425
Views
25
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Reaction of low-molecular-mass organoselenium compounds (and their sulphur analogues) with inflammation-associated oxidants

, &
Pages 750-767 | Received 23 Dec 2014, Accepted 06 Feb 2015, Published online: 13 May 2015

References

  • Gammelgaard B, Jackson MI, Gabel-Jensen C. Surveying selenium speciation from soil to cell - forms and transformations. Anal Bioanal Chem 2011;399:1743–1763.
  • Papp LV, Lu J, Holmgren A, Khanna KK. From selenium to selenoproteins: synthesis, identity, and their role in human health. Antiox Redox Signal 2007;9:775–806.
  • Lippman SM, Goodman PJ, Klein EA, Parnes HL, Thompson IM, Kristal AR, et al.Designing the selenium and vitamin E cancer prevention trial (SELECT). J Natl Cancer Inst 2005;97:94–102.
  • Lippman SM, Klein EA, Goodman PJ, Lucia MS, Thompson IM, Ford LG, et al.Effect of selenium and vitamin E on risk of prostate cancer and other cancers the selenium and vitamin E cancer prevention trial (SELECT). J Am Med Assoc 2009;301:39–51.
  • Kristal AR, Darke AK, Morris JS, Tangen CM, Goodman PJ, Thompson IM, et al.Baseline selenium status and effects of selenium and vitamin E supplementation on prostate cancer risk. J Natl Cancer Inst 2014;106:djt456.
  • Laclaustra M, Navas-Acien A, Stranges S, Ordovas JM, Guallar E. Serum selenium concentrations and diabetes in U.S. adults: National health and nutrition examination survey (NHANES) 2003-2004. Environ Health Perspect 2009;117:1409–1413.
  • Sieri S, Pala V, Brighenti F, Pellegrini N, Muti P, Micheli A, et al.Dietary glycemic index, glycemic load, and the risk of breast cancer in an Italian prospective cohort study. Am J Clin Nutr 2007;86:1160–1166.
  • Stranges S, Sieri S, Vinceti M, Grioni S, Guallar E, Laclaustra M, et al.A prospective study of dietary selenium intake and risk of type 2 diabetes. BMC Public Health 2010;10:564.
  • Rayman MP, Blundell-Pound G, Pastor-Barriuso R, Guallar E, Steinbrenner H, Stranges S. A randomized trial of selenium supplementation and risk of type-2 diabetes, as assessed by plasma adiponectin. PLoS One 2012;7:e45269.
  • Rayman MP, Stranges S. Epidemiology of selenium and type 2 diabetes: can we make sense of it? Free Radic Biol Med 2013;65:1557–1564.
  • Labunskyy VM, Hatfield DL, Gladyshev VN. Selenoproteins: molecular pathways and physiological roles. Physiol Rev 2014;94:739–777.
  • Lu J, Holmgren A. Selenoproteins. J Biol Chem 2009;284: 723–727.
  • Reeves MA, Hoffmann PR. The human selenoproteome: Recent insights into functions and regulation. Cell Mol Life Sci 2009;66:2457–2478.
  • Murphy MP. Mitochondrial thiols in antioxidant protection and redox signaling: Distinct roles for glutathionylation and other thiol modifications. Antiox Redox Signal 2012;16: 476–495.
  • Hansen RE, Roth D, Winther JR. Quantifying the global cellular thiol-disulfide status. Proc Natl Acad Sci USA 2009;106:422–427.
  • Requejo R, Hurd TR, Costa NJ, Murphy MP. Cysteine residues exposed on protein surfaces are the dominant intramitochondrial thiol and may protect against oxidative damage. FEBS J 2010;277:1465–1480.
  • Go YM, Jones DP. Thiol/disulfide redox states in signaling and sensing. Crit Rev Biochem Mol Biol 2013;48:173–181.
  • Turell L, Radi R, Alvarez B. The thiol pool in human plasma: the central contribution of albumin to redox processes. Free Radic Biol Med 2013;65:244–253.
  • Lillig CH, Holmgren A. Thioredoxin and related molecules - from biology to health and disease. Antiox Redox Signal 2007;9:25–47.
  • Berndt C, Lillig CH, Holmgren A. Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: implications for diseases in the cardiovascular system. Am J Physiol Heart Circ Physiol 2007;292:H1227–H1236.
  • Rhee SG, Kang SW, Netto LE, Seo MS, Stadtman ER. A family of novel peroxidases, peroxiredoxins. Biofactors 1999;10:207–209.
  • Skaff O, Pattison DI, Morgan PE, Bachana R, Jain VK, Priyadarsini KI, Davies MJ. Selenium-containing amino acids are targets for myeloperoxidase-derived hypothiocyanous acid: determination of absolute rate constants and implications for biological damage. Biochem J 2012;441:305–316.
  • Takahashi K, Cohen HJ. Selenium-dependent glutathione peroxidase protein and activity: immunological investigations on cellular and plasma enzymes. Blood 1986;68: 640–645.
  • Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. Oxford: Oxford University Press; 2007. pp. 1–704.
  • Drummond GR, Sobey CG. Endothelial NADPH oxidases: which noxNOx to target in vascular disease? Trends Endocrinol Metabol 2014;25:452–463.
  • Cifuentes-Pagano E, Meijles DN, Pagano PJ. The quest for selective NOx inhibitors and therapeutics: challenges, triumphs and pitfalls. Antiox Redox Signal 2014;20: 2741–2754.
  • Davies MJ, Hawkins CL, Pattison DI, Rees MD. Mammalian heme peroxidases: From molecular mechanisms to health implications. Antiox Redox Signal 2008;10:1199–1234.
  • Hawkins CL, Pattison DI, Davies MJ. Hypochlorite-induced oxidation of amino acids, peptides and proteins. Amino Acids 2003;25:259–274.
  • Pattison DI, Davies MJ. Reactions of myeloperoxidase-derived oxidants with biological substrates: gaining chemical insight into human inflammatory diseases. Curr Med Chem 2006;13:3271–3290.
  • Barrett TJ, Hawkins CL. Hypothiocyanous acid: benign or deadly? Chem Res Toxicol 2012;25:263–273.
  • Winterbourn CC. Reconciling the chemistry and biology of reactive oxygen species. Nature Chem Biol 2008;4: 278–286.
