532
Views
9
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Rational drug design applied to myeloperoxidase inhibition

&
Pages 711-720 | Received 14 Oct 2014, Accepted 05 Mar 2015, Published online: 24 Apr 2015

References

  • Woster PM. Foreword: American Chemical Society Division of Medicinal Chemistry. Celebrating 100 Years of Excellence. J Med Chem 2009;52:7333–7338.
  • Seddon G, Lounnas V, McGuire R, van den Bergh T, Bywater RP, Oliveira L, Vriend G. Drug design for ever, from hype to hope. J Comput Aided Mol Des 2012;26:137–150.
  • Hol WGJ.Protein crystallography and computer-graphics toward rational drug design. Angew Chem Int Ed Engl 1986;25:767–778.
  • Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M, et al. QSAR Modeling: Where Have You Been? Where Are You Going To? J Med Chem 2014;57: 4977–5010.
  • Arnhold J, Furtmueller PG, Regelsberger G, Obinger C. Redox properties of the couple compound I/native enzyme of myeloperoxidase and eosinophil peroxidase. Eur J Biochem 2001;268:5142–5148.
  • Furtmüller PG, Zederbauer M, Jantschko W, Helm J, Bogner M, Jakopitsch C, Obinger C. Active site structure and catalytic mechanisms of human peroxidases. Arch Biochem Biophys 2006;445:199–213.
  • Klebanoff SJ, Kettle AJ, Rosen H, Winterbourn CC, Nauseef WM. Myeloperoxidase: a front-line defender against phagocytosed microorganisms. J Leukoc Biol 2013;93: 185–198.
  • Maruyama Y, Lindholm B, Stenvinkel P.Inflammation and oxidative stress in ESRD - the role of myeloperoxidase. J Nephrol 2004;17:S72–S76.
  • Kettle AJ, Chan T, Osberg I, Senthilmohan R, Chapman ALP, Mocatta TJ, Wagener JS. Myeloperoxidase and protein oxidation in the airways of young children with cystic fibrosis. Am J Resp Crit Care Med 2004;170:1317–1323.
  • Minohara M, Matsuoka T, Li W, Osoegawa M, Ishizu T, Ohyagi Y, Kira J-I.Upregulation of myeloperoxidase in patients with opticospinal multiple sclerosis: Positive correlation with disease severity. J Neuroimmunol 2006;178:156–160.
  • Odobasic D, Yang Y, Muljadi RC, O’Sullivan KM, Kao W, Smith M, et al. Endogenous myeloperoxidase is a mediator of joint inflammation and damage in experimental arthritis. Arthritis Rheumatol 2014;66:907–917.
  • Stendahl O, Molin L, Dahlgren C. The inhibition of polymorphonuclear leukocyte cytotoxicity by dapsone. A possible mechanism in the treatment of dermatitis herpetiformis. J Clin Invest 1978;62:214–220.
  • Theron CN, Lubbe S, van Zyl AS. Inhibitory effects of non-steroidal anti-inflammatory drugs on human myeloperoxidase. S Afr Med J 1979;56:670–675.
  • Van Zyl A, Lubbe S, Potgieter A, van Zyl J. The influence of non-steroidal anti-inflammatory and antithyroid agents on myeloperoxidase-catalysed activities of human leucocytes. S Afr Med J 1979;55:1082–1087.
  • Pekoe G, Van Dyke K, Mengoli H, Peden D, English D. Comparison of the effects of antioxidant non-steroidal anti-inflammatory drugs against myeloperoxidase and hypochlorous acid luminol-enhanced chemiluminescence. Agents Actions 1982;12:232–238.
  • Pekoe G, Van Dyke K, Peden D, Mengoli H, English D. Antioxidation theory of non-steroidal anti-inflammatory drugs based upon the inhibition of luminol-enhanced chemiluminescence from the myeloperoxidase reaction. Agents Actions 1982;12:371–376.
  • Cuperus RA, Muijsers AO, Wever R. The effect of D-penicillamine on human myeloperoxidase, a mechanism for the efficacy of the drug in rheumatoid arthritis. Biochim Biophys Acta 1983;749:18–23.
