954
Views
57
CrossRef citations to date
0
Altmetric
Review Article

Reactions of electrophiles with nucleophilic thiolate sites: relevance to pathophysiological mechanisms and remediation

&
Pages 195-205 | Received 27 May 2015, Accepted 09 Sep 2015, Published online: 11 Nov 2015

References

  • Rhee SG. H2O2, a necessary evil for cell signaling. Science 2006;312:1882–1883.
  • Schopfer FJ, Cipollina C, Freeman BA. Formation and signaling actions of electrophilic lipids. Chem Rev 2011;111:5997–6021.
  • Sirover MA. On the functional diversity of glyceraldehyde-3-phosphate dehydrogenase: biochemical mechanisms and regulatory control. Biochim Biophys Acta 2011;1810:741–751.
  • Fritz KS, Petersen DR. An overview of the chemistry and biology of reactive aldehydes. Free Rad Biol Med 2013;59:85–91.
  • Hamann K, Durkes A, Ouyang H, Uchida K, Pond A, Shi R. Critical role of acrolein in secondary injury following ex vivo spinal cord trauma. J Neurosci 2008;107:712–721.
  • LoPachin RM, Gavin T, Barber DS. Molecular mechanisms of the conjugated α,β-unsaturated carbonyl derivatives: relevance to neurotoxicity and neurodegenerative diseases. Toxicol Sci 2008;104:235–249.
  • LoPachin RM, Gavin T, Petersen DR, Barber DS. Molecular mechanisms of 4-hydroxy-2-nonenal and acrolein toxicity: nucleophilic and adduct formation. Chem Res Toxicol 2009;22:1499–1508.
  • LoPachin RM, Gavin T. Molecular mechanisms of acrylamide neurotoxicity: lessons learned from organic chemistry. Enviorn Health Sci 2012;120:1650–1657.
  • LoPachin RM, Gavin T. Molecular mechanisms of aldehyde toxicity: a chemical perspective. Chem Res Toxicol 2014;27:1081–1091.
  • Moghe A, Ghare S, Lamoreau B, Mohammad M, Barve S, McClain G, et al. Molecular mechanisms of acrolein toxicity: relevance to human disease. Toxicol Sci 2015;143:242–255.
  • Fritz KS, Petersen DR. Exploring the biology of lipid peroxidation-derived protein carbonylation. Chem Res Toxicol 2011;24:1411–1419.
  • LoPachin RM, Gavin T, DeCaprio AP, Barber DS. Application of the hard and soft acids and bases (HSAB) theory to toxicant-target interactions. Chem Res Toxicol 2012;25:239–251.
  • Thaens D, Heinzelmann D, Bohme A, Paschke A, Schuurmann G. Chemoassay screening of DNA-reactive mutagenicity with 4-(4-nitrobenzyl)pyridine – application to epoxides, oxethanes and sulfur heterocycles. Chem Res Toxicol 2012;25:2092–2102.
  • Reddie KG, Carroll KS. Expanding the functional diversity of proteins through cysteine oxidation. Curr Opin Chem Biol 2008;12:746–754.
  • Schultz TW, Carlson RE, Cronin MTD, Hermens LM, Johnson R, O’Brien PJ, et al. A conceptual framework for predicting the toxicity of reactive chemicals: modeling soft electrophilicity. SAR QSAR Eviron Res 2006;17:413–428.
  • Schwobel JAH, Koleva YK, Enoch SJ, Bajot F, Hewitt M, Madden JC, et al. Measurement and estimation of electrophilic reactivity for predictive toxicology. Chem Rev 2011;111:2562–2596.
  • LoPachin RM, Barber DS, Geohagen BC, Gavin T, He D, Das S. Structure-toxicity analysis of Type-2 alkenes: in vitro neurotoxicity. Toxicol Sci 2007;95:136–146.
  • LoPachin RM, Gavin T, Geohagen BC, Das S. Neurotoxic mechanisms of electrophilic type-2 alkenes: soft–soft interactions described by quantum mechanical parameters. Toxicol Sci 2007;98:561–570.