  • Furtmuller PG, Zederbauer M, Jantschko W, Helm J, Bogner M, Jakopitsch C, Obinger C. Active site structure and catalytic mechanisms of human peroxidases. Arch Biochem Biophys 2006;445:199–213.
  • Stubbe JA. Radicals with a controlled lifestyle. Chem Comm 2003;20:2511–2513.
  • Radi R. Peroxynitrite, a stealthy biological oxidant. J Biol Chem 2013;288:26464–26472.
  • Davies MJ, Hawkins CL. EPR spin trapping of protein radicals. Free Radic Biol Med 2004;36:1072–1086.
  • van der Veen BS, de Winther MP, Heeringa P. Myeloperoxidase: molecular mechanisms of action and their relevance to human health and disease. Antiox Redox Signal 2009;11:2899–2937.
  • Hondal RJ, Marino SM, Gladyshev VN. Selenocysteine in thiol/disulfide-like exchange reactions. Antiox Redox Signal 2013;18:1675–1689.
  • Jacob C, Giles GI, Giles NM, Sies H. Sulfur and selenium: the role of oxidation state in protein structure and function. Angew Chem Int Ed Engl 2003;42:4742–4758.
  • Orian L, Toppo S. Organochalcogen peroxidase mimetics as potential drugs: a long story of a promise still unfulfilled. Free Radic Biol Med 2014;66:65–74.
  • Azad GK, Tomar RS. Ebselen, a promising antioxidant drug: mechanisms of action and targets of biological pathways. Mol Biol Rep 2014;41:4865–4879.
  • Weekley CM, Harris HH. Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease. Chem Soc Rev 2013;42:8870–8894.
  • Battin EE, Brumaghim JL. Antioxidant activity of sulfur and selenium: a review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochem Biophys 2009;55:1–23.
  • Snider GW, Ruggles E, Khan N, Hondal RJ. Selenocysteine confers resistance to inactivation by oxidation in thioredoxin reductase: comparison of selenium and sulfur enzymes. Biochemistry 2013;52:5472–5481.
  • Chandler JD, Nichols DP, Nick JA, Hondal RJ, Day BJ. Selective metabolism of hypothiocyanous acid by mammalian thioredoxin reductase promotes lung innate immunity and antioxidant defense. J Biol Chem 2013;288: 18421–18428.
  • Zhong L, Holmgren A. Essential role of selenium in the catalytic activities of mammalian thioredoxin reductase revealed by characterization of recombinant enzymes with selenocysteine mutations. J Biol Chem 2000;275: 18121–1818.
  • Gasdaska JR, Harney JW, Gasdaska PY, Powis G, Berry MJ. Regulation of human thioredoxin reductase expression and activity by 3’-untranslated region selenocysteine insertion sequence and mRNA instability elements. J Biol Chem 1999;274:25379–25385.
  • Martinez J, Lisa S, Sanchez R, Kowalczyk W, Zurita E, Teixido M, et al.Selenomethionine incorporation into amyloid sequences regulates fibrillogenesis and toxicity. Plos One 2011;6:e27999.
  • Nagy P, Karton A, Betz A, Peskin AV, Pace P, O’Reilly RJ, et al.Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide: a kinetic and computational study. J Biol Chem 2011;286:18048–18055.
  • Cardey B, Enescu M. Selenocysteine versus cysteine reactivity: a theoretical study of their oxidation by hydrogen peroxide. J Phys Chem A 2007;111:673–678.
  • Padmaja S, Squadrito GL, Lemercier JN, Cueto R, Pryor WA. Rapid oxidation of dl-selenomethionine by peroxynitrite. Free Radic Biol Med 1996;21:317–322.
  • Alvarez B, Ferrer-Sueta G, Freeman BA, Radi R. Kinetics of peroxynitrite reaction with amino acids and human serum albumin. J Biol Chem 1999;274:842–848.
  • Briviba K, Roussyn I, Sharov VS, Sies H. Attenuation of oxidation and nitration reactions of peroxynitrite by selenomethionine, selenocystine and ebselen. Biochem J 1996;319: 13–15.
  • Roussyn I, Briviba K, Masumoto H, Sies H. Selenium-containing compounds protect DNA from single-strand breaks caused by peroxynitrite. Arch Biochem Biophys 1996;330:216–218.
  • Storkey C, Pattison DI, White JM, Schiesser CH, Davies MJ. Preventing protein oxidation with sugars: scavenging of hypohalous acids by 5-selenopyranose and 4-selenofuranose derivatives. Chem Res Toxicol 2012;25:2589–2599.
  • Storkey C, Davies MJ, Pattison DI. Reevaluation of the rate constants for the reaction of hypochlorous acid (HOCl) with cysteine, methionine, and peptide derivatives using a new competition kinetic approach. Free Radic Biol Med 2014;73:60–66.
  • Pattison DI, Davies MJ. A kinetic analysis of the reactions of hypobromous acid with protein components: implications for cellular damage and the use of 3-bromotyrosine as a marker of oxidative stress. Biochemistry 2004;43: 4799–4809.
  • Carroll L, Pattison DI, Fu S, Schiesser CH, Davies MJ, Hawkins CL. Reactivity of selenium-containing compounds with myeloperoxidase-derived chlorinating oxidants: second-order rate constants and implications for preventing inflammation- induced biological damage. Free Radical Biology and Medicine on 26/3/2015. doi:10.1016/j.freeradbiomed.2015.03.029.
  • Peskin AV, Winterbourn CC. Kinetics of the reactions of hypochlorous acid and amino acid chloramines with thiols, methionine, and ascorbate. Free Radic Biol Med 2001;30: 572–579.
  • Beal JL, Foster SB, Ashby MT. Hypochlorous acid reacts with the N-terminal methionines of proteins to give dehydromethionine, a potential biomarker for neutrophil-induced oxidative stress. Biochemistry 2009;48: 11142–11148.
  • Peskin AV, Turner R, Maghzal GJ, Winterbourn CC, Kettle AJ. Oxidation of methionine to dehydromethionine by reactive halogen species generated by neutrophils. Biochemistry 2009;48:10175–10182.
