269
Views
12
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Role of angiotensin II and oxidative stress in renal inflammation by hypernatremia: Benefits of atrial natriuretic peptide, losartan, and tempol

, , &
Pages 383-396 | Received 01 Oct 2014, Accepted 07 Jan 2015, Published online: 06 Mar 2015

References

  • Sinke AP, Deen PM. The physiological implication of novel proteins in systemic osmoregulation. FASEB J 2011;25: 3279–3289.
  • Oliveira GR, Franci CR, Rodovalho GV, Oliveira GR, Franci CR, Rodovalho GV, et al. Alterations in the central vasopressin and oxytocin axis after lesion of a brain osmotic sensory region. Brain Res Bull 2004;63:515–520.
  • Kültz D. Osmotic stress sensing and signalling in animals. FEBS J 2007;274:5781.
  • Cuka S, Dvornik S, Drazenović K, Mihić J. Evaluation of the Dade Behring Dimension RxL clinical chemistry analyzer. Clin Lab 2001;47:35–40.
  • Dimeski G, Barnett RJ. Effects of total plasma protein concentration on plasma sodium, potassium and chloride measurements by an indirect ion selective electrode measuring system. Crit Care Resusc 2005;7:12–15.
  • Guyton AC, Coleman TG, Cowley AV, Scheel KW, Manning RD, Norman RA. Arterial pressure regulation. Overriding dominance of the kidneys in long-term regulation and in hypertension. Am J Med 1972;52:584–594.
  • Weiss ML, Claassen DE, Hirai T, Kenney MJ. Nonuniform sympathetic nerve responses to intravenous hypertonic saline infusion. J Auton Nerv Syst 1996;57:109–115.
  • Hatzinikolaou P, Gavras H, Brunner HR, Gavras I. Role of vasopressin, catecholamines, and plasma volume in hypertonic saline-induced hypertension. Am J Physiol 1981;240:H827–H831.
  • Pedrino GR, Maurino I, de Almeida Colombari DS, Cravo SL. Role of catecholaminergic neurones of the caudal ventrolateral medulla in cardiovascular responses induced by acute changes in circulating volume in rats. Exp Physiol 2006;91:995–1005.
  • Mulvany MJ. Small artery remodelling in hypertension. Basic Clin Pharmacol Toxicol 2012;110:49–55.
  • Touyz RM, Briones AM. Reactive oxygen species and vascular biology: implications in human hypertension. Hypertens Res 2011;34:5–14.
  • Paravicini TM, Touyz RM. Redox signaling in hypertension. Cardiovasc Res 2006;71:247–258.
  • Martinez-Lemus LA, Hill MA, Meininger GA. The plastic nature of the vascular wall: a continuum of remodeling events contributing to control of arteriolar diameter and structure. Physiology [Bethesda] 2009;24:45–57.
  • Pokaharel M, Block CA. Dysnatremia in the ICU. Curr Opin Crit Care 2011;17:581–593.
  • Pavlevsky PM, Bhargrath R, Greenberg A. Hypernatremia in hospitalized patients. Ann Int Med 1996;124:197–203.
  • Darmon M, Timsit JF, Francais A, Nguile-Makao M, Adrie C, Cohen Y, et al. Association between hypernatremia acquired in the ICU and mortality: a cohort study. Nephrol Dial Transplant 2010;25:2510–2515.
  • Borque AW. Central mechanisms of osmosensation and systemic osmoregulation. Nat Rev Neurosci 2008;9: 519–531.
  • Sharif-Naeini R, Ciura S, Zhang Z, Bourque CW. Contribution of TRPV channels to osmosensory channels to osmosensory transduction, thirst, and vasopressin release. Kidney Int 2008;73:811–815.
  • Adrogue HJ, Madias NE. Hypernatremia. N Eng J Med 2000;342:1493–1499.
  • Namdar T, Siemers F, Stollwerck PL, Stang FH, Mailänder P, Lange T. Increased mortality in hypernatremic burned patients. Ger Med Sci 2010;8:Doc.11.
  • Brezis M, Heyman SN, Epstein FH. Determinants of intrarenal oxygenation. II. Hemodynamic effects. Am J Physiol 1994;267:F1063–F1068.
