointimal smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol 2002;22:2010–2016.
  • Theocharis AD, Tsolakis I, Tsegenidis T, Karamanos NK. Human abdominal aortic aneurysm is closely related with compositional and specific structural modifications at the glycosaminoglycan level. Atherosclerosis 1999;145: 359–368.
  • Lord MS, Chuang CY, Melrose J, Davies MJ, Iozzo RV, Whitelock JM. The role of vascular-derived perlecan in modulating cell adhesion, proliferation and growth factor signaling. Matrix Biol 2014; doi: 10.1016/j.matbio.2014.01.016
  • Srinivasan SR, Vijayagopal P, Eberle K, Radhakrishnamurthy B, Berenson GS. Low-density lipoprotein binding affinity of arterial wall proteoglycans: characteristics of a chondroitin sulfate proteoglycan subfraction. Biochim Biophys Acta 1989;1006:159–166.
  • Tran PK, Agardh HE, Tran-Lundmark K, Ekstrand J, Roy J, Henderson B, et al. Reduced perlecan expression and accumulation in human carotid atherosclerotic lesions. Atherosclerosis 2007;190:264–270.
  • Pillarisetti S, Paka L, Obunike JC, Berglund L, Goldberg IJ. Subendothelial retention of lipoprotein (a). Evidence that reduced heparan sulfate promotes lipoprotein binding to subendothelial matrix. J Clin Invest 1997;100:867–874.
  • Tran PK, Tran-Lundmark K, Soininen R, Tryggvason K, Thyberg J, Hedin U. Increased intimal hyperplasia and smooth muscle cell proliferation in transgenic mice with heparan sulfate–deficient perlecan. Circ Res 2004;94: 550–558.
  • Kinsella MG, Irvin C, Reidy MA, Wight TN. Removal of heparan sulfate by heparinase treatment inhibits FGF-2- dependent smooth muscle cell proliferation in injured rat carotid arteries. Atherosclerosis 2004;175:51–57.
  • Tran-Lundmark K, Tran PK, Paulsson-Berne G, Fridén V, Soininen R, Tryggvason K, et al. Heparan sulfate in perlecan promotes mouse atherosclerosis: roles in lipid permeability, lipid retention, and smooth muscle cell proliferation. Circ Res 2008;103:43–52.
  • Barash U, Cohen-Kaplan V, Dowek I, Sanderson RD, Ilan N, Vlodavsky I. Proteoglycans in health and disease: new concepts for heparanase function in tumor progression and metastasis. FEBS J 2010;277:3890–3903.
  • Okada Y, Yamada S, Toyoshima M, Dong J, Nakajima M, Sugahara K. Structural recognition by recombinant human heparanase that plays critical roles in tumor metastasis – hierarchical sulfate groups with differential effects and the essential target disulfated trisaccharide sequence. J Biol Chem 2002;277:42488–42495.
  • Peterson SB, Liu J. Multi-faceted substrate specificity of heparanase. Matrix Biol 2013;32:223–227.
  • Baker AB, Chatzizisis YS, Beigel R, Jonas M, Stone BV, Coskun AU, et al. Regulation of heparanase expression in coronary artery disease in diabetic, hyperlipidemic swine. Atherosclerosis 2010;213:436–442.
  • Österholm C, Folkersen L, Lengquist M, Pontén F, Renné T, Li JP, Hedin U. Increased expression of heparanase in symptomatic carotid atherosclerosis. Atherosclerosis 2013;226: 67–73.
  • Vlodavsky I, Blich M, Li JP, Sanderson RD, Ilan N. Involvement of heparanase in atherosclerosis and other vessel wall pathologies. Matrix Biol 2013;32:241–251.
  • Blich M, Golan A, Arvatz G, Sebbag A, Shafat I, Sabo E, et al. Macrophage activation by heparanase is mediated by TLR-2 and TLR-4 and associates with plaque progression. Arterioscler Thromb Vasc Biol 2013;33:e56–e65.
  • Chen G, Wang D, Vikramadithyan R, Yagyu H, Saxena U, Pillarisetti S, Goldberg IJ. Inflammatory cytokines and fatty acids regulate endothelial cell heparanase expression. Biochemistry 2004;43:4971–4977.
  • Woods AA, Davies MJ. Evidence for HOCl-mediated oxidation of extracellular matrix proteins in human atherosclerotic plaques. Clin Exp Pharmacol Physiol 2003;30:A16.
  • Jones GT, Jiang F, McCormick SP, Dusting GJ. Elastic lamina defects are an early feature of aortic lesions in the apolipoprotein E knockout mouse. J Vasc Res 2005;42: 237–246.
  • Chuang CY, Degendorfer G, Hammer A, Whitelock JM, Malle E, Davies MJ. Oxidation modifies the structure and function of the extracellular matrix generated by human coronary artery endothelial cells. Biochem J 2014;459: 313–322.
