736
Views
57
CrossRef citations to date
0
Altmetric
Review Article

The impact of thiol peroxidases on redox regulation

Pages 126-142 | Received 13 Nov 2015, Accepted 10 May 2015, Published online: 30 Jul 2015

References

  • Flohé L, Toppo S, Cozza G, Ursini F. A comparison of thiol peroxidase mechanisms. Antioxid Redox Signal 2011; 15:763–780.
  • Toppo S, Vanin S, Bosello V, Tosatto SC. Evolutionary and structural insights into the multifaceted glutathione peroxidase (Gpx) superfamily. Antioxid Redox Signal 2008; 10:1501–1514.
  • Maiorino M, Ursini F, Bosello V, Toppo S, Tosatto SC, Mauri P, et al. The thioredoxin specificity of Drosophila GPx: a paradigm for a peroxiredoxin-like mechanism of many glutathione peroxidases. J Mol Biol 2007;365: 1033–1046.
  • Sztajer H, Gamain B, Aumann KD, Slomianny C, Becker K, Brigelius-Flohé R, Flohé L. The putative glutathione peroxidase gene of Plasmodium falciparum codes for a thioredoxin peroxidase. J Biol Chem 2001;276:7397–7403.
  • Söhling B, Parther T, Rücknagel KP, Wagner MA, Andreesen JR. A selenocysteine-containing peroxiredoxin from the strictly anaerobic organism Eubacterium acidaminophilum. Biol Chem 2001;382:979–986.
  • Hofmann B, Hecht HJ, Flohé L. Peroxiredoxins. Biol Chem 2002;383:347–364.
  • Poole LB. The catalytic mechanism of peroxiredoxins. Subcell Biochem 2007;44:61–81.
  • Poole LB, Ellis HR. Identification of cysteine sulfenic acid in AhpC of alkyl hydroperoxide reductase. Methods Enzymol 2002;348:122–136.
  • Monteiro G, Horta BB, Pimenta DC, Augusto O, Netto LE. Reduction of 1-Cys peroxiredoxins by ascorbate changes the thiol-specific antioxidant paradigm, revealing another function of vitamin C. Proc Natl Acad Sci U S A 2007; 104:4886–4891.
  • Schremmer B, Manevich Y, Feinstein SI, Fisher AB. Peroxiredoxins in the lung with emphasis on peroxiredoxin VI. Subcell Biochem 2007;44:317–344.
  • Clarke DJ, Ortega XP, Mackay CL, Valvano MA, Govan JR, Campopiano DJ, et al. Subdivision of the bacterioferritin comigratory protein family of bacterial peroxiredoxins based on catalytic activity. Biochemistry 2010;49:1319–1330.
  • Mills GC. Hemoglobin catabolism. I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown. J Biol Chem 1957;229: 189–197.
  • Sies H. Oxidative Stress. London: Academic Press; 1985. 507 p.
  • Lubos E, Loscalzo J, Handy DE. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2011; 15:1957–1997.
  • Flohé L. Selenium and Human Health: Snapshots from the Frontieres of Selenium Biomedicine. In: Woollins JD, Laitinen RS, editors: Springer; 2011. p 285–302.
  • Flohé L. The selenoprotein glutathione peroxidase. In: D Dolphin RP, and O Avramovic, editor. Glutathione: Chemical, Biochemical, and Medical Aspects - Part A.: John Wiley & Sons, Inc.; 1989. p 643–731.
  • Haber F, Weiss J. The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc Lond A Math Phys Sci 1934;147:332–351.
  • Ursini F, Maiorino M, Brigelius-Flohé R, Aumann KD, Roveri A, Schomburg D, Flohé L. Diversity of glutathione peroxidases. Methods Enzymol 1995;252:38–53.
  • Klebanoff SJ. Myeloperoxidase: friend and foe. J Leukoc Biol 2005;77:598–625.
  • Forman HJ, Maiorino M, Ursini F. Signaling functions of reactive oxygen species. Biochemistry 2010;49:835–842.
  • Samuelsson B. From studies of biochemical mechanism to novel biological mediators: prostaglandin endoperoxides, thromboxanes, and leukotrienes. Nobel Lecture, 8 December 1982. Biosci Rep 1983;3:791–813.
  • Friedrichs B, Toborek M, Hennig B, Heinevetter L, Müller C, Brigelius-Flohé R. 13-HPODE and 13-HODE modulate cytokine-induced expression of endothelial cell adhesion molecules differently. Biofactors 1999;9:61–72.
  • Flohé L. Changing paradigms in thiology from antioxidant defense toward redox regulation. Methods Enzymol 2010;473:1–39.
  • Poole LB, Hall A, Nelson KJ. Overview of peroxiredoxins in oxidant defense and redox regulation. Curr Protoc Toxicol 2011;Chapter 7:Unit7.9.
  • Finkel T. Oxygen radicals and signaling. Curr Opin Cell Biol 1998;10:248–253.
  • Finkel T. Signal transduction by reactive oxygen species. J Cell Biol 2011;194:7–15.
  • Finkel T. From sulfenylation to sulfhydration: what a thiolate needs to tolerate. Sci Signal 2012;5:pe10.
  • Rahantaniaina MS, Tuzet A, Mhamdi A, Noctor G. Missing links in understanding redox signaling via thiol/disulfide modulation: how is glutathione oxidized in plants? Front Plant Sci 2013;4:477.
  • Brigelius-Flohé R, Flohé L. Basic principles and emerging concepts in the redox regulation of transcription factors. Antioxid Redox Signal 2011;15:2335–2381.
  • Flohé L. The fairytale of the GSSG/GSH redox potential. Biochim Biophys Acta 2013;1830:3139–3142.
  • Berndt C, Lillig CH, Flohé L. Redox regulation by glutathione needs enzymes. Front Pharmacol 2014;5:168.