  • Brezis M, Rosen S. Hypoxia of the renal medulla. Its implications for disease. N Engl J Med 1995;332:647–655.
  • Epstein FH. Oxygen and renal metabolism. Kidney Int 1997;51:381–385.
  • Tian N, Moore RS, Braddy S, Rose RA, Gu JW, Hughson MD, Manning RD Jr. Interactions between oxidative stress and inflammation in salt-sensitive hypertension. Am J Physiol Heart Circ Physiol 2007;293:H3388–H3395.
  • Silva GB, Ortiz PA, Hong NJ, Garvin JL. Superoxide stimulates NaCl absorption in the thick ascending limb via activation of protein kinase C. Hypertension 2006;48: 467–472.
  • Lai EY, Luo Z, Onozato ML, Rudolph EH, Solis G, Jose PA, et al. Effects of the antioxidant drug tempol on renal oxygenation in mice with reduced renal mass. Am J Physiol Renal Physiol 2012;303:F64–F74.
  • Nangaku M, Rosenberger C, Heyman SN, Eckardt KU. Regulation of hypoxia-inducible factor in kidney disease. Clin Exp Pharmacol Physiol 2013;40:148–157.
  • Schödel J, Klanke B, Weidemann A, Buchholz B, Bernhardt W, Bertog M, et al. HIF-prolyl hydroxylases in the rat kidney: physiologic expression patterns and regulation in acute kidney injury. Am J Pathol. 2009;174:1663–1674.
  • Lokmic Z, Musyoka J, Hewitson TD, Darby IA. Hypoxia and hypoxia signalling in tissue repair and fibrosis. Int Rev Cell Mol Biol. 2012;296:139–185.
  • Krishnamoorthy S, Jin R, Cai Y, Maddipati KR, Nie D, Pagès G, et al. 12-Lipoxygenase and the regulation of hypoxia-inducible factor in prostate cancer cell. Exp Cell Res 2010;316:1706–1715.
  • Jobin A, Sartor RB. The I kappa B/NF-kappa B system: a key determinant of mucosal inflammation and protection. Am J Physiol Cell Physiol 2000;278:C451–C462.
  • Eisner V, Criollo A, Quiroga C, Olea-Azar C, Santibanez JF, Troncoso R, et al. Hyperosmotic stress-dependent NFkappaB activation is regulated by reactive oxygen species and IGF-1 in cultured cardiomyocytes. FEBS Lett 2006;580:4495–4500.
  • Rodriguez-Iturbe B, Quiroz Y, Ferrebuz A, Parra G, Vaziri ND. Evolution of renal interstitial inflammation and NF-kappaB activation in spontaneously hypertensive rats. Am J Nephrol 2004;24:587–594.
  • Schreck R, Rieber P, Baeuerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kB transcription factor and HIV. EMBO J 1991;10:2247–2258.
  • Tabary O, Muselet C, Miesch MC, Yvin JC, Clément A, Jacquot J. Reduction of chemokine IL-8 and RANTES expression in human bronchial epithelial cells by a sea-water derived saline through inhibited nuclear factor-kappaB activation. Biochem Biophys Res Commun 2003;309:310–316.
  • Kobori H, Ozawa Y, Acres OW, Miyata K, Satou R. Rho-kinase/nuclear factor-κβ/angiotensinogen axis in angiotensin II-induced renal injury. Hypertens Res 2011;34:976–979.
  • Higuchi S, Ohtsu H, Suzuki H, Shirai H, Frank GD, Eguchi S. Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin Sci (Lond) 2007;112:417–428.
  • Rodríguez-Iturbe B, Vaziri ND, Herrera-Acosta J, Johnson RJ. Oxidative stress, renal infiltration of immune cells, and salt-sensitive hypertension: all for one and one for all. Am J Physiol Renal Physiol 2004;286:F606–F616.
  • Hong NJ, Garvin JL. Flow increases superoxide production by NADPH oxidase via activation of Na-K-2Cl cotransport and mechanical stress in thick ascending limbs. Am J Physiol Renal Physiol 2007;292:F993–F998.
  • Garvin JL, Hong NJ. Cellular stretch increases superoxide production in the thick ascending limb. Hypertension 2008;51:488–493.
  • Tak PP, Firestein GS. NF-kB: A key role in inflammatory diseases. J Clin Invest 2001;107:7–11.