  • Cuperus RA, Muijsers AO, Wever R. Antiarthritic drugs containing thiol groups scavenge hypochlorite and inhibit its formation by myeloperoxidase from human leukocytes. A therapeutic mechanism of these drugs in rheumatoid arthritis? Arthritis Rheum 1985;28:1228–1233.
  • Ichihara S, Tomisawa H, Fukazawa H, Tateishi M, Joly R, Heintz R. Involvement of leukocytes in the oxygenation and chlorination reaction of phenylbutazone. Biochem Pharmacol 1986;35:3935–3939.
  • Halliwell B, Wasil M, Grootveld M. Biologically significant scavenging of the myeloperoxidase-derived oxidant hypochlorous acid by ascorbic acid. Implications for antioxidant protection in the inflamed rheumatoid joint. FEBS Lett 1987;213:15–17.
  • Wasil M, Halliwell B, Moorhouse CP, Hutchison DC, Baum H. Biologically-significant scavenging of the myeloperoxidase-derived oxidant hypochlorous acid by some anti-inflammatory drugs. Biochem Pharmacol 1987;36: 3847–3850.
  • Klebanoff SJ, Waltersdorph AM.Inhibition of peroxidase-catalyzed reactions by deferoxamine. Arch Biochem Biophys 1988;264:600–606.
  • Pincemail J, Deby C, Thirion A, de Bruyn-Dister M, Goutier R. Human myeloperoxidase activity is inhibited in vitro by quercetin. Comparison with three related compounds. Experientia 1988;44:450–453.
  • van Zyl JM, Basson K, van der Walt BJ. The inhibitory effect of acetaminophen on the myeloperoxidase-induced antimicrobial system of the polymorphonuclear leukocyte. Biochem Pharmacol 1989;38:161–165.
  • van Zyl JM, Basson K, Uebel RA, van der Walt BJ. Isoniazid-mediated irreversible inhibition of the myeloperoxidase antimicrobial system of the human neutrophil and the effect of thyronines. Biochem Pharmacol 1989;38: 2363–2373.
  • Davies B, Edwards SW. Inhibition of myeloperoxidase by salicylhydroxamic acid. Biochem J 1989;258:801–806.
  • Sagone AL, Husney RM, Wewers MD, Herzyk DJ, Davis WB. Effect of dimethylthiourea on the neutrophil myeloperoxidase pathway. J Appl Physiol 1985;67:1056–1062.
  • Egan RW, Hagmann WK, Gale PH. Naphthalenes as inhibitors of myeloperoxidase: direct and indirect mechanisms of inhibition. Agents Actions 1990;29:266–276.
  • SayoH, Saito M. The mechanism of myeloperoxidase- catalysed oxidation of aminopyrine. Xenobiotica 1990;20: 957–965.
  • Ikeda-Saito M, Shelley DA, Lu L, Booth KS, Caughey WS, Kimura S. Salicylhydroxamic acid inhibits myeloperoxidase activity. J Biol Chem 1991;266:3611–3616.
  • Kettle AJ, Winterbourn CC. Mechanism of inhibition of myeloperoxidase by anti-inflammatory drugs. Biochem Pharmacol 1991;41:1485–1492
  • Shacter E, Lopez RL, Pati S. Inhibition of the myeloperoxidase-H2O2-Cl- system of neutrophils by indomethacin and other non-steroidal anti-inflammatory drugs. Biochem Pharmacol 1991;41:975–984.
  • van Zyl JM, Basson K, Kriegler A, van der Walt BJ. Mechanisms by which clofazimine and dapsone inhibit the myeloperoxidase system. A possible correlation with their anti-inflammatory properties. Biochem Pharmacol 1991;42:599–608.
  • Nassberger L. The antihypertensive compounds hydralazine, dihydralazine and cadralazine and their metabolites inhibit myeloperoxidase activity as measured by chemiluminescence. Biochem Pharmacol 1991;42:1844–1847.
  • van Zyl JM, Kriegler A, van der Walt BJ. Anti-oxidant properties of H2-receptor antagonists.Effects on myeloperoxidase-catalysed reactions and hydroxyl radical generation in a ferrous-hydrogen peroxide system. Biochem Pharmacol 1993;45:2389–2397.
