257
Views
12
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Posttranslational protein modifications by reactive nitrogen and chlorine species and strategies for their prevention and elimination

, , &
Pages 1267-1284 | Received 13 Apr 2014, Accepted 07 Aug 2014, Published online: 09 Sep 2014

References

  • Walsh CT, Garneau-Tsodikova S, Gatto GJ. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed Engl 2005;44: 7342–7372.
  • Golubev AG.[The other side of metabolism]. Biokhimiia 1996;61:2018–2039.
  • Domingues RM, Domingues P, Melo T, Pérez-Sala D, Reis A, Spickett CM. Lipoxidation adducts with peptides and proteins: deleterious modifications or signaling mechanisms? J Proteomics 2013;92:110–131.
  • Spickett CM, Pitt AR. Protein oxidation: role in signalling and detection by mass spectrometry. Amino Acids 2012;42: 5–21.
  • Bartosz G. Non-specific reactions: molecular basis for ageing. J Theor Biol 1981;91:233–235.
  • Miller RT. Nox and r-Nox: effects on drug metabolism. Curr Drug Metabol 2004;5:535–542.
  • Ferrer-Sueta G, Radi R. Chemical biology of peroxynitrite: kinetics, diffusion, and radicals. ACS Chem Biol 2009;4: 161–177.
  • Gladwin MT, Kim-Shapiro DB. Vascular biology: nitric oxide caught in traffic. Nature 2012;491:344–345.
  • Mikkelsen RB, Wardman P. Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene 2003;22:5734–5754.
  • Ignarro LJ, Buga GM, Wei LH, Bauer PM, Wu G, del Soldato P. Role of the arginine-nitric oxide pathway in the regulation of vascular smooth muscle cell proliferation. Proc Natl Acad Sciences USA 2001;98:4202–4208.
  • Forstermann U, Munzel T. Endothelial nitric oxide synthase in vascular disease: From marvel to menace. Circulation 2006;113:1708–1714.
  • Ischiropoulos H. Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species. Arch Biochem Biophys 1998;356:1–11.
  • Marshall HE, Merchant K, Stamler JS. Nitrosation and oxidation in the regulation of gene expression. FASEB J 2000;14:1889–1900.
  • Nuriel T, Hansler A, Gross SS. Protein nitrotryptophan: formation, significance and identification. J Proteomics 2011;74:2300–2312.
  • Ischiropoulos H:Biological selectivity and functional aspects of protein tyrosine nitration. Biochem Biophys Res Commun 2003;305:776–783.
  • Souza JM, Daikhin E, Yudkoff M, Raman CS, Ischiropoulos H. Factors determining the selectivity of protein tyrosine nitration. Arch Biochem Biophys 1999;371:169–178.
  • Peluffo G, Radi R. Biochemistry of protein tyrosine nitration in cardiovascular pathology. Cardiovasc Res 2007;75:291–302.
  • Liu JS, Zhao ML, Brosnan CF, Lee SC. Expression of inducible nitric oxide synthase and nitrotyrosine in multiple sclerosis lesions. Am J Pathol 2001;158:2057–2066.
  • Moriel P, Abdalla DS. Nitrotyrosine bound to beta- vldl-apoproteins: a biomarker of peroxynitrite formation in experimental atherosclerosis. Bioche Biophys Res Comm 1997;232:332–335.
  • Sucu N, Unlu A, Tamer L, Aytacoglu B, Ercan B, Dikmengil M, Atik U. 3-nitrotyrosine in atherosclerotic blood vessels. Clin Chem Lab Med 2003;41:23–25.
  • Good PF, Werner P, Hsu A, Olanow CW, Perl DP. Evidence of neuronal oxidative damage in alzheimer's disease. Am J Pathol 1996;149:21–28.
  • Yokoyama H, Takagi S, Watanabe Y, Kato H, Araki T. Role of reactive nitrogen and reactive oxygen species against mptp neurotoxicity in mice. J Neur Transm 2008;115: 831–842.
  • Yamakura F, Ikeda K. Modification of tryptophan and tryptophan residues in proteins by reactive nitrogen species. Nitric Oxide 2006;14:152–161.
  • Ischiropoulos H, Al-Mehdi AB. Peroxynitrite-mediated oxidative protein modifications. FEBS Lett 1995;364:279–282.
  • Yamakura F, Matsumoto T, Fujimura T, Taka H, Murayama K, Imai T, Uchida K. Modification of a single tryptophan residue in human cu,zn-superoxide dismutase by peroxynitrite in the presence of bicarbonate. Biochim Biophys Acta 2001;1548:38–46.
  • Casella L, Monzani E, Roncone R, Nicolis S, Sala A, De Riso A. Formation of reactive nitrogen species at biologic heme centers: A potential mechanism of nitric oxide-dependent toxicity. Environ Health Perspect 2002;110:709–711.
  • Gunther MR, Sturgeon BE, Mason RP. Nitric oxide trapping of the tyrosyl radical-chemistry and biochemistry. Toxicology 2002;177:1–9.
  • Davies MJ. Myeloperoxidase-derived oxidation: Mechanisms of biological damage and its prevention. J Clin Biochem Nutr 2011;48:8–19.
  • Augusto O, Bonini MG, Amanso AM, Linares E, Santos CC, De Menezes SL. Nitrogen dioxide and carbonate radical anion: Two emerging radicals in biology. Free Radic Biol Med 2002;32:841–859.
  • Brennan ML, Wu W, Fu X, Shen Z, Song W, Frost H, et al. A tale of two controversies: Defining both the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase-deficient mice, and the nature of peroxidase-generated reactive nitrogen species. J Biol Chem 2002;277:17415–17427.
  • Eiserich JP, Hristova M, Cross CE, Jones AD, Freeman BA, Halliwell B, van der Vliet A. Formation of nitric oxide- derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature 1998;391:393–397.