  • Uchida T, Rossignol F, Matthay MA, Mounier R, Couette S, Clottes E, Clerici C. Prolonged hypoxia differentially regulates hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha expression in lung epithelial cells: implication of natural antisense HIF-1alpha. J Biol Chem 2004;279:14871–14878.
  • Semenza GL. HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol 2001;13:167–171.
  • Kaewpila S, Venkataraman S, Buettner GR, Oberley LW. Manganese superoxide dismutase modulates hypoxia-inducible factor-1 alpha induction via superoxide. Cancer Res 2008;68:2781–2788.
  • Sanjuan-Pla A, Cervera AM, Apostolova N, Garcia Bour R, Victor VM, Murphy MP, Mc Creath KJ. A targeted antioxidant reveals the importance of mitochondrial reactive oxygen species in the hypoxic signaling of HIF-1alpha. FEBS Lett 2005;579:2669–2674.
  • Maxwell P. HIF-1: An oxygen response system with special relevance to the kidney. J Am Soc Nephrol. 2003;14:2712–2722.
  • Manotham K, Tanaka T, Ohse T, Kojima I, Miyata T, Inagi R, et al. A biologic role of HIF-1 in the renal medulla. Kidney Int 2005;67:1428–1439.
  • Bader M, Ganten D. Update on tissue reninangiotensin systems. J Mol Med 2008;86:615–621.
  • Kobori H, Ozawa Y, Satou R, Katsurada A, Miyata K, Ohashi N, et al. Kidney-specific enhancement of ANG II stimulates endogenous intrarenal angiotensinogen in genetargeted mice. Am J Physiol Renal Physiol 2007;293:F938–F945.
  • Hartner A, Porst M, Klanke B, Cordasic N, Veelken R, Hilgers K. Angiotensin II formation in the kidney and nephrosclerosis in Ren-2 hypertensive rats. Nephrol Dial Transplant 2006;21:1778–1785.
  • Klahr S, Morrissey JJ. Angiotensin II and gene expression in the kidney. Am J Kidney Dis 1998;31:171–176.
  • Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 2007;59:251–287.
  • Ruiz-Ortega M, Esteban V, Ruperez M, Sanchez-Lopez E, Rodriguez-Vita J, Carvajal G, Egido J. Renal and vascular hypertension-induced inflammation: role of angiotensin II. Curr Opin Nephrol Hypertens 2006;15:159–166.
  • Griendling KK, Ushio-Fukai M. Reactive oxygen species as mediators of angiotensin II signalling. Regul Pept 2000;91: 21–27.
  • Hunyady L, Catt KJ. Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol Endocrinol 2006;20:953–970.
  • Li A, Sun BK, Lim SW, Song JC, Kang SW, Kim YS, et al. Combined effects of losartan and pravastatin on interstitial inflammation and fibrosis in chronic cyclosporine-induced nephropathy. Transplantation 2005;79:1522–1529.
  • Zhuo JL, Imig JD, Hammond TG, Orengo S, Benes E, Navar LG. Ang II accumulation in rat renal endosomes during Ang II-induced hypertension: role of AT[1] receptor. Hypertension 2002;39:116–121.
  • Kobori H, Ozawa Y, Suzaki Y, Nishiyama A. Enhanced intrarenal angiotensinogen contributes to early renal injury in spontaneously hypertensive rats. J Am Soc Nephrol 2005;16:2073–2080.
  • Sachse A, Wolf G. Angiotensin II-induced reactive oxygen species and the kidney. J Am Soc Nephrol 2007;18:2439–2446.
  • Sun AK, Li C, Lim SW, Choi BS, Lee SH, Kim YS, et al. Blockade of angiotensin II with losartan attenuates transforming growth factor-beta 1 inducible gene-h3 [betaig-h3] expression in a model of chronic cyclosporine nephrotoxicity. Nephron Exp Nephrol 2005;99:E9–E16.
  • Suzuki Y, Ruiz-Ortega M, Lorenzo O, Ruperez M, Esteban V, Egido J. Inflammation and angiotensin II. Int J Biochem Cell Biol 2003;35:881–900.