  • Graham DW. Heraclitus. The Internet Encyclopedia of Philosophy, ISSN 2161–0002, http://www.iep.utm.edu/2014.
  • Trujillo M, Ferrer-Sueta G, Thomson L, Flohé L, Radi R. Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite. Subcell Biochem 2007;44: 83–113.
  • Toppo S, Flohé L, Ursini F, Vanin S, Maiorino M. Catalytic mechanisms and specificities of glutathione peroxidases: variations of a basic scheme. Biochim Biophys Acta 2009;1790:1486–1500.
  • Low FM, Hampton MB, Peskin AV, Winterbourn CC. Peroxiredoxin 2 functions as a noncatalytic scavenger of low-level hydrogen peroxide in the erythrocyte. Blood 2007;109:2611–2617.
  • Cebula M, Schmidt EE, Arnér ESJ. TrxR1 as a potent regulator of the Nrf2-‐Keap1 response system. Antioxid Redox Signal 2015; in press.
  • Sies H, Gerstenecker C, Menzel H, Flohé L. Oxidation in the NADP system and release of GSSG from hemoglobin-free perfused rat liver during peroxidatic oxidation of glutathione by hydroperoxides. FEBS Lett 1972;27:171–175.
  • Flohé L, Loschen G, Günzler WA, Eichele E. Glutathione peroxidase, V. The kinetic mechanism. Hoppe Seylers Z Physiol Chem 1972;353:987–999.
  • Günzler WA, Vergin H, Müller I, Flohé L. [Glutathione peroxidase VI: the reaction of glutahione peroxidase with various hydroperoxides]. Hoppe Seylers Z Physiol Chem 1972;353:1001–1004.
  • de Duve C. Exploring cells with a centrifuge. Science 1975;189:186–194.
  • Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev 1979;59:527–605.
  • Babior BM, Kipnes RS, Curnutte JT. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 1973;52:741–744.
  • Sbarra AJ, Karnovsky ML. The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J Biol Chem 1959;234: 1355–1362.
  • Baehner RL, Murrmann SK, Davis J, Johnston RB, Jr. The role of superoxide anion and hydrogen peroxide in phagocytosis-associated oxidative metabolic reactions. J Clin Invest 1975;56:571–576.
  • Johnston RB, Jr, Keele BB, Jr, Misra HP, Lehmeyer JE, Webb LS, Baehner RL, RaJagopalan KV. The role of superoxide anion generation in phagocytic bactericidal activity. Studies with normal and chronic granulomatous disease leukocytes. J Clin Invest 1975;55:1357–1372.
  • May JM, de Haen C. Insulin-stimulated intracellular hydrogen peroxide production in rat epididymal fat cells. J Biol Chem 1979;254:2214–2220.
  • Czech MP, Lawrence JC, Jr., Lynn WS. Evidence for the involvement of sulfhydryl oxidation in the regulation of fat cell hexose transport by insulin. Proc Natl Acad Sci U S A 1974;71:4173–4177.
  • Meier B, Radeke HH, Selle S, Younes M, Sies H, Resch K, Habermehl GG. Human fibroblasts release reactive oxygen species in response to interleukin-1 or tumour necrosis factor-alpha. Biochem J 1989;263:539–545.
  • Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 1995;270:296–299.
  • Hancock JT, Henderson LM, Jones OT. Superoxide generation by EBV-transformed B lymphocytes. Activation by IL-1 beta, TNF-alpha and receptor independent stimuli. Immunology 1990;71:213–217.
  • Sundaresan M, Yu ZX, Ferrans VJ, Sulciner DJ, Gutkind JS, Irani K, et al. Regulation of reactive-oxygen-species generation in fibroblasts by Rac1. Biochem J 1996;318:379–382.
  • Katsuyama M, Matsuno K, Yabe-Nishimura C. Physiological roles of NOX/NADPH oxidase, the superoxide-generating enzyme. J Clin Biochem Nutr 2012;50:9–22.
  • Loschen G, Flohé L, Chance B. Respiratory chain linked H2O2 production in pigeon heart mitochondria. FEBS Lett 1971;18:261–264.
  • Loschen G, Azzi A, Richter C, Flohé L. Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett 1974;42:68–72.
  • Forman HJ, Kennedy JA. Role of superoxide radical in mitochondrial dehydrogenase reactions. Biochem Biophys Res Commun 1974;60:1044–1050.
  • Conrad M. Transgenic mouse models for the vital selenoenzymes cytosolic thioredoxin reductase, mitochondrial thioredoxin reductase and glutathione peroxidase 4. Biochim Biophys Acta 2009;1790:1575–1585.
  • Urao N, Ushio-Fukai M. Redox regulation of stem/progenitor cells and bone marrow niche. Free Radic Biol Med 2013;54:26–39.
  • Conrad M, Sandin A, Forster H, Seiler A, Frijhoff J, Dagnell M, et al. 12/15-lipoxygenase-derived lipid peroxides control receptor tyrosine kinase signaling through oxidation of protein tyrosine phosphatases. Proc Natl Acad Sci U S A 2010;107:15774–15779.
  • Kretz-Remy C, Mehlen P, Mirault ME, Arrigo AP. Inhibition of I kappa B-alpha phosphorylation and degradation and subsequent NF-kappa B activation by glutathione peroxidase overexpression. J Cell Biol 1996;133:1083–1093.
  • Schreck R, Baeuerle PA. A role for oxygen radicals as second messengers. Trends Cell Biol 1991;1:39–42.
  • Flohé L, Brigelius-Flohé R, Saliou C, Traber MG, Packer L. Redox regulation of NF-kappa B activation. Free Radic Biol Med 1997;22:1115–1126.
  • Brigelius-Flohé R, Friedrichs B, Maurer S, Schultz M, Streicher R. Interleukin-1-induced nuclear factor kappa B activation is inhibited by overexpression of phospholipid hydroperoxide glutathione peroxidase in a human endothelial cell line. Biochem J 1997;328:199–203.