  • Labro MT, el Benna J, Charlier N, Abdelghaffar H, Hakim J. Cefdinir (CI-983), a new oral amino-2-thiazolyl cephalosporin, inhibits human neutrophil myeloperoxidase in the extracellular medium but not the phagolysosome. J Immunol 1994;152: 2447–2455.
  • Zuckerman SH, Bryan N. Inhibition of LDL oxidation and myeloperoxidase dependent tyrosyl radical formation by the selective estrogen receptor modulator raloxifene (LY139481 HCL). Atherosclerosis 1996;126:65–75.
  • Kettle AJ, Candaeis LP. Oxidation of tryptophan by redox intermediates of myeloperoxidase and inhibition of hypochlorous acid production. Redox Rep 2000;5:179–184.
  • Nève J, Parij N, Moguilevsky N. Inhibition of the myeloperoxidase chlorinating activity by non-steroidal anti-inflammatory drugs investigated with a human recombinant enzyme. Eur J Pharmacol 2001;417:37–43.
  • Allegra M, Furtmüller PG, Regelsberger G, Turco-Liveri ML, Tesoriere L, Perretti M, et al. Mechanism of reaction of melatonin with humanmyeloperoxidase. Biochem Biophys Res Commun 2001;282:380–386.
  • Cavallaro A, Ainis T, Bottari C, Fimiani V. Effect of resveratrol on some activities of isolated and in whole blood human neutrophils. Physiol Res 2003;52:555–562.
  • Van Antwerpen P, Boudjeltia KZ, Babar S, Legssyer I, Moreau P, Moguilevsky N, et al.Thiol-containing molecules interact with themyeloperoxidase/H2O2/chloride system to inhibit LDL oxidation. Biochem Biophys Res Commun 2005;337: 82–88.
  • Soyer Z, Bas M, Pabuccuoglu A, Pabuccuoglu V. Synthesis of some2(3H)-benzoxazolone derivatives and their in-vitro effects on human leukocytemyeloperoxidase activity. Arch Pharm (Weinheim) 2005;338:405–410.
  • Van Antwerpen P, Legssyer I, ZouaouiBoudjeltia K, Babar S, Moreau P, Moguilevsky N, et al. Captopril inhibits the oxidative modification of apolipoprotein B-100 caused by myeloperoxydase in a comparative in vitro assay of angiotensin converting enzyme inhibitors. Eur J Pharmacol 2006;537: 31–36.
  • Van Antwerpen P, Dufrasne F, Lequeux M, Boudjeltia KZ, Lessgyer I, Babar S, et al. Inhibition of the myeloperoxidase chlorinating activity by non-steroidal anti-inflammatory drugs: flufenamic acid and its 5-chloro-derivative directly interact with a recombinant human myeloperoxidase to inhibit the synthesis of hypochlorous acid. Eur J Pharmacol 2007;570: 235–243.
  • Zuurbier KW, Bakkenist AR, Fokkens RH, Nibbering NM, Wever R, Muijsers AO. Interaction of myeloperoxidase with diclofenac. Inhibition of the chlorinating activity of myeloperoxidase by diclofenac and oxidation of diclofenac to dihydroxyazobenzene by myeloperoxidase. Biochem Pharmacol 1990;40:1801–1808.
  • Daugherty A, Dunn JL, Rateri DL, Heinecke JW. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest 1994;94:437–444.
  • Hazell LJ, Baernthaler G, Stocker R. Correlation between intima-to-media ratio, apolipoprotein B-100, myeloperoxidase, and hypochlorite-oxidized proteins in human atherosclerosis. Free Radic Biol Med 2001;31:1254–1262.
  • Peng D-Q, Brubaker G, Wu Z, Zheng L, Willard B, Kinter M, et al. Apolipoprotein A-I Tryptophan Substitution Leads to Resistance to Myeloperoxidase-Mediated Loss of Function. Arterioscler Thromb Vasc Biol 2008;28:2063–2070
  • Huang Y, DiDonato JA, Levison BS, Schmitt D, Li L, Wu Y, et al. An abundant dysfunctional apolipoprotein A1 in human atheroma. Nat Med 2014;20:193–203.