  • Guan S, Fox J, Mitchell KD, Navar LG. Angiotensin and angiotensin converting enzyme tissue levels in two-kidney, one clip hypertensive rats. Hypertension 1992;20:763–767.
  • Wolf G, Ziyadeh FN, Thaiss F. Angiotensin II stimulates expression of the chemokine RANTES in rat glomerular endothelial cell. Role of the angiotensin type 2 receptor.J Clin Invest 1997;100:1047–1058.
  • Siragy HM, Carey RM. Role of the intrarenal renin-angiotensin-aldosterone system in chronic kidney disease. Am J Nephrol 2010;31:541–550.
  • Siragy HM, Xue C. Local renal aldosterone production induces inflammation and matrix formation in kidneys of diabetic rats. Exp Physiol 2008;93:817–824.
  • Matavelli LC, Siragy HM. Reduction of aldosterone production improves renal oxidative stress and fibrosis in diabetic rats. J Cardiovasc Pharmacol 2013;61:17–22.
  • Satou R, Miyata K, Gonzalez-Villalobos RA, Ingelfinger JR, Navar LG, Kobori H. Interferon-γ biphasically regulates angiotensinogen expression via a JAK-STAT pathway and suppressor of cytokine signaling 1 [SOCS1] in renal proximal tubular cells. FASEB J 2012;26:1821–1830.
  • Satou R, Gonzalez-Villalobos RA, Miyata K, Ohashi N, Urushihara M, Acres OW, et al. IL-6 augments angiotensinogen in primary cultured renal proximal tubular cells. Mol Cell Endocrinol 2009;311:24–31.
  • Satou R, Miyata K, Katsurada A, Navar LG, Kobori H. Tumor necrosis factor-{alpha} suppresses angiotensinogen expression through formation of a p50/p50 homodimer in human renal proximal tubular cells. Am J Physiol Cell Physiol 2010;299:C750–C759.
  • Wolf G. Renal injury due to renin-angiotensin-aldosterone system activation of the transforming growth factor-beta pathway. Kidney Int 2006;70:1914–1919.
  • Wolf G. Role of reactive oxygen species in angiotensin II-mediated renal growth, differentiation, and apoptosis. Antioxid Redox Signal 2005;7:1337–1345.
  • Esteban V, Lorenzo O, Rupérez M, Suzuki Y, Mezzano S, Blanco J, et al. Angiotensin II, via AT1 and AT2 receptors and NF-kappa B pathway, regulates the inflammatory in unilateral uretral obstruction. J Am Soc Nephrol 2004;15: 1514–1529.
  • Zhou MS, Schuman IH, Jaimes EA, Raij L. Renoprotection by statins is linked to a decrease in renal oxidative stress, TGF-beta, and fibronectin with concomitant increase in nitric oxide bioavailability. Am J Physiol Renal Physiol 2008;295:F53–F59.
  • Ying WZ, Aaron K, Sanders PW. Mechanism of dietary salt-mediated increase in intravascular production of TGF-beta1. Am J Physiol Renal Physiol 2008;295:F406–F414.
  • Ruiz-Ortega M, González S, Serón D, Condom E, Bustos C, Largo R, et al. ACE inhibition reduces proteinuria, glomerular lesions and extracellular matrix production in a normotensive rat model of immune complex nephritis. Kidney Int 1995;48:1778–1791.
  • Warntges S, Grone HJ, Capasso G, Lang F. Cell volume regulatory mechanisms in progression of renal disease. J Nephrol 2001;14:319–326.
  • Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 2002;3:349–363.
  • Kis K, Liu X, Hagood JS. Myofibroblast differentiation and survival in fibrotic disease. Expert Rev Mol Med 2011;13:e27.
  • Mezzano SA, Ruiz-Ortega M, Egido J. Angiotensin II in renal fibrosis. Hypertension 2001;38:635–638.
  • Kondo S, Kagami S, Urushihara M, Kitamura A, Shimizu M, Strutz F, et al. Transforming growth factor-beta1 stimulates collagen matrix remodeling through increased adhesive and contractive potential by human renal fibroblasts. Biochem Biophys Acta 2004;1693:91–100.
  • Krensky AM, Ahn YT. Mechanisms of disease: regulation of RANTES [CCL5] in renal disease. Nat Clin Pract Nephrol 2007;3:164–170.