  • Ursini F, Maiorino M, Valente M, Ferri L, Gregolin C. Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochim Biophys Acta 1982;710:197–211.
  • Banning A, Kipp A, Brigelius-Flohé R. Glutathione Peroxidase 2 and its Role in Cancer. In: Hatfield DL, Berry MJ, Gladyshev VN, editors. Selenium. Its Molecular Biology and Role in Human Health. New York: Springer; 2012. p 271–282.
  • Kaushal N, Gandhi UH, Nelson SM, Narayan V, Prabhu KS. Selenium and Inflammation. In: Hatfield DL, Berry MJ, Gladyshev VN, editors. Selenium. Its Molecular Biology and Role in Human Health. III ed. New York: Springer; 2012. p 443–456.
  • Esworthy RS, Aranda R, Martin MG, Doroshow JH, Binder SW, Chu FF. Mice with combined disruption of Gpx1 and Gpx2 genes have colitis. Am J Physiol Gastrointest Liver Physiol 2001;281:G848–855.
  • Brigelius-Flohé R, Kipp AP. Physiological functions of GPx2 and its role in inflammation-triggered carcinogenesis. Ann N Y Acad Sci 2012;1259:19–25.
  • Brigelius-Flohé R, Kipp AP. Selenium in the redox regulation of the Nrf2 and the Wnt pathway. Methods Enzymol 2013;527:65–86.
  • McClung JP, Roneker CA, Mu W, Lisk DJ, Langlais P, Liu F, Lei XG. Development of insulin resistance and obesity in mice overexpressing cellular glutathione peroxidase. Proc Natl Acad Sci U S A 2004;101:8852–8857.
  • Lei XG, Wang X. Glutathione Peroxidase 1 and Diabetes. In: Hatfield DL, Berry MJ, Gladyshev VN, editors. Selenium. Its Molecular Biology and Role in Human Health. III ed. New York: Springer; 2012. p 261–270.
  • Lippman SM, Klein EA, Goodman PJ, Lucia MS, Thompson IM, Ford LG, et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 2009;301:39–51.
  • Michiels C, Raes M, Toussaint O, Remacle J. Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radic Biol Med 1994;17:235–248.
  • Kayanoki Y, Fujii J, Islam KN, Suzuki K, Kawata S, Matsuzawa Y, Taniguchi N. The protective role of glutathione peroxidase in apoptosis induced by reactive oxygen species. J Biochem 1996;119:817–822.
  • Campa A, Baum MK. Role of selenium in HIV/AIDS. In: Hatfield DL, Berry MJ, Gladyshev VN, editors. Selenium. Its Molecular Biology and Role in Human Health. III ed. New York: Springer; 2012. p 383–397.
  • Sandström PA, Murray J, Folks TM, Diamond AM. Antioxidant defenses influence HIV-1 replication and associated cytopathic effects. Free Radic Biol Med 1998; 24:1485–1491.
  • Brigelius-Flohé R, Maurer S, Lotzer K, Böl G, Kallionpaa H, Lehtolainen P, et alOverexpression of PHGPx inhibits hydroperoxide-induced oxidation, NFkappaB activation and apoptosis and affects oxLDL-mediated proliferation of rabbit aortic smooth muscle cells. Atherosclerosis 2000;152:307–316.
  • Florian S, Krehl S, Loewinger M, Kipp A, Banning A, Esworthy S, et al. Loss of GPx2 increases apoptosis, mitosis, and GPx1 expression in the intestine of mice. Free Radic Biol Med 2010;49:1694–1702.
  • Seiler A, Schneider M, Forster H, Roth S, Wirth EK, Culmsee C, et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab 2008;8:237–248.
  • Ueta T, Inoue T, Furukawa T, Tamaki Y, Nakagawa Y, Imai H, Yanagi Y. Glutathione peroxidase 4 is required for maturation of photoreceptor cells. J Biol Chem 2012;287:7675–7682.
  • Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014;156:317–331.
  • Friedmann Angeli J, Schneider M, Proneth B, Tyurina Y, Tyurin V, Hammond V, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 2014;16:1180–1191.
  • Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012;149:1060–1072.
  • Maiorino M, Bosello V, Cozza G, Roveri A, Toppo S, Ursini F. Glutathione Peroxidase-4. In: Hatfield DL, Berry MJ, Gladyshev VN, editors. Selenium. Its Molecular Biology and Role in Human Health. III ed. New York: Springer; 2012. p 181–195.
  • Harris JR. Release of a macromolecular protein component from human erythrocyte ghosts. Biochim Biophys Acta 1968;150:534–537.
  • Flohé L, Harris JR. Introduction. History of the peroxiredoxins and topical perspectives. Subcell Biochem 2007;44:1–25.
  • Chae HZ, Robison K, Poole LB, Church G, Storz G, Rhee SG. Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc Natl Acad Sci U S A 1994;91:7017–7021.
  • Netto LES, Chae HZ, Kang SW, Rhee SG, Stadtman ER. Removal of hydrogen peroxide by thiol-specific antioxidant enzyme (TSA) is involved with its antioxidant properties. TSA possesses thiol peroxidase activity. J Biol Chem 1996;271:15315–15321.
  • Nogoceke E, Gommel DU, Kiess M, Kalisz HM, Flohé L. A unique cascade of oxidoreductases catalyses trypanothione-mediated peroxide metabolism in Crithidia fasciculata. Biol Chem 1997;378:827–836.
  • Rhee SG, Chae HZ, Kim K. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med 2005;38:1543–1552.
  • Kang SW, Rhee SG, Chang TS, Jeong W, Choi MH. 2-Cys peroxiredoxin function in intracellular signal transduction: therapeutic implications. Trends Mol Med 2005;11:571–578.
  • Rhee SG, Woo HA, Kil IS, Bae SH. Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J Biol Chem 2012;287:4403–4410.