  • Xia Y, Zweier JL. Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proc Natl Acad Sci USA 1997;94:6954–6958.
  • Goldstein S, Czapski G. The reaction of NO. with O2.- and H2O2: a pulse radiolysis study. Free Radic Biol Med 1995; 19:505–510.
  • Radi R. Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci USA 2004;101:4003–4008.
  • Surmeli NB, Litterman NK, Miller AF, Groves JT. Peroxynitrite mediates active site tyrosine nitration in manganese superoxide dismutase. Evidence of a role for the carbonate radical anion. J Am Chem Soc 2010;132:17174–17185.
  • Pryor WA, Jin X, Squadrito GL. One- and two-electron oxidations of methionine by peroxynitrite. Proc Natl Acad Sci USA 1994;91:11173–11177.
  • Berlett BS, Levine RL, Stadtman ER. Carbon dioxide stimulates peroxynitrite-mediated nitration of tyrosine residues and inhibits oxidation of methionine residues of glutamine synthetase: Both modifications mimic effects of adenylylation. Proc Natl Acad Sci USA 1998;95:2784–2789.
  • Meli R, Nauser T, Latal P, Koppenol WH. Reaction of peroxynitrite with carbon dioxide: intermediates and determination of the yield of CO3*- and NO2*. J Biol Inorg Chem 2002;7:31–36.
  • Radi R. Peroxynitrite, a stealthy biological oxidant. J Biol Chem 2013;288:26464–26472.
  • Tien M, Berlett BS, Levine RL, Chock PB, Stadtman ER. Peroxynitrite-mediated modification of proteins at physiological carbon dioxide concentration: pH dependence of carbonyl formation, tyrosine nitration, and methionine oxidation. Proc Natl Acad Sci USA 1999;96:7809–7814.
  • Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nature Cell Biol 2001;3: 193–197.
  • Smallwood HS, Lourette NM, Boschek CB, Bigelow DJ, Smith RD, Pasa-Tolic L, Squier TC. Identification of a denitrase activity against calmodulin in activated macrophages using high-field liquid chromatography–fticr mass spectrometry. Biochemistry 2007;46:10498–10505.
  • Stamler JS, Simon DI, Osborne JA, Mullins ME, Jaraki O, Michel T, et al. S-nitrosylation of proteins with nitric oxide: Synthesis and characterization of biologically active compounds. Proc Natl Acad Sci USA 1992;89:444–448.
  • Fomenko DE, Xing W, Adair BM, Thomas DJ, Gladyshev VN. High-throughput identification of catalytic redox-active cysteine residues. Science 2007;315:387–389.
  • Go YM, Duong DM, Peng J, Jones DP. Protein cysteines map to functional networks according to steady-state level of oxidation. J Proteom Bioinf 2011;4:196–209.
  • Marino SM, Gladyshev VN. Analysis and functional prediction of reactive cysteine residues. J Biol Chem 2012; 287:4419–4425.
  • Heck DE. *NO, RSNO, ONOO-, NO+, *NOO, Nox– dynamic regulation of oxidant scavenging, nitric oxide stores, and cyclic gmp-independent cell signaling. Antioxid Redox Signal 2001;3:249–260.
  • Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS. Protein S-nitrosylation: purview and parameters. Nature Rev Mol Cell Biol 2005;6:150–166.
  • Kettenhofen NJ, Broniowska KA, Keszler A, Zhang Y, Hogg N. Proteomic methods for analysis of s-nitrosation. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 851:152–159.
  • Goldstein S, Squadrito GL, Pryor WA, Czapski G. Direct and indirect oxidations by peroxynitrite, neither involving the hydroxyl radical. Free Radic Biol Med 1996;21:965–974.
  • Wink DA, Nims RW, Darbyshire JF, Christodoulou D, Hanbauer I, Cox GW, et al. Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH. Insights into the fate and physiological effects of intermediates generated in the NO/O2 reaction. Chem Res Toxicol 1994;7:519–525.
  • Nedospasov A, Rafikov R, Beda N, Nudler E. An autocatalytic mechanism of protein nitrosylation. Proc Natl Acad Sci USA 2000;97:13543–13548.
  • Liu X, Miller MJ, Joshi MS, Thomas DD, Lancaster JR Jr. Accelerated reaction of nitric oxide with O2 within the hydrophobic interior of biological membranes. Proc Natl Acad Sci USA 1998;95:2175–2179.
  • Guikema B, Lu Q, Jourd'heuil D. Chemical considerations and biological selectivity of protein nitrosation: Implications for NO-mediated signal transduction. Antioxid Redox Signal 2005;7:593–606.
  • Bethke PC, Libourel IG, Jones RL. Nitric oxide reduces seed dormancy in arabidopsis. J Exp Bot 2006;57:517–526.
  • Keszler A, Zhang Y, Hogg N. Reaction between nitric oxide, glutathione, and oxygen in the presence and absence of protein: How are S-nitrosothiols formed? Free Radic Biol Med 2010;48:55–64.
  • Vanin AF, Malenkova IV, Serezhenkov VA. Iron catalyzes both decomposition and synthesis of S-nitrosothiols: optical and electron paramagnetic resonance studies. Nitric Oxide 1997;1:191–203.
  • Stubauer G, Giuffre A, Sarti P. Mechanism of S-nitrosothiol formation and degradation mediated by copper ions. J Biol Chem 1999;274:28128–28133.
  • Brenman JE, Chao DS, Gee SH, McGee AW, Craven SE, Santillano DR, et al. Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1- syntrophin mediated by PDZ domains. Cell 1996;84:757–767.
  • Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, Snyder SH. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 1991;351:714–718.