  • Kennett EC, Davies MJ. Degradation of extracellular matrix by peroxynitrite/peroxynitrous acid. Free Radic Biol Med 2008;45:716–725.
  • Zabucchi G, Soranzo M, Menegazzi R, Bertoncin P, Nardon E, Patriarca P. Uptake of human eosinophil peroxidase and myeloperoxidase by cells involved in the inflammatory process. J Histochem Cytochem 1989;37:499–508.
  • Baldus S, Eiserich JP, Mani A, Castro L, Figueroa M, Chumley P, et al. Endothelial transcytosis of myeloperoxidase confers specificity to vascular ECM proteins as targets of tyrosine nitration. J Clin Invest 2001;108:1759–1770.
  • Woods AA, Davies MJ. Fragmentation of extracellular matrix by hypochlorous acid. Biochem J 2003;376: 219–227.
  • Rees MD, Whitelock JM, Malle E, Chuang CY, Iozzo RV, Nilasaroya A, Davies MJ. Myeloperoxidase-derived oxidants selectively disrupt the protein core of the heparan sulfate proteoglycan perlecan. Matrix Biol 2010;29:63–73.
  • McGowan SE. Mechanisms of extracellular matrix proteoglycan degradation by human neutrophils. Am J Respir Cell Mol Biol 1990;2:271–279.
  • Klebanoff SJ, Kinsella MG, Wight TN. Degradation of endothelial cell matrix heparan sulfate proteoglycan by elastase and the myeloperoxidase-H2O2-chloride system. Am J Pathol 1993;143:907–917.
  • Vissers MC, Thomas C. Hypochlorous acid disrupts the adhesive properties of subendothelial matrix. Free Radic Biol Med 1997;23:401–411.
  • Sugiyama S, Kugiyama K, Aikawa M, Nakamura S, Ogawa H, Libby P. Hypochlorous acid, a macrophage product, induces endothelial apoptosis and tissue factor expression: involvement of myeloperoxidase-mediated oxidant in plaque erosion and thrombogenesis. Arterioscler Thromb Vasc Biol 2004;24:1309–1314.
  • McGowan SE, Murray JJ. Direct effects of neutrophil oxidants on elastase-induced extracellular matrix proteolysis. Am Rev Resp Dis 1987;135:1286–1293.
  • Vissers MCM, Winterbourn CC. The effect of oxidants on neutrophil-mediated degradation of glomerular basement membrane collagen. Biochim Biophys Acta 1986;889: 277–286.
  • Weiss SJ, Regiani S. Neutrophils degrade subendothelial matrices in the presence of alpha-1-proteinase inhibitor. Cooperative use of lysosomal proteinases and oxygen metabolites. J Clin Invest 1984;73:1297–1303.
  • Cantor JO, Shteyngart B, Cerreta JM, Ma SR, Turino GM. Synergistic effect of hydrogen peroxide and elastase on elastic fiber injury in vitro. Exp Biol Med 2006;231:107–111.
  • Tiku ML, Shah R, Allison GT. Evidence linking chondrocyte lipid peroxidation to cartilage matrix protein degradation – possible role in cartilage aging and the pathogenesis of osteoarthritis. J Biol Chem 2000;275:20069–20076.
  • Wang K, Xu SJ, Zhang FH, Wang CX, Chang SY, Zhang JY, et al. Free-radicals induced abnormal chondrocytes, matrix and mineralization – a new concept of Kaschin-Becks disease. Chin Med J 1991;104:307–312.
  • Riedle B, Kerjaschki D. Reactive oxygen species cause direct damage of Engelbreth-Holm-Swarm matrix. Am J Pathol 1997;151:215–231.
  • Raats CJ, Bakker MA, van den Born J, Berden JH. Hydroxyl radicals depolymerize glomerular heparan sulfate in vitro and in experimental nephrotic syndrome. J Biol Chem 1997;272:26734–26741.
  • Pazos MDC, Nader HB. Effect of photodynamic therapy on the extracellular matrix and associated components. Braz J Med Biol Res 2007;40:1025–1035.
  • LaMuraglia GM, Adili F, Karp SJ, Statius van Eps RG, Watkins MT. Photodynamic therapy inactivates extracellular matrix-basic fibroblast growth factor: insights to its effect on the vascular wall. J Vasc Surg 1997;26:294–301.
  • Elgawish A, Glomb M, Friedlander M, Monnier VM. Involvement of hydrogen peroxide in collagen cross-linking by high glucose in vitro and in vivo. J Biol Chem 1996;271:12964–12971.
  • Fu MX, Knecht KJ, Thorpe SR, Baynes JW. Role of oxygen in cross-linking and chemical modification of collagen by glucose. Diabetes 1992;41:42–48.