  • König J, Muthuramalingam M, Dietz KJ. Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets. Curr Opin Plant Biol 2012;15:261–268.
  • Dietz KJ. The dual function of plant peroxiredoxins in antioxidant defence and redox signaling. Subcell Biochem 2007;44:267–294.
  • Kang SW, Chae HZ, Seo MS, Kim K, Baines IC, Rhee SG. Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-alpha. J Biol Chem 1998;273:6297–6302.
  • Kang SW, Chang TS, Lee TH, Kim ES, Yu DY, Rhee SG. Cytosolic peroxiredoxin attenuates the activation of Jnk and p38 but potentiates that of Erk in Hela cells stimulated with tumor necrosis factor-alpha. J Biol Chem 2004;279: 2535–2543.
  • Park JG, Yoo JY, Jeong SJ, Choi JH, Lee MR, Lee MN, et al. Peroxiredoxin 2 deficiency exacerbates atherosclerosis in apolipoprotein E-deficient mice. Circ Res 2011;109: 739–749.
  • Won HY, Jang EJ, Lee K, Oh S, Kim HK, Woo HA, et al. Ablation of peroxiredoxin II attenuates experimental colitis by increasing FoxO1-induced Foxp3 + regulatory T cells. J Immunol 2013;191:4029–4037.
  • Flohé L, Brigelius-Flohé R. Selenoproteins of the Glutathione System. In: Hatfield DL, Berry MJ, Gladyshev VN, editors. Selenium. Its Molecular Bioogy and Role in Human health. II ed. New York: Springer; 2006. p 161–172.
  • Kim SU, Park YH, Kim JM, Sun HN, Song IS, Huang SM, et al. Dominant role of peroxiredoxin/JNK axis in stemness regulation during neurogenesis from embryonic stem cells. Stem Cells 2014;32:998–1011.
  • Kim SY, Kim TJ, Lee KY. A novel function of peroxiredoxin 1 (Prx-1) in apoptosis signal-regulating kinase 1 (ASK1)-mediated signaling pathway. FEBS Lett 2008;582:1913–1918.
  • Lee JY, Jung HJ, Song IS, Williams MS, Choi C, Rhee SG, Kim J, Kang SW. Protective role of cytosolic 2-cys peroxiredoxin in the TNF-alpha-induced apoptotic death of human cancer cells. Free Radic Biol Med 2009;47:1162–1171.
  • Lu W, Fu Z, Wang H, Feng J, Wei J, Guo J. Peroxiredoxin 2 knockdown by RNA interference inhibits the growth of colorectal cancer cells by downregulating Wnt/beta-catenin signaling. Cancer Lett 2014;343:190–199.
  • Gan Y, Ji X, Hu X, Luo Y, Zhang L, Li P, et al. Transgenic overexpression of peroxiredoxin-2 attenuates ischemic neuronal injury via suppression of a redox-sensitive pro-death signaling pathway. Antioxid Redox Signal 2012; 17:719–732.
  • Chang TS, Cho CS, Park S, Yu S, Kang SW, Rhee SG. Peroxiredoxin III, a mitochondrion-specific peroxidase, regulates apoptotic signaling by mitochondria. J Biol Chem 2004;279:41975–41984.
  • Kim IK, Lee KJ, Rhee S, Seo SB, Pak JH. Protective effects of peroxiredoxin 6 overexpression on amyloid beta-induced apoptosis in PC12 cells. Free Radic Res 2013;47:836–846.
  • Fatma N, Singh P, Chhunchha B, Kubo E, Shinohara T, Bhargavan B, Singh DP. Deficiency of Prdx6 in lens epithelial cells induces ER stress response-mediated impaired homeostasis and apoptosis. Am J Physiol Cell Physiol 2011;301:C954–967.
  • Huh JY, Kim Y, Jeong J, Park J, Kim I, Huh KH, et al. Peroxiredoxin 3 is a key molecule regulating adipocyte oxidative stress, mitochondrial biogenesis, and adipokine expression. Antioxid Redox Signal 2012;16:229–243.
  • Pacifici F, Arriga R, Sorice GP, Capuani B, Scioli MG, Pastore D, et al. Peroxiredoxin 6, a novel player in the pathogenesis of diabetes. Diabetes 2014;63:3210–3220.
  • Fullerton JN, O’Brien AJ, Gilroy DW. Lipid mediators in immune dysfunction after severe inflammation. Trends Immunol 2014;35:12–21.
  • Nicolaou A, Mauro C, Urquhart P, Marelli-Berg F. Polyunsaturated Fatty Acid-derived lipid mediators and T cell function. Front Immunol 2014;5:75.
  • Vane JR. Nobel lecture. Adventures and excursions in bioassay–the stepping stones to prostacyclin. Postgrad Med J 1983;59:743–758.
  • Cole BK, Lieb DC, Dobrian AD, Nadler JL. 12- and 15-lipoxygenases in adipose tissue inflammation. Prostaglandins Other Lipid Mediat 2013;104–105:84–92.
  • Kühn H, Banthiya S, van Leyen K. Mammalian lipoxygenases and their biological relevance. Biochim Biophys Acta 2015;1851:308–330.
  • Back M, Powell WS, Dahlen SE, Drazen JM, Evans JF, Serhan CN, Shimizu T, Yokomizo T, Rovati GE, et al. Update on leukotriene, lipoxin and oxoeicosanoid receptors: IUPHAR Review 7. Br J Pharmacol 2014;171:3551–3574.
  • Korbecki J, Baranowska-Bosiacka I, Gutowska I, Chlubek D. The effect of reactive oxygen species on the synthesis of prostanoids from arachidonic acid. J Physiol Pharmacol 2013;64:409–421.
  • Smith WL, Lands WE. Oxygenation of polyunsaturated fatty acids during prostaglandin biosynthesis by sheep vesicular gland. Biochemistry 1972;11:3276–3285.