  • Pattison J, Nelson PJ, Huie P, von Leuttichau I, Farshid G, Sibley RK, Krensky AM. RANTES chemokine expression in cell-mediated transplant rejection of the kidney. Lancet 1994;343:209–211.
  • Roson MI, Cavallero S, Della Penna S, Cao G, Gorzalczany S, Pandolfo M, et al. Acute sodium overload produces renal tubulointerstitial inflammation in normal rats. Kidney Int 2006;70:1439–1446.
  • Ajito T, Suzuki K, Iwabuchi S. Effect of intravenous infusion of a 7.2% hypertonic saline solution on serum electrolites and osmotic pressure in healthy beagles. J Vet Med Sci 1999;6:637–641.
  • Amadieu-Farmakis M, Giry J, Barlet JP. Increase in plasma concentration of atrial natriuretic peptide during infusion of hypertonic saline in conscious newborn calves. J. Endocrinol 1988;119:23–29.
  • Haussinger A, Schliess F. Osmotic induction of signaling cascades: role in regulation of cell function. Biochem Biophys Res Commun 1999;255:551–555.
  • Lim CH, Bot AG, de Jonge HR, Tilly BC. Osmosignaling and volume regulation in intestinal epithelial cells. Methods Enzymol 2007;428:325–342.
  • Németh ZH, Deitch EA, Szabó C, Haskó G. Hyperosmotic stress induces nuclear factor-κB activation and Interleukin-8 production in human intestinal epithelial cells. Am J Pathol 2002;161:987–996.
  • Chang JW, Kim CS, Kim SB, Park SK, Park JS, Lee SK. C-reactive protein induces NF-kappaB activation through intracellular calcium and ROS in human mesangial cells. Nephron Exp Nephrol 2005;101:e165–172.
  • Nemeth ZH, Deith EA, Szabo C, Hasko G. Hyperosmotic stress induces nuclear factor-kB activation and interleukin-8 production in human intestinal epithelial cells. Am J Pathol 2002;161:987–996.
  • Yorek MA, Dunlap JA, Liu W, Lowe WL Jr. Normalization of hyperosmotic-induced inositol uptake by renal and endothelial cells is regulated by NF-kB. Am J Physiol Cell Physiol 2000;278:C1011–1018.
  • Kopkan L, Castillo A, Navar LG, Majid DS. Enhanced superoxide generation modulates renal function in ANG II-induced hypertensive rats. Am J Physiol Renal Physiol 2006;290: F80–F86.
  • Kwon TH, Nielsen J, Kim YH, Knepper MA, Frøkiaer J, Nielsen S. Regulation of sodium transporters in the thick ascending limb of rat kidney: response to angiotensin II. Am J Physiol Renal Physiol 2003;285:F152–F165.
  • Eggena P, Zhu JH, Clegg K, Barrett JD. Nuclear angiotensin receptors induce transcription of renin and angiotensinogen mRNA. Hypertension 1993;22:496–501.
  • Rosón MI, Cao G, Della Penna S, Gorzalczany S, Pandolfo M, Medici C, et al. Sodium load combined with low doses of exogenous angiotensin II upregulate intrarenal angiotensin II. Kidney Blood Press Res 2009;32:334–341.
  • Mori T, Cowley AW, Iton S. Molecular mechanisms and therapeutic strategies of chronic renal injury: physiological role of angiotensin II-induced oxidative stress in renal medulla. J Pharmacol Sci 2006;100:2–8.
  • Nishiyama A, Masanori Y, Matlubur R, Hiroyuki K, Dale MS, Akira M, et al. Effects of AT1 receptor blockade on renal injury and mitogen-activated protein activity in Dahl salt-sensitive rats. Kidney Int 2004;65:972–981.
  • Muller DN, Dechend R, Mervaala EM, Park JK, Schmidt F, Fiebeler A, et al. NF-kappaB inhibition ameliorates angiotensin II-induced inflammatory damage in rats. Hypertension 2000;35:193–201.
  • Beckman J. Oxidative damage and tyrosine nitration from peroxynitrite. Chem Res Toxicol 1996;9:836–844.