  • Lafon-Cazal M, Pietri S, Culcasi M, Bockaert J. NMDA-dependent superoxide production and neurotoxicity. Nature 1993;364:535–537.
  • Galati G, Chan T, Wu B, O’Brien PJ. Glutathione-dependent generation of reactive oxygen species by the peroxidase-catalyzed redox cycling of flavonoids. Chem Res Toxicol 1999;12:521–525.
  • Arnelle DR, Stamler JS. NO+, NO and NO− donation by S-nitrosothiols: implications for regulation of physiological functions by S-nitrosylation and acceleration of disulfide formation. Arch Biochem Biophys 1995;318:279–285.
  • Kornberg MD, Sen N, Hara MR, Juluri KR, Nguyen JV, Snowman AM, et al. GAPDH mediates nitrosylation of nuclear proteins. Nature Cell Biol 2010;12:1094–1100.
  • Nakamura T, Wang L, Wong CC, Scott FL, Eckelman BP, Han X, et al. Transnitrosylation of XIAP regulates caspase-dependent neuronal cell death. Mol Cell 2010;39: 184–195.
  • Butterfield DA, Kanski J. Brain protein oxidation in age- related neurodegenerative disorders that are associated with aggregated proteins. Mech Ageing Dev 2001;122:945–962.
  • Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidative stress. Nature Revi Drug Discov 2004;3:205–214.
  • Lee JR, Kim JK, Lee SJ, Kim KP. Role of protein tyrosine nitration in neurodegenerative diseases and atherosclerosis. Arch Pharm Res 2009;32:1109–1118.
  • Luth HJ, Holzer M, Gartner U, Staufenbiel M, Arendt T. Expression of endothelial and inducible NOS-isoforms is increased in Alzheimer's disease, in app23 transgenic mice and after experimental brain lesion in rat: evidence for an induction by amyloid pathology. Brain Res 2001;913: 57–67.
  • Sen N, Snyder SH. Neurotrophin-mediated degradation of histone methyltransferase by s-nitrosylation cascade regulates neuronal differentiation. Proc Natl Acad Sci USA 2011;108:20178–20183.
  • Keller JN, Kindy MS, Holtsberg FW, St Clair DK, Yen HC, Germeyer A, et al. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: Suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci 1998;18:687–697.
  • MacMillan-Crow LA, Crow JP, Kerby JD, Beckman JS, Thompson JA. Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. Proc Natl Acad Sci USA 1996;93:11853–11858.
  • Castro L, Eiserich JP, Sweeney S, Radi R, Freeman BA. Cytochrome c: A catalyst and target of nitrite-hydrogen peroxide-dependent protein nitration. Arch Biochem Biophys 2004;421:99–107.
  • Pani G, Koch OR, Galeotti T. The p53-p66shc-manganese superoxide dismutase (MnSOD) network: A mitochondrial intrigue to generate reactive oxygen species. Int J Biochem Cell Biol 2009;41:1002–1005.
  • Weber D, Kneschke N, Grimm S, Bergheim I, Breusing N, Grune T. Rapid and sensitive determination of protein- nitrotyrosine by ELISA: Application to human plasma. Free Radic Res 2012;46:276–285.
  • Beal MF. Oxidatively modified proteins in aging and disease. Free Radic Biol Med 2002;32:797–803.
  • Radi R, Peluffo G, Alvarez MN, Naviliat M, Cayota A. Unraveling peroxynitrite formation in biological systems. Free Radic Biol Med 2001;30:463–488.
  • Halliwell B. Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 2001;18:685–716.
  • Castro L, Rodriguez M, Radi R. Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. J Biol Chem 1994;269:29409–29415.
  • Berlett BS, Friguet B, Yim MB, Chock PB, Stadtman ER. Peroxynitrite-mediated nitration of tyrosine residues in escherichia coli glutamine synthetase mimics adenylylation: Relevance to signal transduction. Proc Natl Acad Sci USA 1996;93:1776–1780.
  • Gow AJ, Duran D, Malcolm S, Ischiropoulos H. Effects of peroxynitrite-induced protein modifications on tyrosine phosphorylation and degradation. FEBS Lett 1996;385: 63–66.
  • Grune T, Blasig IE, Sitte N, Roloff B, Haseloff R, Davies KJ. Peroxynitrite increases the degradation of aconitase and other cellular proteins by proteasome. J Biol Chem 1998; 273:10857–10862.
  • Souza JM, Choi I, Chen Q, Weisse M, Daikhin E, Yudkoff M, et al. Proteolytic degradation of tyrosine nitrated proteins. Arch Biochem Biophys 2000;380:360–366.
  • Görg B, Qvartskhava N, Voss P, Grune T, Haussinger D, Schliess F. Reversible inhibition of mammalian glutamine synthetase by tyrosine nitration. FEBS Lett 2007;581: 84–90.
  • Nakamura T, Tu S, Akhtar MW, Sunico CR, Okamoto S, Lipton SA. Aberrant protein S-nitrosylation in neurodegenerative diseases. Neuron 2013;78:596–614.
  • Hara MR, Agrawal N, Kim SF, Cascio MB, Fujimuro M, Ozeki Y, et al. S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nature Cell Biol 2005;7:665–674.
  • Majmudar JD, Martin BR. Strategies for profiling native S-nitrosylation. Biopolymers 2014;101:173–179.
  • Stamler JS, Hess DT. Nascent nitrosylases. Nature Cell Biol 2010;12:1024–1026.
  • Sen N, Hara MR, Kornberg MD, Cascio MB, Bae BI, Shahani N, et al. Nitric oxide-induced nuclear GAPDH activates p300/cbp and mediates apoptosis. Nature Cell Biol 2008;10:866–873.
  • Wallace MN, Geddes JG, Farquhar DA, Masson MR. Nitric oxide synthase in reactive astrocytes adjacent to beta-amyloid plaques. Exp Neurol 1997;144:266–272.