  • Krause RJ, Glocke SC, Sicuri AR, Ripp SL, Elfarra AA. Oxidative metabolism of seleno-l-methionine to l-methionine selenoxide by flavin-containing monooxygenases. Chem Res Toxicol 2006;19:1643–1649.
  • Suryo Rahmanto A, Davies MJ. Catalytic activity of selenomethionine in removing amino acid, peptide, and protein hydroperoxides. Free Radic Biol Med 2011;51:2288–2299.
  • Mishra B, Priyadarsini KI, Mohan H. Effect of pH on one-electron oxidation chemistry of organoselenium compounds in aqueous solutions. J Phys Chem A 2006;110:1894–1900.
  • Mishra B, Sharma A, Naumov S, Priyadarsini KI. Novel reactions of one-electron oxidized radicals of selenomethionine in comparison with methionine. J Phys Chem B 2009;113:7709–7715.
  • Schoneich C. Methionine oxidation by reactive oxygen species: reaction mechanisms and relevance to Alzheimer's disease. Biochim Biophys Acta 2005;1703:111–119.
  • Schoneich C, Pogocki D, Hug GL, Bobrowski K. Free radical reactions of methionine in peptides: Mechanisms relevant to beta-amyloid oxidation and Alzheimer's disease. J Am Chem Soc 2003;125:13700–13713.
  • Hiller KO, Masloch B, Gobl M, Asmus KD. Mechanism of the OH-radical induced oxidation of methionine in aqueous solution. J Am Chem Soc 1981;103:2734–2743.
  • Hiller KO, Asmus KD. Formation and reduction reactions of α-amino radicals derived from methionine and its derivatives in aqueous solutions. J Phys Chem 1983;87:3682–3688.
  • Priyadarsini KI, Mishra B. Radical cations of some water-soluble organoselenium compounds: insights from pulse radiolysis studies. Radiat Phys Chem 2008;77:1294–1299.
  • Priyadarsini KI, Mishra B. A brief account on radiation chemical studies of antioxidants: examples from natural phenols, sulfur and selenium compounds. J Ind Chem Soc 2010;87:147–157.
  • Huang ML, Rauk A. Reactions of one-electron-oxidized methionine with oxygen: an ab initio study. J Phys Chem A 2004;108:6222–6230.
  • Cardey B, Enescu M. A computational study of thiolate and selenolate oxidation by hydrogen peroxide. Chem Phys Chem 2005;6:1175–1180.
  • Skaff O, Pattison DI, Davies MJ. Hypothiocyanous acid reactivity with low-molecular-mass and protein thiols: absolute rate constants and assessment of biological relevance. Biochem J 2009;422:111–117.
  • Koppenol WH, Moreno JJ, Pryor WA, Ischiropoulos H, Beckman JS. Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol 1992;5:834–842.
  • Trujillo M, Radi R. Peroxynitrite reaction with the reduced and the oxidized forms of lipoic acid: new insights into the reaction of peroxynitrite with thiols. Arch Biochem Biophys 2002;397:91–98.
  • Takebe G, Yarimizu J, Saito Y, Hayashi T, Nakamura H, Yodoi J, et al.A comparative study on the hydroperoxide and thiol specificity of the glutathione peroxidase family and selenoprotein P. J Biol Chem 2002;277:41254–41258.
  • Briviba K, Kissner R, Koppenol WH, Sies H. Kinetic study of the reaction of glutathione peroxidase with peroxynitrite. Chem Res Toxicol 1998;11:1398–1401.
  • Padmaja S, Squadrito GL, Pryor WA. Inactivation of glutathione peroxidase by peroxynitrite. Arch Biochem Biophys 1998;349:1–6.
  • Nucifora G, Smaller B, Remko R, Avery EC. Transient radicals of DNA bases by pulse radiolysis. Effects of cysteine and cysteamine as radioprotectors. Radiat Res 1972;49: 96–111.
  • Eriksen TE, Fransson G. Formation of reducing radicals on radiolysis of glutathione and some related compounds in aqueous solution. J Chem Soc Perkin Trans 2 1988: 1117–1122.
  • Steinmann D, Nauser T, Beld J, Tanner M, Gunther D, Bounds PL, Koppenol WH. Kinetics of tyrosyl radical reduction by selenocysteine. Biochemistry 2008;47:9602–9607.
  • Gebicki JM, Nauser T, Domazou A, Steinmann D, Bounds PL, Koppenol WH. Reduction of protein radicals by GSH and ascorbate: potential biological significance. Amino Acids 2010;39:1131–1137.
  • Turell L, Botti H, Carballal S, Ferrer-Sueta G, Souza JM, Duran R, et al.Reactivity of sulfenic acid in human serum albumin. Biochemistry 2008;47:358–367.
  • Barrett TJ, Pattison DI, Leonard SE, Carroll KS, Davies MJ, Hawkins CL. Inactivation of thiol-dependent enzymes by hypothiocyanous acid: Role of sulfenyl thiocyanate and sulfenic acid intermediates. Free Radic Biol Med 2012;52:1075–1085.
  • Algunindigue Nimmo SL, Lemma K, Ashby MT. Reactions of cysteine sulfenyl thiocyanate with thiols to give unsymmetrical disulfides. Heteroatom Chem 2007;18:467–471.
  • Ashby MT, Aneetha H. Reactive sulfur species: aqueous chemistry of sulfenyl thiocyanates. J Am Chem Soc 2004;126:10216–10217.
  • Lemma K, Ashby MT. Reactive sulfur species: kinetics and mechanism of the equilibrium between cysteine sulfenyl thiocyanate and cysteine thiosulfinate ester in acidic aqueous solution. J Org Chem 2008;73:3017–3023.
  • Nagy P, Ashby MT. Reactive sulfur species: kinetics and mechanisms of the oxidation of cysteine by hypohalous acid to give cysteine sulfenic acid. J Am Chem Soc 2007;129: 14082–14091.
  • Nagy P, Lemma K, Ashby MT. Reactive sulfur species: kinetics and mechanisms of the reaction of cysteine thiosulfinate ester with cysteine to give cysteine sulfenic acid. J Org Chem 2007;72:8838–8846.
  • Cho CS, Lee S, Lee GT, Woo HA, Choi EJ, Rhee SG. Irreversible inactivation of glutathione peroxidase 1 and reversible inactivation of peroxiredoxin II by H2O2 in red blood cells. Antiox Redox Signal 2010;12:1235–1246.