  • Moguilevsky N, ZouaouiBoudjeltia K, Babar S, Delrée P, Legssyer I, Carpentier Y, et al. Monoclonal antibodies against LDL progressively oxidized by myeloperoxidase react with ApoB-100 protein moiety and human atherosclerotic lesions. Biochem Biophys Res Commun 2004;323: 1223–1228.
  • Hazen SL, Heinecke JW. 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Invest 1997;99:2075–2081.
  • Delporte C, Boudjeltia KZ, Noyon C, Furtmüller PG, Nuyens V, Slomianny MC, et al. Impact of myeloperoxidase-LDL interactions on enzyme activity and subsequent posttranslational oxidative modifications of apoB-100. J Lipid Res 2014;55:747–757.
  • Boudjeltia KZ, Legssyer I, Van Antwerpen P, Kisoka RL, Babar S, Moguilevsky N, et al. Triggering of inflammatory response by myeloperoxidase-oxidized LDL. Biochem Cell Biol 2006;84:805–812.
  • Kumar AP, Reynolds WF. Statins downregulate myeloperoxidase gene expression in macrophages. Biochem Biophys Res Comm 2005;331:442–451.
  • Van Antwerpen P, Boudjeltia KZ, Vaes M, Babar S, Madhoun P, Moguilevsky N, et al. The pleiotropic effect of statins in haemodialysis patients is not the consequence of an inhibition of LDL oxidation by myeloperoxidase. Nephrol Dial Transplant 2006;21:2672–2674.
  • Parthasarathy S, Young SG, Witztum JL, et al. Probucol inhibits oxidative modification of low density lipoprotein. J Clin Invest 1986;77:641–644.
  • Heinecke JW. Lipoprotein oxidation in cardiovascular disease: chief culprit or innocent bystander? J Exp Med 2006;203: 813–816.
  • van Antwerpen P, Néve J, Moreau P, Boudjeltia KZ, Vanhaeverbeek M, Prévost M, et al. Probucol does not inhibit myeloperoxidase-dependent low-density lipoprotein oxidation as a potent protective effect in atherosclerosis. J Cardiovasc Pharmacol 2007;50:350–351.
  • Moguilevsky N, Garcia-Quintana L, Jacquet A, Tournay C, Fabry L, Piérard L, Bollen A. Structural and biological properties of human recombinant myeloperoxidase produced by Chinese hamster ovary cell lines. Eur J Biochem 1991;197: 605–614.
  • McCormick S, Nelson A, Nauseef WM. Proconvertase proteolytic processing of an enzymatically active myeloperoxidase precursor. Arch Biochem Biophys 2012;527:31–36.
  • Furtmüller PG, Jantschko W, Regelsberger G, Jakopitsch C, Moguilevsky N, Obinger C. A transient kinetic study on the reactivity of recombinant unprocessed monomeric myeloperoxidase. FEBS Lett 2001;503:147–150.
  • Van Antwerpen P, Slomianny MC, Boudjeltia KZ, Delporte C, Faid V, Calay D, et al. Glycosylation pattern of mature dimeric leukocyte and recombinant monomeric myeloperoxidase: glycosylation is required for optimal enzymatic activity. J Biol Chem 2010;285:16351–16359.
  • Nauseef WM, Cogley M, McCormick S. Effect of the R569W missense mutation onthe biosynthesis of myeloperoxidase. J Biol Chem 1996;271:9546–9549.
  • Goedken M, McCormick S, Leidal KG, Suzuki K, Kameoka Y, Astern JM, et al. Impact of two novel mutations on the structure andfunction of human myeloperoxidase. J Biol Chem 2007;282:27994–28003.
  • Shin K, Hayasawa H, Lönnerdal B. PCR cloning and baculovirus expression ofhuman lactoperoxidase and myeloperoxidase. BiochemBiophys Res Commun 2000;271:831–836.
  • Zederbauer M, Jantschko W, Neugschwandtner K, Jakopitsch C, Moguilevsky N, Obinger C, Furtmüller PG. Role of the covalent glutamic acid 242-heme linkage in the formation and reactivity of redox intermediates of human myeloperoxidase. Biochemistry 2005;44:6482–6491.