  • Cho DH, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, Lipton SA. S-nitrosylation of drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science 2009;324:102–105.
  • Wang X, Su B, Lee HG, Li X, Perry G, Smith MA, Zhu X. Impaired balance of mitochondrial fission and fusion in Alzheimer's disease. J Neurosci 2009;29:9090–9103.
  • Kapadia MR, Eng JW, Jiang Q, Stoyanovsky DA, Kibbe MR. Nitric oxide regulates the 26S proteasome in vascular smooth muscle cells. Nitric Oxide 2009;20:279–288.
  • Hu RG, Sheng J, Qi X, Xu Z, Takahashi TT, Varshavsky A. The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators. Nature 2005; 437:981–986.
  • Rubinsztein DC, Marino G, Kroemer G. Autophagy and aging. Cell 2011;146:682–695.
  • Sarkar S, Korolchuk VI, Renna M, Imarisio S, Fleming A, Williams A, et al. Complex inhibitory effects of nitric oxide on autophagy. Mol Cell 2011;43:19–32.
  • Costa-Mattioli M, Monteggia LM. mTor complexes in neurodevelopmental and neuropsychiatric disorders. Nature Neurosc 2013;16:1537–1543.
  • Lee WL, Huang JY, Shyur LF. Phytoagents for cancer management: Regulation of nucleic acid oxidation, Ros, and related mechanisms. Oxidat Med Cell Longev 2013; 2013:925804.
  • Masumoto H, Sies H. The reaction of ebselen with peroxynitrite. Chem Res Toxicol 1996;9:262–267.
  • Sies H, Sharov VS, Klotz LO, Briviba K. Glutathione peroxidase protects against peroxynitrite-mediated oxidations. A new function for selenoproteins as peroxynitrite reductase. J Biol Chem 1997;272:27812–27817.
  • Briviba K, Tamler R, Klotz LO, Engman L, Cotgreave IA, Sies H. Protection by organotellurium compounds against peroxynitrite-mediated oxidation and nitration reactions. Biochem Pharmacol 1998;55:817–823.
  • Arteel GE, Franken S, Kappler J, Sies H. Binding of selenoprotein P to heparin: characterization with surface plasmon resonance. Biol Chem 2000;381:265–268.
  • Klotz LO, Sies H. Defenses against peroxynitrite: Selenocompounds and flavonoids. Toxicol Lett 2003; 140–141:125–132.
  • Arteel GE, Schroeder P, Sies H. Reactions of peroxynitrite with cocoa procyanidin oligomers. J Nutr 2000;130: S2100–S2104.
  • Schroeder P, Klotz LO, Sies H. Amphiphilic properties of (-)-epicatechin and their significance for protection of cells against peroxynitrite. Biochem Biophys Res Comm 2003;307:69–73.
  • van Acker SA, Tromp MN, Haenen GR, van der Vijgh WJ, Bast A. Flavonoids as scavengers of nitric oxide radical. Biochem Biophys Res Comm 1995;214:755–759.
  • Robak J, Gryglewski RJ. Flavonoids are scavengers of superoxide anions. Biochem Pharmacol 1988;37:837–841.
  • Haenen GR, Paquay JB, Korthouwer RE, Bast A. Peroxynitrite scavenging by flavonoids. Biochem Biophys Res Comm 1997;236:591–593.
  • Pannala AS, Rice-Evans CA, Halliwell B, Singh S. Inhibition of peroxynitrite-mediated tyrosine nitration by catechin polyphenols. Biochem Biophys Res Comm 1997;232: 164–168.
  • Kamisaki Y, Wada K, Bian K, Balabanli B, Davis K, Martin E, et al. An activity in rat tissues that modifies nitrotyrosine-containing proteins. Proc Natl Acad Sci USA 1998;95:11584–11589.
  • Irie Y, Saeki M, Kamisaki Y, Martin E, Murad F. Histone H1.2 is a substrate for denitrase, an activity that reduces nitrotyrosine immunoreactivity in proteins. Proc Natl Acad Sci USA 2003;100:5634–5639.
  • Deeb RS, Nuriel T, Cheung C, Summers B, Lamon BD, Gross SS, Hajjar DP. Characterization of a cellular denitrase activity that reverses nitration of cyclooxygenase. Am J Physiol Heart Circ Physiol 2013;305:H687–698.
  • Kuo WN, Kanadia RN, Shanbhag VP, Toro R. Denitration of peroxynitrite-treated proteins by ‘protein nitratases’ from rat brain and heart. Mol Cell Biochem 1999;201: 11–16.
  • Kang M, Akbarali HI. Denitration of l-type calcium channel. FEBS Lett 2008;582:3033–3036.
  • Li Y, Qi J, Liu K, Li B, Wang H, Jia J. Peroxynitrite-induced nitration of cyclooxygenase-2 and inducible nitric oxide synthase promotes their binding in diabetic angiopathy. Mol Med 2010;16:335–342.
  • Suarez I, Bodega G, Fernandez B. Glutamine synthetase in brain: Effect of ammonia. Neurochem Int 2002;41:123–142.
  • Desjardins P, Rao KV, Michalak A, Rose C, Butterworth RF. Effect of portacaval anastomosis on glutamine synthetase protein and gene expression in brain, liver and skeletal muscle. Metabol Brain Dis 1999;14:273–280.
  • Schliess F, Gorg B, Fischer R, Desjardins P, Bidmon HJ, Herrmann A, et al. Ammonia induces mk-801-sensitive nitration and phosphorylation of protein tyrosine residues in rat astrocytes. FASEB J 2002;16:739–741.
  • Grune T, Klotz LO, Gieche J, Rudeck M, Sies H. Protein oxidation and proteolysis by the nonradical oxidants singlet oxygen or peroxynitrite. Free Radic Biol Med 2001;30: 1243–1253.