  • Cook HW, Lands WE. Mechanism for suppression of cellular biosynthesis of prostaglandins. Nature 1976;260: 630–632.
  • Hemler ME, Graff G, Lands WE. Accelerative autoactivation of prostaglandin biosynthesis by PGG2. Biochem Biophys Res Commun 1978;85:1325–1331.
  • Hemler ME, Cook HW, Lands WE. Prostaglandin biosynthesis can be triggered by lipid peroxides. Arch Biochem Biophys 1979;193:340–345.
  • Pace-Asciak CR, Smith WL. Enzymes in the Biosynthesis and catabolism of the Eicosanoids: prostaglandins, Thromboxanes, Leukotrienes and Hxdroxy Fatty Acids. In: Boyer PD, editor. The Enzymes. 3rd ed. Volume XVI. New York: Academic Press; 1983. p 543–603.
  • Haurand M, Flohé L. Kinetic studies on arachidonate 5-lipoxygenase from rat basophilic leukemia cells. Biol Chem Hoppe Seyler 1988;369:133–142.
  • Weitzel F, Wendel A. Selenoenzymes regulate the activity of leukocyte 5-lipoxygenase via the peroxide tone. J Biol Chem 1993;268:6288–6292.
  • Imai H, Narashima K, Arai M, Sakamoto H, Chiba N, Nakagawa Y. Suppression of leukotriene formation in RBL-2H3 cells that overexpressed phospholipid hydroperoxide glutathione peroxidase. J Biol Chem 1998;273:1990–1997.
  • Villette S, Kyle JA, Brown KM, Pickard K, Milne JS, Nicol F, et al. A novel single nucleotide polymorphism in the 3′ untranslated region of human glutathione peroxidase 4 influences lipoxygenase metabolism. Blood Cells Mol Dis 2002;29:174–178.
  • Straif D, Werz O, Kellner R, Bahr U, Steinhilber D. Glutathione peroxidase-1 but not -4 is involved in the regulation of cellular 5-lipoxygenase activity in monocytic cells. Biochem J 2000;349:455–461.
  • Werz O, Steinhilber D. Development of 5-lipoxygenase inhibitors–lessons from cellular enzyme regulation. Biochem Pharmacol 2005;70:327–333.
  • Schnurr K, Belkner J, Ursini F, Schewe T, Kühn H. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase controls the activity of the 15-lipoxygenase with complex substrates and preserves the specificity of the oxygenation products. J Biol Chem 1996;271:4653–4658.
  • Rapoport SM, Schewe T, Wiesner R, Halangk W, Ludwig P, Janicke-Hohne M, et al. The lipoxygenase of reticulocytes. Purification, characterization and biological dynamics of the lipoxygenase; its identity with the respiratory inhibitors of the reticulocyte. Eur J Biochem 1979;96:545–561.
  • Brutsch SH, Wang CC, Li L, Stender H, Neziroglu N, Richter C, et al. Expression of Inactive Glutathione Peroxidase 4 Leads to Embryonic Lethality, and Inactivation of the Alox15 Gene Does Not Rescue Such Knock-In Mice. Antioxid Redox Signal 2015;22:281–293.
  • Sutherland M, Shankaranarayanan P, Schewe T, Nigam S. Evidence for the presence of phospholipid hydroperoxide glutathione peroxidase in human platelets: implications for its involvement in the regulatory network of the 12-lipoxygenase pathway of arachidonic acid metabolism. Biochem J 2001;353:91–100.
  • Smith WL, Lands WE. Oxygenation of unsaturated fatty acids by soybean lipoxygenase. J Biol Chem 1972;247: 1038–1047.
  • Haurand M, Flohé L. Leukotriene formation by human polymorphonuclear leukocytes from endogenous arachidonate. Physiological triggers and modulation by prostanoids. Biochem Pharmacol 1989;38:2129–2137.
  • Ferrer-Sueta G, Manta B, Botti H, Radi R, Trujillo M, Denicola A. Factors affecting protein thiol reactivity and specificity in peroxide reduction. Chem Res Toxicol 2011;24:434–450.
  • Denu JM, Tanner KG. Redox regulation of protein tyrosine phosphatases by hydrogen peroxide: detecting sulfenic acid intermediates and examining reversible inactivation. Methods Enzymol 2002;348:297–305.
  • Barrett WC, DeGnore JP, Keng YF, Zhang ZY, Yim MB, Chock PB. Roles of superoxide radical anion in signal transduction mediated by reversible regulation of protein-tyrosine phosphatase 1B. J Biol Chem 1999;274:34543–34546.
  • Sohn J, Rudolph J. Catalytic and chemical competence of regulation of cdc25 phosphatase by oxidation/reduction. Biochemistry 2003;42:10060–10070.
  • Caselli A, Marzocchini R, Camici G, Manao G, Moneti G, Pieraccini G, Ramponi G. The inactivation mechanism of low molecular weight phosphotyrosine-protein phosphatase by H2O2. J Biol Chem 1998;273:32554–32560.
  • Dwivedi G, Kemp ML. Systemic redox regulation of cellular information processing. Antioxid Redox Signal 2012;16:374–380.
  • Marinho HS, Real C, Cyrne L, Soares H, Antunes F. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol 2014;2:535–562.
  • Parsons ZD, Gates KS. Thiol-dependent recovery of catalytic activity from oxidized protein tyrosine phosphatases. Biochemistry 2013;52:6412–6423.
  • Wood ZA, Poole LB, Karplus PA. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 2003;300:650–653.
  • Yang KS, Kang SW, Woo HA, Hwang SC, Chae HZ, Kim K, Rhee SG. Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J Biol Chem 2002; 277:38029–38036.
  • Woo HA, Chae HZ, Hwang SC, Yang KS, Kang SW, Kim K, Rhee SG. Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science 2003;300:653–656.