  • Hondal RJ, Ruggles EL. Differing views of the role of selenium in thioredoxin reductase. Amino Acids 2011;41: 73–89.
  • Zielinski Z, Presseau N, Amorati R, Valgimigli L, Pratt DA. Redox chemistry of selenenic acids and the insight it brings on transition state geometry in the reactions of peroxyl radicals. J Am Chem Soc 2014;136:1570–1578.
  • Li F, Liu J, Rozovsky S. Glutathione peroxidase's reaction intermediate selenenic acid is stabilized by the protein microenvironment. Free Radic Biol Med 2014;76:127–135.
  • Okeley NM, Zhu Y, van Der Donk WA. Facile chemoselective synthesis of dehydroalanine-containing peptides. Org Lett 2000;2:3603–3606.
  • Wang J, Schiller SM, Schultz PG. A biosynthetic route to dehydroalanine-containing proteins. Angew Chem Int Ed Engl 2007;46:6849–6851.
  • Guo J, Wang J, Lee JS, Schultz PG. Site-specific incorporation of methyl- and acetyl-lysine analogues into recombinant proteins. Angew Chem Int Ed Engl 2008;47:6399–6401.
  • Hashimoto K, Sakai M, Okuno T, Shirahama H. Beta-phenylselenoalanine as a dehydroalanine precursor-efficient synthesis of alternariolide (AM-toxin I). Chem Commun 1996:1139–1140.
  • Sakai M, Hashimoto K, Shirahama H. Synthesis of optically pure beta-phenylselenoalanine through serine-beta-lactone: a useful precursor of dehydroalanine. Heterocycles 1997;44:319–324.
  • Nauser T, Steinmann D, Koppenol WH. Why do proteins use selenocysteine instead of cysteine? Amino Acids 2012;42: 39–44.
  • Zhang XJ, Zhang N, Schuchmann HP, Vonsonntag C. Pulse-radiolysis of 2-mercaptoethanol in oxygenated aqueous-solution - generation and reactions of the thiylperoxyl radical. J Phys Chem 1994;98:6541–6547.
  • Zhao R, Lind J, Merenyi G, Eriksen TE. Kinetics of one-electron oxidation of thiols and hydrogen abstraction by thiyl radicals from alpha-amino C-H bonds. J Am Chem Soc 1994;116:12010–12015.
  • Willson RL. Pulse radiolysis studies of electron transfer in aqueous disulphide solutions. J Chem Soc Chem Commun 1970:1425.
  • Winterbourn CC. Superoxide as an intracellular radical sink. Free Radic Biol Med 1993;14:85–90.
  • Koppenol WH. A thermodynamic appraisal of the radical sink hypothesis. Free Radic Biol Med 1993;14:91–94.
  • Davies MJ, Hawkins CL. Hypochlorite-induced oxidation of thiols: formation of thiyl radicals and the role of sulfenyl chlorides as intermediates. Free Radic Res 2000;33: 719–729.
  • Nauser T, Koppenol WH, Schoneich C. Reversible hydrogen transfer reactions in thiyl radicals from cysteine and related molecules: Absolute kinetics and equilibrium constants determined by pulse radiolysis. J Phys Chem B 2012;116: 5329–5341.
  • Armstrong DA. Applications of pulse-radiolysis for the study of short-lived sulfur species. In: Chatgilialoglu C, Asmus KD (eds.). Sulfur-centered reactive intermediates in chemistry and biology. New York: Springer; 1990. pp. 121–134.
  • Wardman P, von Sonntag C. Kinetic factors that control the fate of thiyl radicals in cells. Methods Enzymol 1995;251: 31–45.
  • Ferreri C, Kratzsch S, Landi L, Brede O. Thiyl radicals in biosystems: Effects on lipid structures and metabolisms. Cell Mol Life Sci 2005;62:834–847.
  • Kratzsch S, Drossler K, Sprinz H, Brede O. Thiyl radicals in biosystems: Inhibition of the prostaglandin metabolism by the cis-trans-isomerization of arachidonic acid double bonds. Arch Biochem Biophys 2003;416:238–248.
  • Chatgilialoglu C, Ferreri C, Melchiorre M, Sansone A, Torreggiani A. Lipid geometrical isomerism: from chemistry to biology and diagnostics. Chem Rev 2014;114:255–284.
  • Lykakis IN, Ferreri C, Chatgilialoglu C. The sulfhydryl radical (HS•/S•−): a contender for the isomerization of double bonds in membrane lipids. Angew Chem Int Ed Engl 2007;46:1914–1916.
  • Nauser T, Steinmann D, Grassi G, Koppenol WH. Why selenocysteine replaces cysteine in thioredoxin reductase: a radical hypothesis. Biochemistry 2014;53:5017–5022.
  • Mozziconacci O, Kerwin BA, Schoneich C. Reversible hydrogen transfer reactions of cysteine thiyl radicals in peptides: the conversion of cysteine into dehydroalanine and alanine, and of alanine into dehydroalanine. J Phys Chem B 2011;115:12287–12305.
  • Naidu BN, Sorenson ME, Connolly TP, Ueda Y. Michael addition of amines and thiols to dehydroalanine amides: A remarkable rate acceleration in water. J Org Chem 2003;68:10098–10102.
  • Linetsky M, LeGrand RD. Glutathionylation of lens proteins through the formation of thioether bond. Mol Cell Biochem 2005;272:133–144.
  • Linetsky M, Hill JMW, LeGrand RD, Hu F. Dehydroalanine crosslinks in human lens. Exp Eye Res 2004;79:499–512.
  • Bar-Or R, Rael LT, Bar-Or D. Dehydroalanine derived from cysteine is a common post-translational modification in human serum albumin. Rapid Commun Mass Spectr 2008;22:711–716.
  • Jeong J, Jung Y, Na S, Jeong J, Lee E, Kim M-S, et al.Novel oxidative modifications in redox-active cysteine residues. Mol Cell Proteom 2011;10:M110.000513.
  • Cho C-S, Lee S, Lee GT, Woo HA, Choi E-J, Rhee SG. Irreversible inactivation of glutathione peroxidase 1 and reversible inactivation of peroxiredoxin II by H2O2 in red blood cells. Antiox Redox Signal 2010;12:1235–1246.