  • Hyun DH, Lee M, Halliwell B, Jenner P. Proteasomal inhibition causes the formation of protein aggregates containing a wide range of proteins, including nitrated proteins. J Neurochem 2003;86:363–373.
  • Furtmüller PG, Zederbauer M, Jantschko W, Helm J, Bogner M, Jakopitsch C, Obinger C. Active site structure and catalytic mechanisms of human peroxidases. Arch Biochem Biophys 2006;445:199–213.
  • Malle E, Furtmüller PG, Sattler W, Obinger C. Myeloperoxidase: A target for new drug development? Br J Pharmacol 2007;152:838–854.
  • Morrison M, Schonbaum GR. Peroxidase-catalyzed halogenation. Annu Rev Biochem 1976;45:861–888.
  • Wang J, Slungaard A. Role of eosinophil peroxidase in host defense and disease pathology. Arch Biochem Biophys 2006;445:256–260.
  • Klebanoff SJ. Myeloperoxidase. Proc Assoc Am Physicians 1999;111:383–389.
  • Winterbourn CC, Vissers MC, Kettle AJ. Myeloperoxidase. Curr Opin Hematol 2000;7:53–58.
  • Storkey C, Pattison DI, White JM, Schiesser CH, Davies MJ. Preventing protein oxidation with sugars: scavenging of hypohalous acids by 5-selenopyranose and 4-selenofuranose derivatives. Chem Res Toxicol 2012;25:2589–2599.
  • Yap YW, Whiteman M, Cheung NS. Chlorinative stress: An under appreciated mediator of neurodegeneration? Cell Signal 2007;19:219–228.
  • Sharma S, Singh AK, Kaushik S, Sinha M, Singh RP, Sharma P, et al. Lactoperoxidase: Structural insights into the function, ligand binding and inhibition. Int J Biochem Mol Biol 2013;4:108–128.
  • van Dalen CJ, Winterbourn CC, Senthilmohan R, Kettle AJ. Nitrite as a substrate and inhibitor of myeloperoxidase. Implications for nitration and hypochlorous acid production at sites of inflammation. J Biol Chem 2000;275:11638–11644.
  • Zhang C, Patel R, Eiserich JP, Zhou F, Kelpke S, Ma W, et al. Endothelial dysfunction is induced by proinflammatory oxidant hypochlorous acid. Am J Physiol Heart Circ Physiol 2001;281:H1469–1475.
  • Zhang C, Yang J, Jacobs JD, Jennings LK. Interaction of myeloperoxidase with vascular nad(p)h oxidase-derived reactive oxygen species in vasculature: Implications for vascular diseases. Am J Physiol Heart Circ Physiol 2003;285:H2563–H2572.
  • Sivey JD, Howell SC, Bean DJ, McCurry DL, Mitch WA, Wilson CJ. Role of lysine during protein modification by HOCl and HOBr: Halogen-transfer agent or sacrificial antioxidant? Biochemistry 2013;52:1260–1271.
  • Hawkins CL, Pattison DI, Davies MJ. Hypochlorite-induced oxidation of amino acids, peptides and proteins. Amino Acids 2003;25:259–274.
  • Hawkins CL, Pattison DI, Stanley NR, Davies MJ. Tryptophan residues are targets in hypothiocyanous acid-mediated protein oxidation. Biochem J 2008;416:441–452.
  • Pattison DI, Hawkins CL, Davies MJ. What are the plasma targets of the oxidant hypochlorous acid? A kinetic modeling approach. Chem Res Toxicol 2009;22:807–817.
  • Skaff O, Pattison DI, Davies MJ. Hypothiocyanous acid reactivity with low-molecular-mass and protein thiols: Absolute rate constants and assessment of biological relevance. Biochem J 2009;422:111–117.
  • Prütz WA. Interactions of hypochlorous acid with pyrimidine nucleotides, and secondary reactions of chlorinated pyrimidines with GSH, NADH, and other substrates. Arch Biochem Biophys 1998;349 183–191.
  • Peskin AV, Turner R, Maghzal GJ, Winterbourn CC, Kettle AJ. Oxidation of methionine to dehydromethionine by reactive halogen species generated by neutrophils. Biochemistry 2009;48:10175–10182.
  • Szuchman-Sapir AJ, Pattison DI, Ellis NA, Hawkins CL, Davies MJ, Witting PK. Hypochlorous acid oxidizes methionine and tryptophan residues in myoglobin. Free Radic Biol Med 2008;45:789–798.
  • Fu X, Kao JL, Bergt C, Kassim SY, Huq NP, D’Avignon A, et al. Oxidative cross-linking of tryptophan to glycine restrains matrix metalloproteinase activity: Specific structural motifs control protein oxidation. J Biol Chem 2004;279: 6209–6212.
  • Mouls L, Silajdzic E, Haroune N, Spickett CM, Pitt AR. Development of novel mass spectrometric methods for identifying hocl-induced modifications to proteins. Proteomics 2009;9:1617–1631.
  • Coker MS, Hu WP, Senthilmohan ST, Kettle AJ. Pathways for the decay of organic dichloramines and liberation of antimicrobial chloramine gases. Chem Res Toxicol 2008; 21:2334–2343.
  • Gottardi W, Debabov D, Nagl M. N-chloramines, a promising class of well-tolerated topical anti-infectives. Antimicrob Agents Chemother 2013;57:1107–1114.
  • Bernofsky C. Nucleotide chloramines and neutrophil- mediated cytotoxicity. FASEB J 1991;5:295–300.
  • Pattison DI, Davies MJ. Reactions of myeloperoxidase- derived oxidants with biological substrates: Gaining chemical insight into human inflammatory diseases. Curr Med Chem 2006;13:3271–3290.