  • Biteau B, Labarre J, Toledano MB. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 2003;425:980–984.
  • Jonsson TJ, Lowther WT. The peroxiredoxin repair proteins. Subcell Biochem 2007;44:115–141.
  • Chae HZ, Oubrahim H, Park JW, Rhee SG, Chock PB. Protein glutathionylation in the regulation of peroxiredoxins: a family of thiol-specific peroxidases that function as antioxidants, molecular chaperones, and signal modulators. Antioxid Redox Signal 2012;16:506–523.
  • Little C, Olinescu R, Reid KG, O’Brien PJ. Properties and regulation of glutathione peroxidase. J Biol Chem 1970;245:3632–3636.
  • Miyamoto Y, Koh YH, Park YS, Fujiwara N, Sakiyama H, Misonou Y, et al. Oxidative stress caused by inactivation of glutathione peroxidase and adaptive responses. Biol Chem 2003;384:567–574.
  • Roveri A, Maiorino M, Ursini F. Enzymatic and immunological measurements of soluble and membrane-bound phospholipid-hydroperoxide glutathione peroxidase. Methods Enzymol 1994;233:202–212.
  • Mauri P, Benazzi L, Flohé L, Maiorino M, Pietta PG, Pilawa S, et al. Versatility of selenium catalysis in PHGPx unraveled by LC/ESI-MS/MS. Biol Chem 2003;384: 575–588.
  • Ursini F, Heim S, Kiess M, Maiorino M, Roveri A, Wissing J, Flohé L. Dual function of the selenoprotein PHGPx during sperm maturation. Science 1999;285:1393–1396.
  • Cao C, Leng Y, Huang W, Liu X, Kufe D. Glutathione peroxidase 1 is regulated by the c-Abl and Arg tyrosine kinases. J Biol Chem 2003;278:39609–39614.
  • Cao C, Leng Y, Kufe D. Catalase activity is regulated by c-Abl and Arg in the oxidative stress response. J Biol Chem 2003;278:29667–29675.
  • Woo HA, Yim SH, Shin DH, Kang D, Yu DY, Rhee SG. Inactivation of peroxiredoxin I by phosphorylation allows localized H2O2 accumulation for cell signaling. Cell 2010;140:517–528.
  • Kil IS, Lee SK, Ryu KW, Woo HA, Hu MC, Bae SH, Rhee SG. Feedback control of adrenal steroidogenesis via H2O2-dependent, reversible inactivation of peroxiredoxin III in mitochondria. Mol Cell 2012;46:584–594.
  • Chang TS, Jeong W, Choi SY, Yu S, Kang SW, Rhee SG. Regulation of peroxiredoxin I activity by Cdc2-mediated phosphorylation. J Biol Chem 2002;277:25370–25376.
  • Zykova TA, Zhu F, Vakorina TI, Zhang J, Higgins LA, Urusova DV, et al. T-LAK cell-originated protein kinase (TOPK) phosphorylation of Prx1 at Ser-32 prevents UVB-induced apoptosis in RPMI7951 melanoma cells through the regulation of Prx1 peroxidase activity. J Biol Chem 2010;285:29138–29146.
  • Woo HA, Yim SH, Shin DH, Kang D, Yu DY, Rhee SG. Inactivation of peroxiredoxin I by phosphorylation allows localized H(2)O(2) accumulation for cell signaling. Cell 2010;140:517–528.
  • Chatterjee S, Feinstein SI, Dodia C, Sorokina E, Lien YC, Nguyen S, et al. Peroxiredoxin 6 phosphorylation and subsequent phospholipase A2 activity are required for agonist-mediated activation of NADPH oxidase in mouse pulmonary microvascular endothelium and alveolar macrophages. J Biol Chem 2011;286:11696–11706.
  • Jeong W, Bae SH, Toledano MB, Rhee SG. Role of sulfiredoxin as a regulator of peroxiredoxin function and regulation of its expression. Free Radic Biol Med 2012;53:447–456.
  • Forman HJ, Skelton DC, Loeb GA, Dorio RJ. Membrane permeability and oxidant induced injury. Basic Life Sci 1988;49:523–530.
  • Stone JR, Yang S. Hydrogen peroxide: a signaling messenger. Antioxid Redox Signal 2006;8:243–270.
  • Cuddihy SL, Winterbourn CC, Hampton MB. Assessment of redox changes to hydrogen peroxide-sensitive proteins during EGF signaling. Antioxid Redox Signal 2011;15: 167–174.
  • Winterbourn CC, Hampton MB. Thiol chemistry and specificity in redox signaling. Free Radic Biol Med 2008; 45:549–561.
  • Peralta D, Bronowska AK, Morgan B, Doka E, Van Laer K, Nagy P, et al. A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nat Chem Biol 2015;11:156–163.
  • Hildebrandt T, Knuesting J, Berndt C, Morgan B, Scheibe R. Cytosolic thiol switches regulating basic cellular functions: GAPDH as an information hub? Biol Chem 2015;396:523–537.
  • Bsat N, Herbig A, Casillas-Martinez L, Setlow P, Helmann JD. Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol Microbiol 1998;29: 189–198.
  • Lee JW, Helmann JD. Biochemical characterization of the structural Zn2 + site in the Bacillus subtilis peroxide sensor PerR. J Biol Chem 2006;281:23567–23578.
  • Lee C, Lee SM, Mukhopadhyay P, Kim SJ, Lee SC, Ahn WS, et al. Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path. Nat Struct Mol Biol 2004;11:1179–1185.
  • Aslund F, Zheng M, Beckwith J, Storz G. Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status. Proc Natl Acad Sci U S A 1999;96:6161–6165.
  • Fuangthong M, Helmann JD. The OhrR repressor senses organic hydroperoxides by reversible formation of a cysteine-sulfenic acid derivative. Proc Natl Acad Sci U S A 2002;99:6690–6695.