  • Wang Z, Holthoff JH, Seely KA, Pathak E, Spencer III HJ, Gokden N, Mayeux PR. Development of oxidative stress in the peritubular capillary microenvironment mediates sepsis-induced renal microcirculatory failure and acute kidney injury. Am J Pathol 2012;180:505–16.
  • Pathak E, MacMillan-Crow LA, Mayeux PR. Role of mitochondrial oxidants in an in vitro model of sepsis- induced renal injury. J Pharmacol Exp Ther 2012;340: 192–201.
  • Whaley-Connell AT, Habibi J, Nistala R, DeMarco VG, Pulakat L, Hayden MR, et al. Mineralocorticoid receptor-dependent proximal tubule injury is mediated by a redox-sensitive mTOR/S6K1 pathway. Am J Nephrol 2012;35:90–100.
  • Rosón MI, Cao G, Della Penna S, Gorzalczany S, Pandolfo M, Toblli JE, Fernández BE. Angiotensin II increases intrarenal transforming growth factor-beta1 in rats submitted to sodium overload independently of blood pressure. Hypertens Res 2008;31:707–715.
  • Ingert C, Grima M, Coquard C, Barthelmebs M, Imbs JL. Contribution of angiotensin II internalization to intrarenal angiotensin II levels in rats. Am J Physiol Renal Physiol 2002;283:F1003–F1010.
  • Gociman B, Rohrwasser A, Lantelme P, Cheng T, Hunter G, Monson S, et al. Expression of angiotensinogen in proximal tubule as a function of glomerular filtration rate. Kidney Int 2004;65:2153–2160.
  • Moe OW, Ujiie K, Star RA, Miller RT, Widell J, Alpern RJ, Henrich WL. Renin expression in renal proximal tubule. J Clin Invest 1993;91:774–779.
  • Peti-Peterdi J, Warnock DG, Bell PD. Angiotensin II directly stimulates ENaC activity in the cortical collecting duct via AT[1] receptors. J Am Soc Nephrol 2002;13: 1131–1135.
  • San-Cristobal P, Pacheco-Alvarez D, Richardson C, Ring AM, Vazquez N, Rafiqi FH, et al. Angiotensin II signaling increases activity of the renal Na-Cl cotransporter through a WNK4-SPAK-dependent pathway. Proc Natl Acad Sci USA 2009;106:4384–4389.
  • Sandberg MB, Riquier AD, Pihakaski-Maunsbach K, McDonough AA, Maunsbach AB. ANG II provokes acute trafficking of distal tubule Na+-Cl[–] cotransporter to apical membrane. Am J Physiol Renal Physiol 2007;293:F662–F669.
  • Thomson SC, Deng A, Wead L, Richter K, Blantz RC, Vallon V. An unexpected role for angiotensin II in the link between dietary salt and proximal reabsorption. J Clin Invest 2006;116:1110–1116.
  • Beltowski J, Wójcicka G. Regulation of renal tubular sodium transport by cardiac natriuretic peptides: two decades of research. Med Sci Monit 2002;8:RA39–RA52.
  • Hirata Y, Ishii M, Sugimoto T, Matsuoka H, Sugimoto T, Kangawa K, Matsuo H. The effects of human atrial 28-amino acid peptide on systemic and renal hemodynamics in anesthetized rats. Circ Res 1985;57:634–639.
  • Lang RE, Tholken H, Ganten D, Luft FC, Ruskoaho H, Unger T. Atrial natriuretic factor; a circulating hormone stimulated by volume loading. Nature 1985;314:828–834.
  • Pandey KN. Biology of natriuretic peptides and their receptors. Peptides 2005;26:901–932.
  • Zhao D, Pandey KN, Navar LG. ANP-mediated inhibition of distal nephron fractional sodium reabsorption in wild-type and mice overexpressing natriuretic peptide receptor. Am J Physiol Renal Physiol 2010;298:F103–F108.
  • Dunn BR, Ichikawa I, Pfeffer JM. Renal and systemic hemodynamic effects of synthetic atrial natriuretic peptide in the anesthetized rat. Circ Res 1986;59:237–246.
  • Swärd K, Valsson F, Sellgren J. Differential effects of human atrial natriuretic peptide and furosemide on glomerular filtration rate and renal oxygen consumption in humans. Int Care Med 2005;31:79–85.