  • LoPachin RM, Gavin T, Geohagen BC. Synaptosomal toxicity and nucleophilic targets of 4-hydroxy-2-nonenal. Toxicol Sci 2009;107:171–181.
  • LoPachin RM, Gavin T, Geohagen BC, Zhang L, Casper D, Lekhrag R, et al. β-Dicarbonyl enolates: a new class of neuroprotectants. J Neurochem 2011;116:132–143.
  • Martyniuk CJ, Fang B, Koomen JM, Gavin T, LoPachin RM, Barber DS. Molecular mechanisms of α,β-unsaturated carbonyl toxicity: cysteine-adduct formation correlates with loss of enzyme function. Chem Res Toxicol 2011;24:2302–2311.
  • Zhang L, Gavin T, Geohagen BC, Liu Q, Downey KJ, LoPachin RM. Protective properties of 2-acetylcyclopentanone in a mouse model of acetaminophen hepatotoxicity. J Pharmacol Exp Ther 2013;346:259–269.
  • Doorn JA, Petersen DR. Covalent modification of amino acid nucleophiles by the lipid peroxidation products 4-hydroxynonenal and 4-oxo-2-nonenal. Chem Res Toxicol 2002;15:1445–1450.
  • Doorn JA, Petersen DR. Covalent adduction of nucleophilic amino acids by 4-hydroxynonenal and 4-oxononenal. Chem Biol Interact 2003;143–144.
  • Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Rad Biol Med 1991;11:81–128.
  • Liu Z, Minkler PE, Sayre LM. Mass spectroscopic characterization of protein modification by 4-hydroxy-2-(E)-nonenal. Chem Res Toxicol 2003;16:901–911.
  • Nadkarni, D, Sayre LM. Structural definition of early lysine and histidine adduction chemistry of 4-hydroxynonenal. Chem Res Toxicol 1995;278:284–291.
  • Uchida K, Stadtman, ER. Modification of histidine residues in proteins by reaction with 4-hydroxynonenal. Proc Natl Acad Sci 1992;89:4544–4548.
  • Uchida K, Stadtman ER. Covalent attachment of 4-hydroxynonenal to glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 1993;268:6388–6393.
  • Jan YH, Heck DE, Dragomir AC, Gardner CR, Laskin DL, Laskin JD. Acetaminohen reactive intermediates target hepatic thioredoxin reductase. Chem Res Toxicol 2014;27:882–894.
  • Whitehead RE, Ferrer JV, Javitch JA, Justice JB. Reaction of oxidized dopamine with endogenous cysteine residues in the human dopamine transporter. J Neurochem 76:1242–1251.
  • LoPachin RM, DeCaprio AP. Protein adduct formation as a molecular mechanism in neurotoxicity. Toxicol Appl Pharmacol 2005;86:214–225.
  • LoPachin RM, Barber DS. Synaptic cysteine sulfhydryl groups as targets of electrophilic neurotoxicants. Toxicol Sci 2006;94:240–255.
  • Jones DP. Redox sensing: orthogonal control in cell cycle and apoptosis signaling. J Int Med 2010;268:432–448.
  • Winterbourn CC, Hampton MB. Thiol chemistry and specificity in redox signaling. Free Radical Biol Med 2008;45:549–561.
  • Hinson JA, Roberts DW, James LP. Mechanisms of acetaminophen-induced liver necrosis. Handb Exp Pharmacol 2010;196:369–405.
  • LoPachin RM, He D, Soma D. Acrylamide inhibits dopamine uptake in rat striatal synaptic vesicles. Toxicol Sci 2006;89:224–234.
  • Zhang L, Gavin T, Barber DS, LoPachin RM. Role of Nrf2-ARE expression in acrylamide neurotoxicity. Toxicol Lett 2011;205:1–7.
  • Cavins JF, Friedman M. Specific modification of protein sulfhydryl groups with α,β-unsaturated compounds. J Biol Chem 1968;243:3357–3360.
  • Friedman M, Cavins JF, Wall JS. Relative nucleophilic reactivities of amino groups and mercaptide ions in addition reactions with α,β-unsaturated compounds. J Am Chem Soc 1965;87:3672–3682.