  • Zederbauer M, Furtmüller PG, Ganster B, Moguilevsky N, Obinger C. The vinyl-sulfonium bond in human myeloperoxidase: impact on compound I formation and reduction by halides and thiocyanate. BiochemBiophys Res Commun 2007;356:450–456.
  • Zederbauer M, Furtmüller PG, Bellei M, Stampler J, Jakopitsch C, Battistuzzi G, et al. Disruption of the aspartate to heme ester linkage in human myeloperoxidase: impact on ligand binding, redox chemistry, and interconversion of redox intermediates. J Biol Chem 2007;282:17041–17052.
  • Zeng J, Fenna RE. X-ray crystal structure of canine myeloperoxidase at 3 Å resolution. J Mol Biol 1992;226:185–207.
  • Fiedler TJ, Davey CA, Fenna RE. X-ray crystal structure and characterization of halide-binding sites of human myeloperoxidase at 1.8 A resolution. J Biol Chem 2000;275: 11964–11971.
  • Blair-Johnson M, Fiedler T, Fenna R. Human myeloperoxidase: structure of a cyanide complex and its interaction with bromide and thiocyanate substrates at 1.9 A resolution. Biochemistry 2001;40:13990–13997.
  • Carpena X, Vidossich P, Schroettner K, Calisto BM, Banerjee S, Stampler J, et al. Essential role of proximal histidine- asparagine interaction in Mammalian peroxidases. J Biol Chem 2009;284:25929–25937.
  • Davey CA, Fenna RE. 2.3 A resolution X-ray crystal structure of the bisubstrate analogue inhibitor salicylhydroxamic acid bound to human myeloperoxidase: a model for a prereaction complex with hydrogen peroxide. Biochemistry 1996;35:10967–10973.
  • Jantschko W, Furtmüller PG, Zederbauer M, Neugschwandtner K, Lehner I, Jakopitsch C, et al. Exploitation of the unusual thermodynamic properties of human myeloperoxidase in inhibitor design. Biochem Pharmacol 2005;69:1149–1157.
  • Soubhye J, Prévost M, van Antwerpen P, ZouaouiBoudjeltia K, Rousseau A, Furtmüller PG, Obinger C, vanhaeverbeek M, Ducobu J, Néve J, Gelbcke M, Dufrasne F et al Structure-based design, synthesis, and pharmacological evaluation of 3-(aminoalkyl)-5-fluoroindoles as myeloperoxidase inhibitors. J Med Chem. 2010;53:8747–8759.
  • Burner U, Jantschko W, Obinger C. Kinetics of oxidation of aliphatic and aromatic thiols by myeloperoxidase compounds I and II. FEBS Lett 1999;443:290–296.
  • Rees MD, Bottle SE, Fairfull-Smith KE, Malle E, Whitelock JM, Davies MJ. Inhibition of myeloperoxidase-mediated hypochlorous acid production by nitroxides. Biochem J 2009;421:79–86.
  • van Zyl JM, Kriegler A, van der Walt BJ. Interaction of methyl-xanthines with myeloperoxidase. An anti-inflammatory mechanism. Int J Biochem 1992;24:929–935.
  • Lee E, Miki Y, Katsura H, Kariya K. Mechanism of inactivation ofmyeloperoxidasebypropylthiouracil. Biochem Pharmacol 1990;39:1467–1471.
  • Alonso H, Bliznyuk AA, Gready JE. Combining docking and molecular dynamic simulations in drug design. Med Res Rev 2006;26:531–568.
  • Malvezzi A, Queiroz RF, de Rezende L, Augusto O, Amaral AT. MPO Inhibitors Selected by Virtual Screening. Mol Inf 2011;30:605–613.
  • Aldib I, Soubhye I, ZouaouiBoudjeltia K, Vanhaeverbeek M, Rousseau A, Furtmüller PG, et al. Evaluation of New Scaffolds of Myeloperoxidase Inhibitors by Rational Design Combined with High-Throughput Virtual Screening. J Med Chem 2012;55:7208–7218.
  • Tidén AK, Sjögren T, Svensson M, Bernlind A, Senthilmohan R, Auchère F, et al. 2-thioxanthines are mechanism-based inactivators of myeloperoxidase that block oxidative stress during inflammation. J Biol Chem 2011;286:37578–37589.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.