  • Ma S, Caprioli RM, Hill KE, Burk RF. Loss of selenium from selenoproteins: Conversion of selenocysteine to dehydroalanine in vitro. J Am Soc Mass Spectrom 2003;14: 593–600.
  • Townsend DM, Lushchak VI, Cooper AJL. A comparison of reversible versus irreversible protein glutathionylation. In: Townsend DM, Tew KD (eds). Redox and Cancer pt A, Volume 122, Advances in Cancer Research. Amsterdam: Elsevier; 2014. pp. 177–198.
  • Packer L, Witt EH, Tritschler HJ. Alpha-lipoic acid as a biological antioxidant. Free Radic Biol Med 1995;19:227–250.
  • Bhabak KP, Mugesh G. Functional mimics of glutathione peroxidase: bioinspired synthetic antioxidants. Acc Chem Res 2010;43:1408–1419.
  • de Bem AF, Fiuza B, Calcerrada P, Brito PM, Peluffo G, Dinis TC, et al.Protective effect of diphenyl diselenide against peroxynitrite-mediated endothelial cell death: a comparison with ebselen. Nitric Oxide 2013;31:20–30.
  • Kumar BS, Kunwar A, Ahmad A, Kumbhare LB, Jain VK, Priyadarsini KI. In vitro radioprotection studies of organoselenium compounds: differences between mono- and diselenides. Radiat Environ Biophys 2009;48:379–384.
  • Kunwar A, Bansal P, Kumar SJ, Bag PP, Paul P, Reddy ND, et al.In vivo radioprotection studies of 3,3’-diselenodipropionic acid, a selenocystine derivative. Free Radic Biol Med 2010;48:399–410.
  • Mishra B, Kumbhare LB, Jain VK, Priyadarsini KI. Pulse radiolysis studies on reactions of hydroxyl radicals with selenocystine derivatives. J Phys Chem B 2008;112:4441–4446.
  • Mugesh G, Panda A, Singh HB, Punekar NS, Butcher RJ. Glutathione peroxidase-like antioxidant activity of diaryl diselenides: a mechanistic study. J Am Chem Soc 2001;123:839–850.
  • Stefanello ST, Prestes AS, Ogunmoyole T, Salman SM, Schwab RS, Brender CR, et al.Evaluation of in vitro antioxidant effect of new mono and diselenides. Toxicol In Vitro 2013;27:1433–1439.
  • Kunwar A, Mishra B, Barik A, Kumbhare LB, Pandey R, Jain VK, Priyadarsini KI. 3,3’-diselenodipropionic acid, an efficient peroxyl radical scavenger and a GPx mimic, protects erythrocytes (RBCs) from AAPH-induced hemolysis. Chem Res Toxicol 2007;20:1482–1487.
  • Yoshida S, Kumakura F, Komatsu I, Arai K, Onuma Y, Hojo H, et al.Antioxidative glutathione peroxidase activity of selenoglutathione. Angew Chemie Int Ed Engl 2011;50:2125–2128.
  • Pattison DI, Davies MJ. Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. Chem Res Toxicol 2001;14:1453–1464.
  • Masuda T, Nakano S, Kondo M. Rate constants for the reactions of OH radicals with the enzyme proteins as determined by the p-nitrosodimethylaniline method. J Radiat Res 1973;14:339–345.
  • Quintiliani M, Badiello R, Tamba M, Esfandi A, Gorin G. Radiolysis of glutathione in oxygen-containing solutions of pH7. Int J Radiat Biol Phys Chem Med 1977;32:195–202.
  • Finley JW, Wheeler EL, Witt SC. Oxidation of glutathione by hydrogen-peroxide and other oxidizing-agents. J Agric Food Chem 1981;29:404–407.
  • Devasagayam TPA, Sundquist AR, Di Mascio P, Kaiser S, Sies H. Activity of thiols as singlet molecular-oxygen quenchers. J Photochem Photobiol B 1991;9:105–116.
  • Clennan EL, Wang DY, Clifton C, Chen MF. Geometry-dependent quenching of singlet oxygen by dialkyl disulfides. J Am Chem Soc 1997;119:9081–9082.
  • Okamoto T, Akaike T, Sawa T, Miyamoto Y, van der Vliet A, Maeda H. Activation of matrix metalloproteinases by peroxynitrite-induced protein S-glutathiolation via disulfide S-oxide formation. J Biol Chem 2001;276:29596–29602.
  • Giles GI, Tasker KM, Collins C, Giles NM, O’Rourke E, Jacob C. Reactive sulphur species: An in vitro investigation of the oxidation properties of disulphide S-oxides. Biochem J 2002;364:579–585.
  • Giles GI, Tasker KM, Jacob C. Oxidation of biological thiols by highly reactive disulfide-S-oxides. Gen Physiol Biophys 2002;21:65–72.
  • Huang K-P, Huang FL. Glutathionylation of proteins by glutathione disulfide S-oxide. Biochem Pharmacol 2002;64:1049–1056.
  • Huang K-P, Huang FL, Shetty PK, Yergey AL. Modification of protein by disulfide S-monoxide and disulfide S-dioxide: distinctive effects on PKC. Biochemistry 2007;46:1961–1971.
  • Hu Y, Wang TW, Liao XY, Du GC, Chen JA, Xu JG. Anti-oxidative stress and beyond: Multiple functions of the protein glutathionylation. Protein Pept Lett 2010;17:1234–1244.
  • Prabhu PC, Adhikari B, Phadnis PP, Chakraborty S, Jain VK, Priyadarsini KI. In vitro antioxidant studies on diselenodinicotinamide: a potent GPx mimic. Indian J Chem A 2014;53:781–786.
  • Prabhu P, Singh BG, Noguchi M, Phadnis PP, Jain VK, Iwaoka M, Priyadarsini KI. Stable selones in glutathione-peroxidase-like catalytic cycle of selenonicotinamide derivative. Org Biomol Chem 2014;12:2404–2412.