  • Fu MX, Wells-knecht KJ, Blackledge JA, Lyons TJ, Thorpe SR, Baynes JW. Glycation, glycoxidation, and cross-linking of collagen by glucose. Kinetics, mechanisms, and inhibition of late stages of the Maillard Reaction. Diabetes 1994;43:676–683.
  • Sajithlal GB, Chithra P, Chandrakasan G. An in vitro study on the role of metal catalyzed oxidation in glycation and crosslinking of collagen. Mol Cell Biochem 1999;194: 257–263.
  • Weiss SJ, Curnutte JT, Regiani S. Neutrophil-mediated solubilization of the subendothelial matrix: oxidative and nonoxidative mechanisms of proteolysis used by normal and chronic granulomatous disease phagocytes. J Immunol 1986;136:636–641.
  • Grone HJ, Grone EF, Malle E. Immunohistochemical detection of hypochlorite-modified proteins in glomeruli of human membranous glomerulonephritis. Lab Invest 2002;82:5–14.
  • Laurent TC, Laurent UB, Fraser JR. Functions of hyaluronan. Ann Rheum Dis 1995;54:429–432.
  • Horton MR, Boodoo S, Powell JD. NF-κB activation mediates the cross-talk between extracellular matrix and interferon-γ (IFN-γ) leading to enhanced monokine induced by IFN-γ (MIG) expression in macrophages. J Biol Chem 2002;277:43757–43762.
  • Takahashi Y, Li L, Kamiryo M, Asteriou T, Moustakas A, Yamashita H, Heldin P. Hyaluronan fragments induce endothelial cell differentiation in a CD44- and CXCL1/GRO1-dependent manner. J Biol Chem 2005;280: 24195–24204.
  • Taylor KR, Trowbridge JM, Rudisill JA, Termeer CC, Simon JC, Gallo RL. Hyaluronan fragments stimulate endothelial recognition of injury through TLR4. J Biol Chem 2004;279:17079–17084.
  • Ibrahim S, Ramamurthi A. Hyaluronic acid cues for functional endothelialization of vascular constructs. J Tissue Eng Regen Med 2008;2:22–32.
  • Cuff CA, Kothapalli D, Azonobi I, Chun S, Zhang Y, Belkin R, et al. The adhesion receptor CD44 promotes atherosclerosis by mediating inflammatory cell recruitment and vascular cell activation. J Clin Invest 2001;108:1031–1040.
  • Kramsch DM, Franzblau C, Hollander W. Components of the protein-lipid complex of arterial elastin: their role in the retention of lipid in atherosclerotic lesions. Adv Exp Medic Biol 1974;43:193–210.
  • McKee CM, Lowenstein CJ, Horton MR, Wu J, Bao C, Chin BY, et al. Hyaluronan fragments induce nitric-oxide synthase in murine macrophages through a nuclear factor kB-dependent mechanism. J Biol Chem 1997;272:8013–8018.
  • VanTeeffelen JW, Brands J, Stroes ES, Vink H. Endothelial glycocalyx: sweet shield of blood vessels. Trends Cardiovasc Med 2007;17:101–105.
  • van Golen RF, Reiniers MJ, Vrisekoop N, Zuurbier CJ, Olthof PB, van Rheenen J, et al. The mechanisms and physiological relevance of glycocalyx degradation in hepatic ischemia/reperfusion injury. Antioxid Redox Signal 2014; doi: 10.1089/ars.2013.5751
  • Nieuwdorp M, van Haeften TW, Gouverneur M, Mooij HL, van Lieshout MHP, Levi M, et al. Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes 2006;55:480–486.
  • Czarnowska E, Karwatowska-Prokopczuk E. Ultrastructural demonstration of endothelial glycocalyx disruption in the reperfused rat-heart – involvement of oxygen-free radicals. Basic Res Cardiol 1995;90:357–364.
  • Kurzelewski M, Czarnowska E, Beresewicz A. Superoxide- and nitric oxide-derived species mediate endothelial dysfunction, endothelial glycocalyx disruption, and enhanced neutrophil adhesion in the post-ischemic guinea-pig heart. J Physiol Pharmacol 2005;56:163–178.
  • Vissers MC, Day WA, Winterbourn CC. Neutrophils adherent to a nonphagocytosable surface (glomerular basement membrane) produce oxidants only at the site of attachment. Blood 1985;66:161–166.
  • Vissers MC, Winterbourn CC, Hunt JS. Degradation of glomerular basement-membrane by human-neutrophils in vitro. Biochim Biophys Acta 1984;804:154–160.
  • Janusz MJ, Doherty NS. Degradation of cartilage matrix proteoglycan by human neutrophils involves both elastase and cathepsin-G. J Immunol 1991;146:3922–3928.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.