  • Lassen NA, Munk O, Thaysen JH. Oxygen consumption and sodium reabsorption in the kidney. Acta Physiol Scand 1961;51:371–384.
  • Li N, Yi FX, Spurrier JL, Bobrowitz CA, Zou AP. Production of superoxide through NADH oxidase in thick ascending limb of Henle's loop in rat kidney. Am J Physiol Renal Physiol 2002;282:F1111–F1119.
  • Kiemer K, Weber NC, Furst R, Bildner M, Kulhanek-Heinze S, Vollmar AM. Inhibition of p38 MAPK activation via induction of MKP-1: atrial natriuretic peptide reduces TNF-alpha-induced actin polymerization and endothelial permeability. Circ Res 2002;90:874–881.
  • Vollmar M. The role of atrial natriuretic peptide in the immune system. Peptides 2005;26:1086–1094.
  • Kiemer K, Furst R, Vollmar AM. Vasoprotective actions of the atrial natriuretic peptide. Curr Med Chem Cardiovasc Hematol Agents 2005;3:11–21.
  • Chen X, Patel K, Connors SG, Mendonca M, Welch WJ, Wilcox CS. Acute antihypertensive action of Tempol in the spontaneously hypertensive rat. Am J Physiol Heart Circ Physiol 2007;293:H3246–H3253.
  • Chen YF. Atrial natriuretic peptide in hypoxia. Peptides 2005;26:1068–1077.
  • Chun YS, Hyun JY, Kwak YG, Kim IS, Kim CH, Choi E, et al. Hypoxic activation of the atrial natriuretic peptide gene promoter through direct and indirect actions of hypoxia-inducible factor-1. Biochem J 2003;370:149–157.
  • Kiemer K, Weber NC, Vollmar AM. Induction of IkappaB: atrial natriuretic peptide as a regulator of the NF-kappaB pathway. Biochem Biophys Res Commun 2002;295: 1068–1076.
  • Klinger JR, Pietras L, Warburton R, Hill NS. Reduced oxygen tension increases atrial natriuretic peptide release from atrial cardiocytes. Exp Biol Med 2001;226:847–853.
  • Kiemer K, Vollmar AM. Autocrine regulation of inducible nitric-oxide synthase in macrophages by atrial natriuretic peptide. J Biol Chem 1998;273:13444–13451.
  • Rosón MI, Toblli JE, Della Penna SL, Gorzalczany S, Pandolfo M, Cavallero S, Fernández BE. Renal protective role of atrial natriuretic peptide in acute sodium overload-induced inflammatory response. Am J Nephrol 2006;26: 590–601.
  • Chatterjee PK, Hawksworth GM, McLay JS. Cytokine- stimulated nitric oxide production in the human renal proximal tubule and its modulation by natriuretic peptides: a novel immunomodulatory mechanism? Exp Nephrol 1999; 7:438–448.
  • Irwin DC, Tissot van Patot MC, Tucker A, Bower R. Direct ANP inhibition of hypoxia-induced inflammatory pathways in pulmonary microvascular and macrovascular endothelial monolayers. Am J Physiol Lung Cell Mol Physiol 2005;288:L849–L859.
  • Calderone A. Natriuretic peptides and the management of heart failure. Minerva Endocrinol 2004;29:113–127.
  • Rosón MI, Della Penna SL, Cao G, Gorzalczany S, Pandolfo M, Toblli JE, Fernández BE. Different protective actions of losartan and tempol on the renal inflammatory response to acute sodium overload. J Cell Physiol 2010;224:41–48.
  • Wilcox S, Pearlman A. Chemistry and antihypertensive effects of tempol and other nitroxides. Pharmacol Rev 2008;60:418–469.
  • Shokoji T, Fujisawa Y, Kimura S, Rahman M, Kiyomoto H, Matsubara K, et al. Effects of local administrations of tempol and diethyldithio-carbamic on peripheral nerve activity. Hypertension 2004;44:236–243.
  • Guo L, Wang M, Zhang ZY, Hao L, Lou BY, Li XY, et al. Angiotensin II induces interleukin-6 synthesis in osteoblasts through ERK1/2 pathway via AT1 receptor. Arch Oral Biol 2011;56:205–211.