  • van Dalen CJ, Whitehouse MW, Winterbourn CC, Kettle AJ. Thiocyanate and chloride as competing substrates for myeloperoxidase. Biochem J 1997;327:487–492.
  • Winterbourn CC, Kettle AJ. Biomarkers of myeloperoxidase-derived hypochlorous acid. Free Radic Biol Med 2000;29: 403–409.
  • Spalteholz H, Panasenko OM, Arnhold J. Formation of reactive halide species by myeloperoxidase and eosinophil peroxidase. Arch Biochem Biophys 2006;445:225–234.
  • Senthilmohan R, Kettle AJ. Bromination and chlorination reactions of myeloperoxidase at physiological concentrations of bromide and chloride. Arch Biochem Biophys 2006; 445:235–244.
  • Gorudko IV, Grigorieva DV, Shamova EV, Kostevich VA, Sokolov AV, Mikhalchik EV, et al. Hypohalous acid- modified human serum albumin induces neutrophil nadph oxidase activation, degranulation, and shape change. Free Radic Biol Med 2014;68:326–334.
  • Akong-Moore K, Chow OA, von Köckritz-Blickwede M, Nizet V. Influences of chloride and hypochlorite on neutrophil extracellular trap formation. PLoS One 2012;7:e42984.
  • Parker H, Winterbourn CC. Reactive oxidants and myeloperoxidase and their involvement in neutrophil extracellular traps. Front Immunol 2012;3:424.
  • Parker H, Dragunow M, Hampton MB, Kettle AJ, Winterbourn CC. Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus. J Leukoc Biol 2012;92: 841–849.
  • Almyroudis NG, Grimm MJ, Davidson BA, Röhm M, Urban CF, Segal BH. Netosis and NADPH oxidase: At the intersection of host defense, inflammation, and injury. Front Immunol 2013;4:45.
  • Röhm M, Grimm MJ, D’Auria AC, Almyroudis NG, Segal BH, Urban CF. NADPH oxidase promotes neutrophil extracellular trap formation in pulmonary aspergillosis. Infect Immun 2014;82:1766–1777.
  • Arazna M, Pruchniak MP, Zycinska K, Demkow U. Neutrophil extracellular trap in human diseases. Adv Exp Med Biol 2013;756:1–8.
  • Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science 2004;303:1532–1535.
  • Isokawa M, Kanamori T, Funatsu T, Tsunoda M. Analytical methods involving separation techniques for determination of low-molecular-weight biothiols in human plasma and blood. J Chromatogr B Analyt Technol Biomed Life Sci 2014;964:103–115.
  • Temple A, Yen TY, Gronert S. Identification of specific protein carbonylation sites in model oxidations of human serum albumin. J Am Soc Mass Spectrom 2006;17:1172–1180.
  • Azizova OA, Aseychev AV, Beckman EM, Moskvina SN, Skotnikova OI, Smolina NV, et al. Studies of oxidant-induced changes in albumin transport function with a fluorescent probe K-35. Effect of hypochlorite. Bull Exp Biol Med 2012;152:712–716.
  • Bruschi M, Candiano G, Santucci L, Ghiggeri GM. Oxidized albumin. The long way of a protein of uncertain function. Biochim Biophys Acta 2013;1830:5473–5479.
  • Witko-Sarsat V, Gausson V, Descamps-Latscha B. Are advanced oxidation protein products potential uremic toxins? Kidney Int Suppl 2003:S11–S14.
  • Liu SX, Hou FF, Guo ZJ, Nagai R, Zhang WR, Liu ZQ, et al. Advanced oxidation protein products accelerate atherosclerosis through promoting oxidative stress and inflammation. Arterioscler Thromb Vasc Biol 2006;26:1156–1162.
  • Marsche G, Semlitsch M, Hammer A, Frank S, Weigle B, Demling N, et al. Hypochlorite-modified albumin colocalizes with rage in the artery wall and promotes MCP-1 expression via the RAGE-Erk1/2 MAP-kinase pathway. FASEB J 2007;21:1145–1152.
  • Maitra D, Abdulhamid I, Diamond MP, Saed GM, Abu-Soud HM. Melatonin attenuates hypochlorous acid-mediated heme destruction, free iron release, and protein aggregation in hemoglobin. J Pineal Res 2012;53:198–205.
  • Summers FA, Forsman Quigley A, Hawkins CL. Identification of proteins susceptible to thiol oxidation in endothelial cells exposed to hypochlorous acid and N-chloramines. Biochem Biophys Res Commun 2012;425:157–161.
  • Ghibu S, Richard C, Vergely C, Zeller M, Cottin Y, Rochette L. Antioxidant properties of an endogenous thiol: Alpha-lipoic acid, useful in the prevention of cardiovascular diseases. J Cardiovasc Pharmacol 2009;54:391–398.
  • Bani D, Bencini A. Developing ROS scavenging agents for pharmacological purposes: Recent advances in design of manganese-based complexes with anti-inflammatory and anti- nociceptive activity. Curr Med Chem 2012;19:4431–4444.
  • Boots AW, Haenen GR, Bast A. Health effects of quercetin: From antioxidant to nutraceutical. Eur J Pharmacol 2008;585:325–337.
  • Magalhães LM, Segundo MA, Reis S, Lima JL. Methodological aspects about in vitro evaluation of antioxidant properties. Anal Chim Acta 2008;613:1–19.
  • Ude C, Schubert-Zsilavecz M, Wurglics M. Ginkgo biloba extracts: A review of the pharmacokinetics of the active ingredients. Clin Pharmacokinet 2013;52:727–749.
  • Cai X, Fang Z, Dou J, Yu A, Zhai G. Bioavailability of quercetin: Problems and promises. Curr Med Chem 2013; 20:2572–2582.
