596
Views
23
CrossRef citations to date
0
Altmetric
Original Article

Vanadium(III)-L-cysteine protects cisplatin-induced nephropathy through activation of Nrf2/HO-1 pathway

, , , , , & show all
Pages 39-55 | Received 18 Jun 2015, Accepted 28 Sep 2015, Published online: 16 Nov 2015

References

  • Cancer Drug Information: cisplatin [Internet]. National Cancer Institute as the National Institute of Health. 2014 Sep – [cited 2015 June 01]. Available from: http://www.cancer.gov/about-cancer/treatment/drugs/cisplatin
  • Banerjee P, Majumder P, Halder S, Drew MG, Bhattacharya S, Mazumder S. Comparative anti-proliferative activity of some new 2-(arylazo)phenolate-palladium (II) complexes and cisplatin against some human cancer cell lines. Free Radic Res 2015;49:253–268.
  • Mukhopadhyay P, Horváth B, Zsengellér Z, Zielonka J, Tanchian G, Holovac E, et al. Mitochondrial-targeted antioxidants represent a promising approach for prevention of cisplatin-induced nephropathy. Free Radic Biol Med 2012;52:497–506.
  • Wang H, Jia Z, Sun J, Xu L, Zhao B, Yu K, et al. Nitrooleic acid protects against cisplatin nephropathy: role of COX-2/mPGES-1/PGE2 cascade. Mediators Inflamm 2015;2015:293474.
  • Kilic U, Kilic E, Tuzcu Z, Tuzcu M, Ozercan IH, Yilmaz O, et al. Melatonin suppresses cisplatin-induced nephrotoxicity via activation of Nrf-2/HO-1 pathway. Nutr Metab (Lond) 2013;10:7.
  • Joy J, Nair CK. Amelioration of cisplatin induced nephrotoxicity in Swiss albino mice by Rubia cordifolia extract. J Cancer Res Ther 2008;4:111–115.
  • Mohammadi M, Yazdanparast R. Methoxy VO-salen complex: in vitro antioxidant activity, cytotoxicity evaluation and protective effect on CCl4-induced oxidative stress in rats. Food Chem Toxicol 2009;47:716–721.
  • Ha D, Joo H, Ahn G, Kim MJ, Bing SJ, An S, et al. Jeju ground water containing vanadium induced immune activation on splenocytes of low dose γ-rays-irradiated mice. Food Chem Toxicol 2012;50:2097–2105.
  • Sankar Ray R, Roy S, Ghosh S, Kumar M, Chatterjee M. Suppression of cell proliferation, DNA protein cross-links, and induction of apoptosis by vanadium in chemical rat mammary carcinogenesis. Biochim Biophys Acta 2004;1675:165–173.
  • Kim AD, Zhang R, Kang KA, You HJ, Hyun JW. Increased glutathione synthesis following Nrf2 activation by vanadyl sulfate in human chang liver cells. Int J Mol Sci 2011;12:8878–8894.
  • Kim AD, Zhang R, Kang KA, You HJ, Kang KG, Hyun JW. Jeju ground water containing vanadium enhances antioxidant systems in human liver cells. Biol Trace Elem Res. 2012;147:16–24.
  • Li X, Lu Y, Yang JH, Jin Y, Hwang SL, Chang HW. Natural vanadium-containing Jeju groundwater inhibits immunoglobulin E-mediated anaphylactic reaction and suppresses eicosanoid generation and degranulation in bone marrow derived-mast cells. Biol Pharm Bull 2012;35:216–222.
  • Papaioannou A, Manos M, Karkabounas S, Liasko R, Evangelou AM, Correia I, et al. Solid state and solution studies of a vanadium(III)-L-cysteine compound and demonstration of its antimetastatic, antioxidant and inhibition of neutral endopeptidase activities. J Inorg Biochem 2004;98:959–968.
  • Basu A, Bhattacharjee A, Roy SS, Ghosh P, Chakraborty P, Das I, Bhattacharya S. Vanadium as a chemoprotectant: effect of vanadium(III)-L-cysteine complex against cyclophosphamide-induced hepatotoxicity and genotoxicity in Swiss albino mice. J Biol Inorg Chem 2014;19:981–996.
  • Robinson JP. Oxidative metabolism. Curr Protoc Cytom 2001;Chapter 9:Unit 9.7. doi: 10.1002/0471142956.cy0907s02.
  • Driver AS, Kodavanti PR, Mundy WR. Age-related changes in reactive oxygen species production in rat brain homogenates. Neurotoxicol Teratol 2000;22:175–181.
  • Coşkun S, Gönül B, Ozer C, Erdoğan D, Elmas C. The effects of dexfenfluramine administration on brain serotonin immunoreactivity and lipid peroxidation in mice. Cell Biol Toxicol 2007;23:75–82.
  • Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979;95:351–358.
  • Rahman I, Kode A, Biswas SK. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Proto 2006;1:3159–3164.
  • Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 1974;249:7130–7139.
  • Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 1974;47:469–474.