  • Dubbs JM, Mongkolsuk S. Peroxiredoxins in bacterial antioxidant defense. Subcell Biochem 2007;44:143–193.
  • Lee JW, Soonsanga S, Helmann JD. A complex thiolate switch regulates the Bacillus subtilis organic peroxide sensor OhrR. Proc Natl Acad Sci U S A 2007;104:8743–8748.
  • da Silva Neto JF, Negretto CC, Netto LE. Analysis of the organic hydroperoxide response of Chromobacterium violaceum reveals that OhrR is a cys-based redox sensor regulated by thioredoxin. PLoS One 2012;7:e47090.
  • Delaunay A, Pflieger D, Barrault MB, Vinh J, Toledano MB. A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell 2002;111:471–481.
  • Wood ZA, Poole LB, Hantgan RR, Karplus PA. Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins. Biochemistry 2002;41:5493–5504.
  • Karplus PA. A primer on peroxiredoxin biochemistry. Free Radic Biol Med 2014.
  • Parsonage D, Youngblood DS, Sarma GN, Wood ZA, Karplus PA, Poole LB. Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin. Biochemistry 2005;44:10583–10592.
  • Budde H, Flohé L, Hecht HJ, Hofmann B, Stehr M, Wissing J, Lünsdorf H. Kinetics and redox-sensitive oligomerisation reveal negative subunit cooperativity in tryparedoxin peroxidase of Trypanosoma brucei brucei. Biol Chem 2003;384:619–633.
  • Jang HH, Lee KO, Chi YH, Jung BG, Park SK, Park JH, et al. Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 2004;117:625–635.
  • Flohé L, Budde H, Bruns K, Castro H, Clos J, Hofmann B, et al. Tryparedoxin peroxidase of Leishmania donovani: molecular cloning, heterologous expression, specificity, and catalytic mechanism. Arch Biochem Biophys 2002;397: 324–335.
  • Riddell JR, Wang XY, Minderman H, Gollnick SO. Peroxiredoxin 1 stimulates secretion of proinflammatory cytokines by binding to TLR4. J Immunol 2010;184:1022–1030.
  • Riddell JR, Bshara W, Moser MT, Spernyak JA, Foster BA, Gollnick SO. Peroxiredoxin 1 controls prostate cancer growth through Toll-like receptor 4-dependent regulation of tumor vasculature. Cancer Res 2011;71:1637–1646.
  • Riddell JR, Maier P, Sass SN, Moser MT, Foster BA, Gollnick SO. Peroxiredoxin 1 stimulates endothelial cell expression of VEGF via TLR4 dependent activation of HIF-1alpha. PLoS One 2012;7:e50394.
  • Park SY, Yu X, Ip C, Mohler JL, Bogner PN, Park YM. Peroxiredoxin 1 interacts with androgen receptor and enhances its transactivation. Cancer Res 2007;67:9294–9303.
  • Haridas V, Ni J, Meager A, Su J, Yu GL, Zhai Y, et al. TRANK, a novel cytokine that activates NF-kappa B and c-Jun N-terminal kinase. J Immunol 1998;161:1–6.
  • Gertz M, Fischer F, Leipelt M, Wolters D, Steegborn C. Identification of Peroxiredoxin 1 as a novel interaction partner for the lifespan regulator protein p66Shc. Aging (Albany NY) 2009;1:254–265.
  • Neubert D, Wojtczak AB, Lehninger AL. Purification and enzymatic identity of mitochondrial contraction-factors I and II. Proc Natl Acad Sci U S A 1962;48:1651–1658.
  • Flohé L, Zimmermann R. The role of GSH peroxidase in protecting the membrane of rat liver mitochondria. Biochim Biophys Acta 1970;223:210–213.
  • Pace PE, Peskin AV, Han MH, Hampton MB, Winterbourn CC. Hyperoxidized peroxiredoxin 2 interacts with the protein disulfide- isomerase ERp46. Biochem J 2013;453:475–485.
  • Kang DH, Lee DJ, Lee KW, Park YS, Lee JY, Lee SH, et al. Peroxiredoxin II is an essential antioxidant enzyme that prevents the oxidative inactivation of VEGF receptor-2 in vascular endothelial cells. Mol Cell 2011;44:545–558.
  • Giguere P, Turcotte ME, Hamelin E, Parent A, Brisson J, Laroche G, et al. Peroxiredoxin-4 interacts with and regulates the thromboxane A(2) receptor. FEBS Lett 2007;581: 3863–3868.
  • Palande K, Roovers O, Gits J, Verwijmeren C, Iuchi Y, Fujii J, et al. Peroxiredoxin-controlled G-CSF signalling at the endoplasmic reticulum-early endosome interface. J Cell Sci 2011;124:3695–3705.
  • Choi H, Chang JW, Jung YK. Peroxiredoxin 6 interferes with TRAIL-induced death-inducing signaling complex formation by binding to death effector domain caspase. Cell Death Differ 2011;18:405–414.
  • Avery AM, Avery SV. Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases. J Biol Chem 2001;276:33730–33735.
  • Tanaka T, Izawa S, Inoue Y. GPX2, encoding a phospholipid hydroperoxide glutathione peroxidase homologue, codes for an atypical 2-Cys peroxiredoxin in Saccharomyces cerevisiae. J Biol Chem 2005;280:42078–42087.
  • Gulshan K, Rovinsky SA, Coleman ST, Moye-Rowley WS. Oxidant-specific folding of Yap1p regulates both transcriptional activation and nuclear localization. J Biol Chem 2005;280:40524–40533.
  • Tsuzi D, Maeta K, Takatsume Y, Izawa S, Inoue Y. Regulation of the yeast phospholipid hydroperoxide glutathione peroxidase GPX2 by oxidative stress is mediated by Yap1 and Skn7. FEBS Lett 2004;565:148–154.