  • Barber DS, Stevens S, LoPachin RM. Proteomic analyses of rat striatal synaptosomes during acrylamide intoxication at a low dose-rate. Toxicol Sci 2007;100:156–167.
  • Higdon AN, Landar A, Barnes S, Darley-Usmar VM. The electrophile responsive proteome: integrating proteomics and lipidomics with cellular function. Antiox Redox Signal 2012;17:1580–1589.
  • Martyniuk CJ, Feswick A, Fang B, Koomen JM, Barber DS, Gavin T, et al. Protein targets of acrylamide adduct formation in cultured rat dopaminergic cells. Toxicol Lett 2013;219:279–285.
  • Burre J, Volknandt W. The synaptic vesicle proteome. J Neurochem 2007;101:1448–1462.
  • Bisesi MS. Esters. 3. Esters of alkenylcarboxylic acids and monoalcohols. In: Clayton GD, Clayton FE, eds. Patty’s industrial hygiene and toxicology. Vol. 11, 4th ed. New York: John Wiley and Sons; 1994:2999–3007.
  • Faroon O, Roney N, Taylor J. Acrolein environmental levels and potential for human exposure. Toxicol Ind Health 2008;24:543–564.
  • Friedman M. Chemistry, biochemistry and safety of acrylamide. A review. J Agric Food Chem 2003;51:4504–4526.
  • O’Brien PJ, Diraki AG, Shangari N. Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit Rev Toxicol 2005;35:609–662.
  • Tucek M, Tenglerova J, Kollarova B. Effect of acrylate chemistry on human health. Int Arch Occup Environ Health 2002;75:S67–S72.
  • Altenburger R, Nendza M, Schuurmann G. Mixture toxicity and its modeling by quantitative structure-activity relationships. Environ Toxicol Chem 2003;22:1900–1915.
  • Backhaus T, Faust M. Predictive environmental risk assessment of chemical mixtures: a conceptual framework. Environ Sci Technol 2012;46:2564–2573.
  • Ellis EM. Reactive carbonyls and oxidative stress: potential for therapeutic intervention. Pharmacol Ther 2007;115:13–24.
  • Fritz KS, Galligan JJ, Smathers RL, Roede JR, Shearn CT, Reigan P, et al. 4-Hydroxynonenal inhibits SIRT3 via thiol-specific modification. Chem Res Toxicol 2011;24:651–662.
  • Grimmsrud PA, Xie H, Griffin TJ, Bernlohr DA. Oxidative stress and covalent modification of protein with bioactive aldehydes. J Biol Sci 2008;283:21837–21841.
  • Shi R, Rickett T, Sun W. Acrolein-mediated injury in nervous system trauma and disease. Mol Nutr Food Res 2011;55:1320–1331.
  • Wood PL, Khan MA, Moskal JR, Todd KG, Tanay, VAMI, et al. Aldehyde load in ischemia-reperfusion brain injury: neuroprotection by neutralization of reactive aldehydes with phenelzine. Brain Res 2006;1122:184–190.
  • Brook RD, Rajagopalan S, Pope DA, Brook JR, Bhatnagar A, Diez-Roux AV, et al. American Heart Association Council on Epidemiology and Prevention, Council on the Kidney in Cardiovascular Disease, and Council on Nutrition, Physical Activity and Metabolism. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010;121:2331–2378.
  • DeJarnett N, Conklin DJ, Riggs DW, Myers JA, O’Toole TE, Hamzeh I, et al. Acrolein exposure is associated with increased cardiovascular disease risk. J Am Heart Assoc 2014;3:e000934.
  • Guberan E, Raymond L. Mortality and cancer incidence in the perfumery and flavor industry of Geneva. Br J Ind Med 1985;42:240245.
  • Peters A, Liu E, Verrier RL, Schwartz J, Gold DR, Mittlemen M, et al., Air pollution and incidence of cardiac arrhythmia. Epidemiology 2000;11:11–17.
  • Luo J, Hill BG, Gu Y, Cai J, Srivastava S, Bhatnagar A, et al. Mechanisms of acrolein-induced myocardial dysfunction: implications for environmental and endogenous aldehyde exposure. Am J Physiol Heart Circ Physiol 2007;293:J3673–H3684.