  • Bhuyan BJ, Lamani DS, Mugesh G, Wirth T. Current research on mimics and models of selenium-containing antioxidants. In: Devillanova FA, Du Mont WW (eds.). Handbook of Chalcogen Chemistry: New Perspectives in Sulfur, Selenium and Tellurium, Vol. 2. 2nd ed. Cambridge, UK: Royal Society of Chemistry; 2013. pp. 25–46.
  • Iwaoka M, Tomoda S. A model study on the effect of an amino group on the antioxidant activity of glutathione peroxidase. J Am Chem Soc 1994;116:2557–2561.
  • Morgenstern R, Cotgreave IA, Engman L. Determination of the relative contributions of the diselenide and selenol forms of ebselen in the mechanism of its glutathione peroxidase-like activity. Chem Biol Interact 1992;84:77–84.
  • Masumoto H, Kissner R, Koppenol WH, Sies H. Kinetic study of the reaction of ebselen with peroxynitrite. FEBS Lett 1996;398:179–182.
  • Scurlock R, Rougee M, Bensasson RV, Evers M, Dereu N. Deactivation of singlet molecular oxygen by organo-selenium compounds exhibiting glutathione peroxidase activity and by sulfur-containing homologs. Photochem Photobiol 1991;54:733–736.
  • Selvakumar K, Shah P, Singh HB, Butcher RJ. Synthesis, structure, and glutathione peroxidase-like activity of amino acid containing ebselen analogues and diaryl diselenides. Chem Eur J 2011;17:12741–12755.
  • Balkrishna SJ, Kumar S, Azad GK, Bhakuni BS, Panini P, Ahalawat N, et al.An ebselen like catalyst with enhanced GPx activity via a selenol intermediate. Org Biomol Chem 2014;12:1215–1219.
  • Satheeshkumar K, Mugesh G. Synthesis and antioxidant activity of peptide-based ebselen analogues. Chem Eur J 2011;17:4849–4857.
  • Prabhu P, Bag PP, Singh BG, Hodage A, Jain VK, Iwaoka M, Priyadarsini KI. Effect of functional groups on antioxidant properties of substituted selenoethers. Free Radic Res 2011;45:461–468.
  • Barik A, Singh BG, Sharma A, Jain VK, Priyadarsini KI. Pulse radiolysis studies of 3,5-dimethyl pyrazole derivatives of selenoethers. J Phys Chem A 2014;118:10179–10187.
  • Singh BG, Thomas E, Kumakura F, Dedachi K, Iwaoka M, Priyadarsini KI. One-electron redox processes in a cyclic selenide and a selenoxide: a pulse radiolysis study. J Phys Chem A 2010;114:8271–8277.
  • Kumakura F, Mishra B, Priyadarsini KI, Iwaoka M. A water-soluble cyclic selenide with enhanced glutathione peroxidase-like catalytic activity. Eur J Org Chem 2010:440–445.
  • Storkey C, Davies MJ, White JM, Schiesser CH. Synthesis and antioxidant capacity of 5-selenopyranose derivatives. Chem Commun 2011;47:9693–9695.
  • Brot N, Weissbach L, Werth J, Weissbach H. Enzymatic reduction of protein-bound methionine sulfoxide. Proc Natl Acad Sci USA 1981;78:2155–2158.
  • Grimaud R, Ezraty B, Mitchell JK, Lafitte D, Briand C, Derrick PJ, Barras F. Repair of oxidized proteins – identification of a new methionine sulfoxide reductase. J Biol Chem 2001;276:48915–48920.
  • Sharov VS, Ferrington DA, Squier TC, Schoneich C. Diastereoselective reduction of protein-bound methionine sulfoxide by methionine sulfoxide reductase. FEBS Lett 1999;455:247–250.
  • Moskovitz J, Poston JM, Berlett BS, Nosworthy NJ, Szczepanowski R, Stadtman ER. Identification and characterization of a putative active site for peptide methionine sulfoxide reductase (MsrA) and its substrate stereospecificity. J Biol Chem 2000;275:14167–14172.
  • Tarrago L, Kaya A, Weerapana E, Marino SM, Gladyshev VN. Methionine sulfoxide reductases preferentially reduce unfolded oxidized proteins and protect cells from oxidative protein unfolding. J Biol Chem 2012;287:24448–24459.
  • Lin Z, Johnson LC, Weissbach H, Brot N, Lively MO, Lowther WT. Free methionine-®-sulfoxide reductase from Escherichia coli reveals a new GAF domain function. Proc Natl Acad Sci USA 2007;104:9597–9602.
  • Etienne F, Spector D, Brot N, Weissbach H. A methionine sulfoxide reductase in Escherichia coli that reduces the R enantiomer of methionine sulfoxide. Biochem Biophys Res Commun 2003;300:378–382.
  • Assmann A, Briviba K, Sies H. Reduction of methionine selenoxide to selenomethionine by glutathione. Arch Biochem Biophys 1998;349:201–203.
  • Maiorino M, Roveri A, Coassin M, Ursini F. Kinetic mechanism and substrate specificity of glutathione peroxidase activity of ebselen (PZ51). Biochem Pharmacol 1988;37: 2267–2271.
  • Müller A, Cadenas E, Graf P, Sies H. A novel biologically active seleno-organic compound: Glutathione peroxidase-like activity in vitro and antioxidant capacity of PZ51 (Ebselen). Biochem Pharmacol 1984;33:3235–3239.
  • Krause RJ, Elfarra AA. Reduction of l-methionine selenoxide to seleno-l-methionine by endogenous thiols, ascorbic acid, or methimazole. Biochem Pharmacol 2009;77: 134–140.
  • Pullar JM, Winterbourn CC, Vissers M. Loss of GSH and thiol enzymes in endothelial cells exposed to sublethal concentrations of hypochlorous acid. Am J Physiol Heart Circ Physiol 1999;277:H1505–H1512.
  • Vissers M, Winterbourn CC. Oxidation of intracellular glutathione after exposure of human red blood cells to hypochlorous acid. Biochem J 1995;307:57–62.
  • Smit M, Anderson R. Inhibition of mitogen-activated proliferation of human lymphocytes by hypochlorous acid in vitro: Protection and reversal by ascorbate and cysteine. Inflamm Res 1990;30:338–343.
  • Smit M, Anderson R. Biochemical mechanisms of hydrogen peroxide-and hypochlorous acid-mediated inhibition of human mononuclear leukocyte functions in vitro: Protection and reversal by anti-oxidants. Inflamm Res 1992;36:58–65.