  • Molinas SM, Cortés-González C, González-Bobadilla Y, Monasterolo LA, Cruz C, Elías MM, et al. Effects of losartan pretreatment in an experimental model of ischemic acute kidney injury. Nephron Exp Nephrol 2009;112:e10–e19.
  • Kandalam U, Palanisamy M, Clark MA. Angiotensin II induces cell growth and IL-6 mRNA expression through the JAK2-STAT3 pathway in rat cerebellar astrocytes. JAKSTAT 2012;1:83–89.
  • Tokuyama H, Kelly DJ, Zhang Y, Gow RM, Gilbert RE. Macrophage infiltration and cellular proliferation in the non-ischemic kidney and heart following prolonged unilateral renal ischemia. Nephron Physiol 2007;106:54–62.
  • Andrzejczak A, Górska D, Czarnecka E. Influence of enalapril, quinapril and losartan on lipopolysaccharide (LPS)-induced serum concentrations of TNF-alpha, IL-1 beta, IL-6 in spontaneously hypertensive rats (SHR). Pharmacol Rep 2007;59:437–446.
  • Grande MT, Pérez-Barriocanal F, López-Novoa JM. Role of inflammation in túbulo-interstitial damage associated to obstructive nephropathy. J Inflamm (Lond) 2010;7:19.
  • Diniz P, Carneiro-Ramos MS, Barreto-Chaves ML. Thyroid hormone increases TGF-beta1 in cardiomyocytes cultures independently of Angiotensin II Type 1 and Type 2 receptors. Int J Endocrinol 2010;2010:384890.
  • Quan A, Baum M. Renal nerve stimulation augments effect of intraluminal angiotensin II on proximal tubule transport. Am J Physiol Renal Physiol 2002;282:F1043–1048.
  • Fardoun RZ, Asghar M, Lokhandwala M. Role of oxidative stress in defective renal dopamine D1 receptor-G protein coupling and function in old Fischer 344 rats. Am J Physiol Renal Physiol 2006;291:F945–F951.
  • Liu R, Garvin JL, Ren Y, Pagano PJ, Carretero OA. Depolarization of the macula densa induces superoxide production via NAD[P]H oxidase. Am J Physiol Renal Physiol 2007;292:F1867–F1872.
  • Loitsch SM, von Mallinckrodt C, Kippenberger S, Steinhilber D, Wagner TO, Bargon J. Reactive oxygen intermediates are involved in IL-8 production induced by hyperosmotic stress in human bronchial epithelial cells. Biochem Biophys Res Commun 2000;276:571–578.
  • Majid S, Kopkan L. Nitric oxide and superoxide interactions in the kidney and their implication in the development of salt-sensitive hypertension. Clin Exp Pharmacol Physiol 2007;34:946–952.
  • Ying WZ, Sanders PW. The interrelationship between TGF-beta1 and nitric oxide is altered in salt-sensitive hypertension. Am J Physiol Renal Physiol 2003;285: F902–F908.
  • Yang T, Zhang A, Honeggar M, Kohan DE, Mizel D, Sanders K, et al. Hypertonic induction of COX-2 in collecting duct cells by reactive oxygen species of mitochondrial origin. J Biol Chem 2005;280:34966–34973.
  • Tabary O, Escotte S, Couetil JP, Hubert D, Dusser D, Puchelle E, Jacquot J. High susceptibility for cystic fibrosis human airway gland cells to produce IL-8 through the I kappa B kinase alpha pathway in response to extracellular NaCl content. J Immunol 2000;164:3377–3384.
  • Li D, Scott L, Crambert S, Zelenin S, Eklöf AC, Di Ciano L, et al. Binding of losartan to angiotensin AT1 receptors increases dopamine D1 receptor activation. J Am Soc Nephrol 2012;23:421–428.
  • Du Z, Yan Q, Wan L, Weinbaum S, Weinstein AM, Wang T. Regulation of glomerulotubular balance. I. Impact of dopamine on flow-dependent transport. Am J Physiol Renal Physiol 2012;303:F386–F395.
  • Fu W, Wang Y, Jin Z, Wang H, Cheng W, Zhou H, et al. Losartan alleviates renal fibrosis by down-regulating HIF-1α and up-regulating MMP-9/TIMP-1 in rats with 5/6 nephrectomy. Ren Fail 2012;34:1297–304.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.