  • Milbury PE. Flavonoid intake and eye health. J Nutr Gerontol Geriatr 2012;31:254–268.
  • Mignet N, Seguin J, Chabot GG. Bioavailability of polyphenol liposomes: A challenge ahead. Pharmaceutics 2013;5: 457–471.
  • Bonifácio BV, da Silva PB, Dos MA, Ramos S, Negri KM, Bauab TM, Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: A review. Int J Nanomedicine 2014;9:1–15.
  • Alvarez B, Radi R. Peroxynitrite reactivity with amino acids and proteins. Amino Acids 2003;25:295–311.
  • Reiter RJ, Tan DX, Sainz RM, Mayo JC, Lopez-Burillo S. Melatonin: Reducing the toxicity and increasing the efficacy of drugs. J Pharm Pharmacol 2002;54:1299–1321.
  • Forman HJ, Davies KJ, Ursini F. How do nutritional antioxidants really work: Nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radic Biol Med 2014;66:24–35.
  • Makino J, Nakanishi R, Kamiya T, Hara H, Ninomiya M, Koketsu M, Adachi T. Luteolin suppresses the differentiation of THP-1 cells through the inhibition of NOX2 mRNA expression and the membrane translocation of p47phox. J Nat Prod 2013;76:1285–1290.
  • Lim TG, Jung SK, Kim JE, Kim Y, Lee HJ, Jang TS, Lee KW. NADPHh oxidase is a novel target of delphinidin for the inhibition of uvb-induced mmp-1 expression in human dermal fibroblasts. Exp Dermatol 2013;22:428–430.
  • Umamaheswari M, Madeswaran A, Asokkumar K. Virtual screening analysis and in-vitro xanthine oxidase inhibitory activity of some commercially available flavonoids. Iran J Pharm Res 2013;12:317–323.
  • Murakami Y, Kawata A, Koh T, Seki Y, Tamura S, Katayama T, Fujisawa S. Inhibitory effects of tocopherols on expression of the cyclooxygenase-2 gene in raw264.7 cells stimulated by lipopolysaccharide, tumor necrosis factor-α or porphyromonas gingivalis fimbriae. In Vivo 2013;27:451–458.
  • Soubhye J, Aldib I, Elfving B, Gelbcke M, Furtmüller PG, Podrecca M, et al. Design, synthesis, and structure-activity relationship studies of novel 3-alkylindole derivatives as selective and highly potent myeloperoxidase inhibitors. J Med Chem 2013;56:3943–3958.
  • Forbes LV, Sjögren T, Auchère F, Jenkins DW, Thong B, Laughton D, et al. Potent reversible inhibition of myeloperoxidase by aromatic hydroxamates. J Biol Chem 2013;288:36636–36647.
  • Kettle AJ, Winterbourn CC. Mechanism of inhibition of myeloperoxidase by anti-inflammatory drugs. Biochem Pharmacol 1991;41:1485–1492.
  • Koelsch M, Mallak R, Graham GG, Kajer T, Milligan MK, Nguyen LQ, et al. Acetaminophen (paracetamol) inhibits myeloperoxidase-catalyzed oxidant production and biological damage at therapeutically achievable concentrations. Biochem Pharmacol 2010;79:1156–1164.
  • Nève J, Parij N, Moguilevsky N. Inhibition of the myeloperoxidase chlorinating activity by non-steroidal anti-inflammatory drugs investigated with a human recombinant enzyme. Eur J Pharmacol 2001;417:37–43.
  • Soyer Z, Bas M, Pabuccuoglu A, Pabuccuoglu V. Synthesis of some 2(3h)-benzoxazolone derivatives and their in-vitro effects on human leukocyte myeloperoxidase activity. Arch Pharm (Weinheim) 2005;338:405–410.
  • Zhang H, Jing X, Shi Y, Xu H, Du J, Guan T, et al. N-acetyl lysyltyrosylcysteine amide inhibits myeloperoxidase, a novel tripeptide inhibitor. J Lipid Res 2013;54:3016–3029.
  • Shibatani T, Ward WF. Sodium dodecyl sulfate (SDS) activation of the 20s proteasome in rat liver. Arch Biochem Biophys 1995;321:160–166.
  • Tidén AK, Sjögren T, Svensson M, Bernlind A, Senthilmohan R, Auchère F, et al. 2-thioxanthines are mechanism-based inactivators of myeloperoxidase that block oxidative stress during inflammation. J Biol Chem 2011;286:37578–37589.
  • Rees MD, Bottle SE, Fairfull-Smith KE, Malle E, Whitelock JM, Davies MJ. Inhibition of myeloperoxidase-mediated hypochlorous acid production by nitroxides. Biochem J 2009;421:79–86.
  • Queiroz RF, Vaz SM, Augusto O. Inhibition of the chlorinating activity of myeloperoxidase by tempol: Revisiting the kinetics and mechanisms. Biochem J 2011;439:423–431.
  • Kajer TB, Fairfull-Smith KE, Yamasaki T, Yamada KI, Fu S, Bottle SE, et al. Inhibition of myeloperoxidase- and neutrophil-mediated oxidant production by tetraethyl and tetramethyl nitroxides. Free Radic Biol Med 2014;70C: 96–105.
  • de Nishimura FC, de Almeida AC, Ratti BA, Ueda-Nakamura T, Nakamura CV, Ximenes VF, de Silva SO. Antioxidant effects of quercetin and naringenin are associated with impaired neutrophil microbicidal activity. Evid Based Complement Alternat Med 2013;2013:795916.
  • Crozier A, Jaganath IB, Clifford MN. Dietary phenolics: Chemistry, bioavailability and effects on health. Nat Prod Rep 2009;26:1001–1043.