  • Fu X, Mueller DM, Heinecke JW. Generation of intramolecular and intermolecular sulfenamides, sulfinamides, and sulfonamides by hypochlorous acid: a potential pathway for oxidative cross-linking of low-density lipoprotein by myeloperoxidase. Biochemistry 2002;41:1293–1301.
  • Lloyd MM, Grima MA, Rayner BS, Hadfield KA, Davies MJ, Hawkins CL. Comparative reactivity of the myeloperoxidase-derived oxidants hypochlorous acid and hypothiocyanous acid with human coronary artery endothelial cells. Free Radic Biol Med 2013;65:1352–1362.
  • Summers FA, Quigley AF, Hawkins CL. Identification of proteins susceptible to thiol oxidation in endothelial cells exposed to hypochlorous acid and N-chloramines. Biochem Biophys Res Commun 2012;425:157–161.
  • Bozonet SM, Scott-Thomas AP, Nagy P, Vissers MC. Hypothiocyanous acid is a potent inhibitor of apoptosis and caspase 3 activation in endothelial cells. Free Radic Biol Med 2010;49:1054–1063.
  • Pullar JM, Vissers MCM, Winterbourn CC. Glutathione oxidation by hypochlorous acid in endothelial cells produces glutathione sulfonamide as a major product but not glutathione disulfide. J Biol Chem 2001;276:22120–22125.
  • Summers FA, Morgan PE, Davies MJ, Hawkins CL. Identification of plasma proteins that are susceptible to thiol oxidation by hypochlorous acid and N-chloramines. Chem Res Toxicol 2008;21:1832–1840.
  • Peskin AV, Winterbourn CC. Taurine chloramine is more selective than hypochlorous acid at targeting critical cysteines and inactivating creatine kinase and glyceraldehyde-3-phosphate dehydrogenase. Free Radic Biol Med 2006;40:45–53.
  • Chae HZ, Chung SJ, Rhee SG. Thioredoxin-dependent peroxide reductase from yeast. J Biol Chem 1994;269: 27670–27678.
  • Rotruck J, Pope A, Ganther H, Swanson A, Hafeman D, Hoekstra W. Selenium: Biochemical role as a component of glutathione peroxidase. Science 1973;179:588.
  • Stadtman T. Biosynthesis and function of selenocysteine-containing enzymes. J Biol Chem 1991;266:16257–16260.
  • Zhong L, Holmgren A. Mammalian thioredoxin reductases as hydroperoxide reductases. Methods Enzymol 2002;347: 236–243.
  • Woo HA, Chae HZ, Hwang SC, Yang KS, Kang SW, Kim K, Rhee SG. Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science 2003;300:653–656.
  • Yang KS, Kang SW, Woo HA, Hwang SC, Chae HZ, Kim K, Rhee SG. Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J Biol Chem 2002;277:38029–38036.
  • Bjornstedt M, Kumar S, Bjorkhem L, Spyrou G, Holmgren A. Selenium and the thioredoxin and glutaredoxin systems. Biomed Environ Sci 1997;10:271–279.
  • Holmgren A. Thioredoxin. Annu Rev Biochem 1985;54: 237–271.
  • Holmgren A, Lu J. Thioredoxin and thioredoxin reductase: current research with special reference to human disease. Biochem Biophys Res Commun 2010;396:120–124.
  • Holmgren A. Thioredoxin .6. Amino acid sequence of protein from Escherichia coli B. Eur J Biochem 1968;6:475.
  • Weichsel A, Gasdaska JR, Powis G, Montfort WR. Crystal structures of reduced, oxidized, and mutated human thioredoxins: evidence for a regulatory homodimer. Structure 1996;4:735–751.
  • Zhong L, Arner ES, Holmgren A. Structure and mechanism of mammalian thioredoxin reductase: the active site is a redox-active selenolthiol/selenenylsulfide formed from the conserved cysteine-selenocysteine sequence. Proc Natl Acad Sci USA 2000;97:5854–5859.
  • Gladyshev VN, Jeang KT, Stadtman TC. Selenocysteine, identified as the penultimate C-terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene. Proc Natl Acad Sci USA 1996;93: 6146–6151.
  • Eckenroth B, Harris K, Turanov AA, Gladyshev VN, Raines RT, Hondal RJ. Semisynthesis and characterization of mammalian thioredoxin reductase. Biochemistry 2006;45: 5158–5170.
  • Winterbourn CC, Hampton MB. Thiol chemistry and specificity in redox signaling. Free Radic Biol Med 2008;45: 549–561.
  • Forman HJ, Fukuto JM, Torres M. Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers. Am J Physiol Cell Physiol 2004;287:C246–C256.
  • Rosen H, Klebanoff SJ, Wang Y, Brot N, Heinecke JW, Fu X. Methionine oxidation contributes to bacterial killing by the myeloperoxidase system of neutrophils. Proc Natl Acad Sci USA 2009;106:18686–18691.
  • Reddy VY, Desrochers PE, Pizzo SV, Gonias SL, Sahakian JA, Levine RL, Weiss SJ. Oxidative dissociation of human α(2)-macroglobulin tetramers into dysfunctional dimers. J Biol Chem 1994;269:4683–4691.
  • Wu SM, Pizzo SV. Mechanism of hypochlorite-mediated inactivation of proteinase inhibition by α(2)-macroglobulin. Biochemistry 1999;38:13983–13990.
  • Levine RL, Berlett BS, Moskovitz J, Mosoni L, Stadtman ER. Methionine residues may protect proteins from critical oxidative damage. Mech Age Dev 1999;107:323–332.
  • Luo S, Levine RL. Methionine in proteins defends against oxidative stress. FASEB J 2009;23:464–472.
  • Moskovitz J, Bar-Noy S, Williams WM, Berlett BS, Stadtman ER. Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. Proc Natl Acad Sci USA 2001;98:12920–12925.
  • Moskovitz J, Berlett BS, Poston JM, Stadtman ER. The yeast peptide methionine sulfoxide reductase functions as an antioxidant in vivo. Proc Natl Acad Sci USA 1997;94:9585–9589.