  • Perez CM, Ledbetter AD, Hazari MS, Haykal-Coates N, Carll AP, Winsett DW, et al. Hypoxia stress test reveals exaggerated cardiovascular effects in hypertensive rats after exposure to the air pollutant acrolein. Toxicol Sci 2013;132:467–477.
  • O’Toole TE, Conklin DJ, Bhatnagar A. Environmental risk factors for heart disease. Res Environ Health 2008;23:167–202.
  • Gilgun-Sherki Y, Melamed E, Offen D. Antioxidant treatment in Alzheimer’s disease. J Mol Neurosci 2003;21:1–11.
  • Kamat CD, Gadal S, Mhatre M, Williamson KS, Pye QN, Hensley K. Antioxidants in central nervous system diseases: preclinical promise and translational challenges. J Alzheimers Dis 2008;15:473–493.
  • Dobrota D, Fedorova T, Stvolinsky S, Babusikova E, Likavcanova K, Drgova A, et al. Carnosine protects the brain of rats and Mongolian gerbils against ischemic injury: after-stroke-effect. Neurochem Res 2005;30:1283–1288.
  • Guiotto A, Calderan A, Ruzza P, Osler A, Rubini C, Jo DG, et al. Synthesis and evaluation of neuroprotective α,β-unsaturated aldehyde scavenger histidyl-containing analogues of carnosine. J Med Chem 2005; 48:6156–6161.
  • Park J, Zheng L, Marquis A, Walls M, Duerstock B, Pond A, et al. Neuroprotective role of hydralazine in rat spinal cord injury-attenuation of acrolein-mediated damage. J Neurochem 2014;129:339–349.
  • Borch RF, Pleasants ME. Inhibition of cis-platinum nephrotoxicity by diethyldithiocarbamate in a rat model. Proc Natl Acad Sci 1979;76:6611–6614.
  • Jegatheeswaran S, Siriwardena AK. Experimental and clinical evidence for modification of hepatic ischaemia-reperfusion injury by N-acetylcysteine during major liver surgery. Hepato Pancreato Biliary 2010;13:71–78.
  • Kosharskyy B, Vydyanathan A, Zhang L, Shararin N, Geohagan BC, Bivin W, et al. 2-Acetylcyclopentanone, an enolate-forming 1,3-dicarbonyl compound, is cytoprotective in warm ischemia-reperfusion injury of rat liver. J Pharmacol Exp Ther 2015;353:150–158.
  • Begum AN, Jones MR, Lim GP. Curcumin structure-function, bioavailability and efficacy in models of neuroinflammation and Alzheimer’s disease. J Pharmacol Exp Ther 2008;326:196–208.
  • Bug T, Mayr H. Nucleophilic reactivities of carbonations in water: the unique behavior of the malodinitrile anion. J Am Soc Chem 2003;125:12980–12986.
  • Loudon GM. Chemistry of enolate ions, enols and α,β-unsaturated carbonyl compounds. In: Organic chemistry. 4th ed. Chap. 22. New York: Oxford University Press; 2002:997–1068.
  • Jaeschke H, McGill MR, Williams CD, Ramachandran A. Current issues with acetaminophen hepatotoxicity – a clinically relevant model to test the efficacy of natural products. Life Sci 2011;88:737–745.
  • Jaeschke H, Bajt ML. Intracellular signaling mechanisms of acetaminophen-induced liver cell death. Toxicol Sci 2006;89:31–41.
  • Halliwell B. Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch Biochem Biophys 2008;476:107–112.
  • Lambert JD, Sang S, Yang CS. Possible controversy over dietary polyphenols: benefits vs risks. Chem Res Toxicol 2007;20:583–585.
  • Ballantyne B, Cawley TJ. Toxicology update: 2,4-pentanedione. J Appl Toxicol 2001;21:165–171.
  • Zhang L, Gavin T, DeCaprio AP, LoPachin RM. γ-Diketone neuropathy: analysis of cytoskeletal motors and highways in CNS axons. Toxicol Sci 2010;117:180–189.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.