  • Zeraik ML, Ximenes VF, Regasini LO, Dutra LA, Silva DH, Fonseca LM, et al. 4’-aminochalcones as novel inhibitors of the chlorinating activity of myeloperoxidase. Curr Med Chem 2012;19:5405–5413.
  • Chapman AL, Mocatta TJ, Shiva S, Seidel A, Chen B, Khalilova I, et al. Ceruloplasmin is an endogenous inhibitor of myeloperoxidase. J Biol Chem 2013;288: 6465–6477.
  • Soubhye J, Aldib I, Prévost M, Elfving B, Gelbcke M, Podrecca M, et al. Hybrid molecules inhibiting myeloperoxidase activity and serotonin reuptake: A possible new approach of major depressive disorders with inflammatory syndrome. J Pharm Pharmacol 2014;66:1122–1132.
  • Patterson EK, Fraser DD, Capretta A, Potter RF, Cepinskas G. Carbon monoxide-releasing molecule 3 inhibits myeloperoxidase (MPO) and protects against mpo-induced vascular endothelial cell activation/dysfunction. Free Radic Biol Med 2014;70:167–173.
  • Dunlop RA, Brunk UT, Rodgers KJ. Oxidized proteins: Mechanisms of removal and consequences of accumulation. IUBMB Life 2009;61:522–527.
  • Grune T, Merker K, Sandig G, Davies KJ. Selective degradation of oxidatively modified protein substrates by the proteasome. Biochem Biophys Res Commun 2003;305: 709–718.
  • Grune T, Jung T, Merker K, Davies KJ. Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease. Int J Biochem Cell Biol 2004;36: 2519–2530.
  • Watanabe N, Yamada S. Activation of 20S proteasomes from spinach leaves by fatty acids. Plant Cell Physiol 1996; 37:147–151.
  • Kisselev AF, Kaganovich D, Goldberg AL. Binding of hydrophobic peptides to several non-catalytic sites promotes peptide hydrolysis by all active sites of 20S proteasomes. Evidence for peptide-induced channel opening in the alpha-rings. J Biol Chem 2002;277:22260–22270.
  • Wilk S, Chen WE. Synthetic peptide-based activators of the proteasome. Mol Biol Rep 1997;24:119–124.
  • Yamada S, Sato K, Uritani M, Tokumoto T, Ishikawa K. Activation of the 20S proteasome of xenopus oocytes by cardiolipin: Blockage of the activation of trypsin-like activity by the substrate. Biosci Biotechnol Biochem 1998;62:1264–1266.
  • Ruiz de Mena I, Mahillo E, Arribas J, Castaño JG. Kinetic mechanism of activation by cardiolipin (diphosphatidylglycerol) of the rat liver multicatalytic proteinase. Biochem J 1993;296:93–97.
  • Katsiki M, Chondrogianni N, Chinou I, Rivett AJ, Gonos ES. The olive constituent oleuropein exhibits proteasome stimulatory properties in vitro and confers life span extension of human embryonic fibroblasts. Rejuvenation Res 2007;10:157–172.
  • Huang L, Ho P, Chen CH. Activation and inhibition of the proteasome by betulinic acid and its derivatives. FEBS Lett 2007;581:4955–4959.
  • Deng H. Multiple roles of Nrf2-Keap1 signaling: Regulation of development and xenobiotic response using distinct mechanisms. Fly (Austin) 2014;8:7–12.
  • Sandberg M, Patil J, D’Angelo B, Weber SG, Mallard C. Nrf2-regulation in brain health and disease: Implication of cerebral inflammation. Neuropharmacology 2013;79C: 298–306.
  • Buelna-Chontal M, Zazueta C. Redox activation of Nrf2 & Nf-κb: A double end sword? Cell Signal 2013;25: 2548–2557.
  • Houghton CA, Fassett RG, Coombes JS. Sulforaphane: Translational research from laboratory bench to clinic. Nutr Rev 2013;71:709–726.
  • Chapple SJ, Siow RC, Mann GE. Crosstalk between Nrf2 and the proteasome: Therapeutic potential of Nrf2 inducers in vascular disease and aging. Int J Biochem Cell Biol 2012;44:1315–1320.
  • Magesh S, Chen Y, Hu L. Small molecule modulators of keap1-nrf2-are pathway as potential preventive and therapeutic agents. Med Res Rev 2012;32:687–726.
  • Dinkova-Kostova AT. The role of sulfhydryl reactivity of small molecules for the activation of the Keap1/Nrf2 pathway and the heat shock response. Scientifica (Cairo) 2012;2012:606104.
  • Kim H, Moon JY, Ahn KS, Cho SK. Quercetin induces mitochondrial mediated apoptosis and protective autophagy in human glioblastoma U373MG cells. Oxid Med Cell Longev 2013;2013:596496.
  • Kim HS, Montana V, Jang HJ, Parpura V, Kim JA. Epigallocatechin gallate (EGCG) stimulates autophagy in vascular endothelial cells: A potential role for reducing lipid accumulation. J Biol Chem 2013;288:22693–22705.
  • Liu W, Otkur W, Li L, Wang Q, He H, Ye Y, et al. Autophagy induced by silibinin protects human epidermoid carcinoma A431 cells from uvb-induced apoptosis. J Photochem Photobiol B 2013;123:23–31.
  • Choe YJ, Ha TJ, Ko KW, Lee SY, Shin SJ, Kim HS. Anthocyanins in the black soybean (Glycine max l.) protect U2OS cells from apoptosis by inducing autophagy via the activation of adenosyl monophosphate-dependent protein kinase. Oncol Rep 2012;28:2049–2056.
  • Pietrocola F, Mariño G, Lissa D, Vacchelli E, Malik SA, Niso-Santano M, et al. Pro-autophagic polyphenols reduce the acetylation of cytoplasmic proteins. Cell Cycle 2012;11:3851–3860.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.