  • Cabreiro F, Picot CR, Perichon M, Castel J, Friguet B, Petropoulos I. Overexpression of mitochondrial methionine sulfoxide reductase B2 protects leukemia cells from oxidative stress-induced cell death and protein damage. J Biol Chem 2008;283:16673–16681.
  • Ruan H, Tang XD, Chen ML, Joiner MA, Sun G, Brot N, et al.High-quality life extension by the enzyme peptide methionine sulfoxide reductase. Proc Natl Acad Sci USA 2002;99:2748–2753.
  • Kigawa T, Yamaguchi-Nunokawa E, Kodama K, Matsuda T, Yabuki T, Matsuda N, et al.Selenomethionine incorporation into a protein by cell-free synthesis. J Struct Func Genom 2002;2:29–35.
  • Francoleon NE, Carrington SJ, Fukuto JM. The reaction of H2S with oxidized thiols: Generation of persulfides and implications to H2S biology. Arch Biochem Biophys 2011;516:146–153.
  • Li Q, Lancaster JR Jr. Chemical foundations of hydrogen sulfide biology. Nitric Oxide 2013;35:21–34.
  • Mueller EG. Trafficking in persulfides: delivering sulfur in biosynthetic pathways. Nat Chem Biol 2006;2:185–194.
  • Pan J, Carroll KS. Persulfide reactivity in the detection of protein S-sulfhydration. ACS Chem Biol 2013;8: 1110–1116.
  • Ida T, Sawa T, Ihara H, Tsuchiya Y, Watanabe Y, Kumagai Y, et al.Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. Proc Natl Acad Sci USA 2014;111:7606–7611.
  • Miranda KM, Wink DA. Persulfides and the cellular thiol landscape. Proc Natl Acad Sci USA 2014;111:7505–7506.
  • Westley J. Rhodanese. Adv Enzymol Mol Biol 1973;39: 327–368.
  • Toohey JI, Cooper AJ. Thiosulfoxide (sulfane) sulfur: new chemistry and new regulatory roles in biology. Molecules 2014;19:12789–12813.
  • Lima CD. Analysis of the E. coli NifS CsdB protein at 2.0 Å reveals the structural basis for perselenide and persulfide intermediate formation. J Mol Biol 2002;315:1199–1208.
  • Ogasawara Y, Lacourciere G, Stadtman TC. Formation of a selenium-substituted rhodanese by reaction with selenite and glutathione: Possible role of a protein perselenide in a selenium delivery system. Proc Natl Acad Sci USA 2001;98: 9494–9498.
  • Paulsen CE, Carroll KS. Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem Rev 2013;113:4633–4679.
  • Huang Z, Rose AH, Hoffmann PR. The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antiox Redox Signal 2012;16: 705–743.
  • Rayman MP. Selenium and human health. Lancet 2012;379:1256–1268.
  • Roman M, Jitaru P, Barbante C. Selenium biochemistry and its role for human health. Metallomics 2014;6:25–54.
  • Sanmartin C, Plano D, Font M, Palop JA. Selenium and clinical trials: new therapeutic evidence for multiple diseases. Curr Med Chem 2011;18:4635–4650.
  • Steinbrenner H, Speckmann B, Sies H. Toward understanding success and failures in the use of selenium for cancer prevention. Antiox Redox Signal 2013;19:181–191.
  • Chakraborty S, Yadav SK, Subramanian M, Priyadarsini KI, Iwaoka M, Chattopadhyay S. dl-trans-3,4-dihydroxy-1-selenolane (DHSred) accelerates healing of indomethacin-induced stomach ulceration in mice. Free Radic Res 2012;46: 1378–1386.
  • Kunwar A, Jain VK, Priyadarsini KI, Haston CK. A selenocysteine derivative therapy affects radiation-induced pneumonitis in the mouse. Am J Respir Cell Mol Biol 2013;49:654–661.
  • Hort MA, Straliotto MR, Netto PM, da Rocha JB, de Bem AF, Ribeiro-do-Valle RM. Diphenyl diselenide effectively reduces atherosclerotic lesions in LDLr -/- mice by attenuation of oxidative stress and inflammation. J Cardiovasc Pharmacol 2011;58:91–101.
  • Weng Y, Song Q, Zhou Y, Zhang L, Wang J, Chen J, et al.Immobilization of selenocystamine on TiO2 surfaces for in situ catalytic generation of nitric oxide and potential application in intravascular stents. Biomaterials 2011;32:1253–1263.
  • Loeschner K, Hadrup N, Hansen M, Pereira SA, Gammelgaard B, Moller LH, et al.Absorption, distribution, metabolism and excretion of selenium following oral administration of elemental selenium nanoparticles or selenite in rats. Metallomics 2014;6:330–337.
  • Garcia-Sevillano MA, Garcia-Barrera T, Gomez-Ariza JL. Development of a new column switching method for simultaneous speciation of selenometabolites and selenoproteins in human serum. J Chromatogr A 2013;1318:171–179.
  • Ogra Y, Anan Y. Selenometabolomics explored by speciation. Biol Pharm Bull 2012;35:1863–1869.
  • Weekley CM, Aitken JB, Vogt S, Finney LA, Paterson DJ, de Jonge MD, et al.Uptake, distribution, and speciation of selenoamino acids by human cancer cells: X-ray absorption and fluorescence methods. Biochemistry 2011;50:1641–1650.
  • Weekley CM, Aitken JB, Vogt S, Finney LA, Paterson DJ, de Jonge MD, et al.Metabolism of selenite in human lung cancer cells: X-ray absorption and fluorescence studies. J Am Chem Soc 2011;133:18272–18279.
  • Weekley CM, Aitken JB, Finney L, Vogt S, Witting PK, Harris HH. Selenium metabolism in cancer cells: The combined application of XAS and XFM techniques to the problem of selenium speciation in biological systems. Nutrients 2013;5:1734–1756.
  • Shanu A, Groebler L, Kim HB, Wood S, Weekley CM, Aitken JB, et al.Selenium inhibits renal oxidation and inflammation but not acute kidney injury in an animal model of rhabdomyolysis. Antiox Redox Signal 2013;18:756–769.
  • Weekley CM, Aitken JB, Witting PK, Harris HH. XAS studies of Se speciation in selenite-fed rats. Metallomics 2014;6:2193–2203.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.