  • Luck HA. A spectrophotometric method for estimation of catalase. In: Bergmeyer HV, editor. Methods of enzymatic analysis. New York: Academic Press; 1963. p. 886–888.
  • Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 1967;70:158–169.
  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurement with the folinphenol reagent. J Biol Chem 1951;193:265–276.
  • Carl Allinson MJ. A specific enzymatic method for the determination of creatine and creatinine in blood. J Biol Chem 1945;157:169–172.
  • Mather A, Roland D. The automated thiosemicarbazide-diacetyl monoxime method for plasma urea. Clin Chem. 1969;15:393–396.
  • Ross MH, Reith EJ, Romrell LJ. Histology-A Text and Atlas (ki sp k). Baltimore, MD: Williams and Wilkins; 1989. p. 1–2.
  • Gavrieli Y, Sherman Y, Ben-Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992;119:493–501.
  • Ghosh P, Singha Roy S, Basu A, Bhattacharjee A, Bhattacharya S. Sensitization of cisplatin therapy by a naphthalimide based organoselenium compound through modulation of antioxidant enzymes and p53 mediated apoptosis. Free Radic Res 2015;49:453–471.
  • Goldstein M, Watkins S. Immunohistochemistry. Curr Protoc Mol Biol. 2008;Chapter 14:Unit 14.6. doi: 10.1002/0471142727.mb1406s81.
  • Pitts AE, Van Loon JC, Beamish FE. The determination of platinum by atomic absorption spectroscopy: part I. Air-acetylene flames. Anal Chim Acta 1970;50:181–194.
  • Baral R, Mandal I, Chattopadhyay U. Immunostimulatory neem leaf preparation acts as an adjuvant to enhance the efficacy of poorly immunogenic B16 melanoma surface antigen vaccine. Int Immunopharmacol 2005;5:1343–1352.
  • Yao X, Panichpisal K, Kurtzman N, Nugent K. Cisplatin nephrotoxicity: a review. Am J Med Sci 2007;334:115–124.
  • Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of Cisplatin nephrotoxicity. Toxins (Basel) 2010;2:2490–2518.
  • Chakraborty P, Roy SS, Sk UH, Bhattacharya S. Amelioration of cisplatin-induced nephrotoxicity in mice by oral administration of diphenylmethyl selenocyanate. Free Radic Res 2011;45:177–187.
  • Ghosh P, Roy SS, Chakraborty P, Ghosh S, Bhattacharya S. Effects of organoselenium compound 2-(5-selenocyanato-pentyl)-benzo[de]isoquinoline 1,3-dione on cisplatin induced nephrotoxicity and genotoxicity: an investigation of the influence of the compound on oxidative stress and antioxidant enzyme system. Biometals 2013;26:61–73.
  • Hu Q, Zhang DD, Wang L, Lou H, Ren D. Eriodictyol-7-O-glucoside, a novel Nrf2 activator, confers protection against cisplatin-induced toxicity. Food Chem Toxicol 2012;50:1927–1932.
  • Pan H, Chen J, Shen K, Wang X, Wang P, Fu G, et al. Mitochondrial Modulation by Epigallocatechin 3-Gallate Ameliorates Cisplatin Induced Renal Injury through Decreasing Oxidative/Nitrative Stress, Inflammation and NF-kB in Mice. PLoS One 2015;10:e0124775.
  • Bhattacharjee A, Basu A, Biswas J, Bhattacharya S. Nano-Se attenuates cyclophosphamide-induced pulmonary injury through modulation of oxidative stress and DNA damage in Swiss albino mice. Mol Cell Biochem 2015;405:243–256.
  • Bhattacharjee A, Basu A, Ghosh P, Biswas J, Bhattacharya S. Protective effect of Selenium nanoparticle against cyclophosphamide induced hepatotoxicity and genotoxicity in Swiss albino mice. J Biomater Appl 2014;29:303–317.
  • Matés JM, Pérez-Gómez C, Núñez de Castro I. Antioxidant enzymes and human diseases. Clin Biochem 1999;32:595–603.
  • Mukhopadhyay P, Horváth B, Kechrid M, Tanchian G, Rajesh M, Naura AS, et al. Poly(ADP-ribose) polymerase-1 is a key mediator of cisplatin-induced kidney inflammation and injury. Free Radic Biol Med 2011;51:1774–1788.
  • Zhang DD. Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev 2006;38:769–89.
  • Sahin K, Tuzcu M, Gencoglu H, Dogukan A, Timurkan M, Sahin N, et al. Epigallocatechin-3-gallate activates Nrf2/HO-1 signaling pathway in cisplatin-induced nephrotoxicity in rats. Life Sci 2010;87:240–245.
  • Gabay C. Interleukin-6 and chronic inflammation. Arthritis Res Ther 2006;8(Suppl 2):S3.
  • Basu A, Ghosh P, Bhattacharjee A, Patra AR, Bhattacharya S. Prevention of myelosuppression and genotoxicity induced by cisplatin in murine bone marrow cells: effect of an organovanadium compound vanadium(III)-L-cysteine. Mutagenesis 2015;30:509–517.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.