  • Bjornstedt M, Xue J, Huang W, Akesson B, Holmgren A. The thioredoxin and glutaredoxin systems are efficient electron donors to human plasma glutathione peroxidase. J Biol Chem 1994;269:29382–29384.
  • Schneider M, Forster H, Boersma A, Seiler A, Wehnes H, Sinowatz F, et al. Mitochondrial glutathione peroxidase 4 disruption causes male infertility. FASEB J 2009;23: 3233–3242.
  • Maiorino M, Roveri A, Benazzi L, Bosello V, Mauri P, Toppo S, et al. Functional interaction of phospholipid hydroperoxide glutathione peroxidase with sperm mitochondrion-associated cysteine-rich protein discloses the adjacent cysteine motif as a new substrate of the selenoperoxidase. J Biol Chem 2005;280:38395–38402.
  • Godeas C, Tramer F, Micali F, Roveri A, Maiorino M, Nisii C, et al. Phospholipid hydroperoxide glutathione peroxidase (PHGPx) in rat testis nuclei is bound to chromatin. Biochem Mol Med 1996;59:118–124.
  • Conrad M, Moreno SG, Sinowatz F, Ursini F, Kolle S, Roveri A, et al. The nuclear form of phospholipid hydroperoxide glutathione peroxidase is a protein thiol peroxidase contributing to sperm chromatin stability. Mol Cell Biol 2005;25:7637–7644.
  • Bosello-Travain V, Conrad M, Cozza G, Negro A, Quartesan S, Rossetto M, et al. Protein disulfide isomerase and glutathione are alternative substrates in the one Cys catalytic cycle of glutathione peroxidase 7. Biochim Biophys Acta 2013;1830:3846–3857.
  • Nguyen VD, Saaranen MJ, Karala AR, Lappi AK, Wang L, Raykhel IB, et al. Two endoplasmic reticulum PDI peroxidases increase the efficiency of the use of peroxide during disulfide bond formation. J Mol Biol 2011;406:503–515.
  • Wang L, Zhang L, Niu Y, Sitia R, Wang CC. Glutathione peroxidase 7 utilizes hydrogen peroxide generated by Ero1alpha to promote oxidative protein folding. Antioxid Redox Signal 2014;20:545–556.
  • Brigelius-Flohé R, Maiorino M. Glutathione peroxidases. Biochim Biophys Acta 2013;1830:3289–3303.
  • Florian S, Wingler K, Schmehl K, Jacobasch G, Kreuzer OJ, Meyerhof W, Brigelius-Flohé R. Cellular and subcellular localization of gastrointestinal glutathione peroxidase in normal and malignant human intestinal tissue. Free Radic Res 2001;35:655–663.
  • Zito E. PRDX4, an endoplasmic reticulum-localized peroxiredoxin at the crossroads between enzymatic oxidative protein folding and nonenzymatic protein oxidation. Antioxid Redox Signal 2013;18:1666–1674.
  • Oka OB, Bulleid NJ. Forming disulfides in the endoplasmic reticulum. Biochim Biophys Acta 2013;1833:2425–2429.
  • Kakihana T, Araki K, Vavassori S, Iemura S, Cortini M, Fagioli C, et al. Dynamic regulation of Ero1alpha and peroxiredoxin 4 localization in the secretory pathway. J Biol Chem 2013;288:29586–29594.
  • Ross SJ, Findlay VJ, Malakasi P, Morgan BA. Thioredoxin peroxidase is required for the transcriptional response to oxidative stress in budding yeast. Mol Biol Cell 2000;11: 2631–2642.
  • Tachibana T, Okazaki S, Murayama A, Naganuma A, Nomoto A, Kuge S. A major peroxiredoxin-induced activation of Yap1 transcription factor is mediated by reduction-sensitive disulfide bonds and reveals a low level of transcriptional activation. J Biol Chem 2009;284:4464–4472.
  • Veal EA, Findlay VJ, Day AM, Bozonet SM, Evans JM, Quinn J, Morgan BA. A 2-Cys peroxiredoxin regulates peroxide-induced oxidation and activation of a stress-activated MAP kinase. Mol Cell 2004;15:129–139.
  • Bozonet SM, Findlay VJ, Day AM, Cameron J, Veal EA, Morgan BA. Oxidation of a eukaryotic 2-Cys peroxiredoxin is a molecular switch controlling the transcriptional response to increasing levels of hydrogen peroxide. J Biol Chem 2005;280:23319–23327.
  • Veal EA, Tomalin LE, Morgan BA, Day AM. The fission yeast Schizosaccharomyces pombe as a model to understand how peroxiredoxins influence cell responses to hydrogen peroxide. Biochem Soc Trans 2014;42:909–916.
  • Morgan BA, Veal EA. Functions of typical 2-Cys peroxiredoxins in yeast. Subcell Biochem 2007;44:253–265.
  • Fomenko DE, Koc A, Agisheva N, Jacobsen M, Kaya A, Malinouski M, et al. Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide. Proc Natl Acad Sci U S A 2011;108:2729–2734.
  • Dietz KJ. Peroxiredoxins in plants and cyanobacteria. Antioxid Redox Signal 2011;15:1129–1159.
  • Cao J, Schulte J, Knight A, Leslie NR, Zagozdzon A, Bronson R, et al. Prdx1 inhibits tumorigenesis via regulating PTEN/AKT activity. EMBO J 2009;28:1505–1517.
  • Choi HI, Chung KJ, Yang HY, Ren L, Sohn S, Kim PR, et al. Peroxiredoxin V selectively regulates IL-6 production by modulating the Jak2-Stat5 pathway. Free Radic Biol Med 2013;65:270–279.
  • Sobotta MC, Liou W, Stocker S, Talwar D, Oehler M, Ruppert T, et al. Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat Chem Biol 2015;11: 64–70.
  • Flohé L. The labour pains of biochemical selenology: the history of selenoprotein biosynthesis. Biochim Biophys Acta 2009;1790:1389–1403.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.