323
Views
31
CrossRef citations to date
0
Altmetric
Original Article

Protective effect of trans-δ-viniferin against high glucose-induced oxidative stress in human umbilical vein endothelial cells through the SIRT1 pathway

, , , , , & show all
Pages 68-83 | Received 25 May 2015, Accepted 11 Oct 2015, Published online: 18 Nov 2015

References

  • Shuang E, Kijima R, Honma T, Yamamoto K, Hatakeyama Y, Kitano Y, et al. 1-Deoxynojirimycin attenuates high glucose-accelerated senescence in human umbilical vein endothelial cells. Exp Gerontol 2014;55:63–69.
  • Campos J, Schmeda-Hirschmann G, Leiva E, Guzmán L, Orrego R, Fernández P, et al. Lemon grass (Cymbopogon citratus (DC) Stapf) polyphenols protect human umbilical vein endothelial cell (HUVECs) from oxidative damage induced by high glucose, hydrogen peroxide and oxidised low-density lipoprotein. Food Chem 2014;151:175–181.
  • Zhu MM, Wen ML, Sun X, Chen WK, Chen JW, Miao CH. Propofol protects against high glucose–induced endothelial apoptosis and dysfunction in human umbilical vein endothelial cells. Anesth Analg 2015;120:781–789.
  • Heo SJ, Hwang JY, Choi JI, Lee SH, Park PJ, Kang DH, et al. Protective effect of diphlorethohydroxycarmalol isolated from Ishige okamurae against high glucose-induced-oxidative stress in human umbilical vein endothelial cells. Food Chem Toxicol 2010;48:1448–1454.
  • Liu J, Wei SH, Tian LM, Yan LP, Guo Q, Ma XQ. Effects of endomorphins on human umbilical vein endothelial cells under high glucose. Peptides 2011;32:86–92.
  • Tsuneki H, Sekizaki N, Suzuki T, Kobayashi S, Wada T, Okamoto T, et al. Coenzyme Q 10 prevents high glucose-induced oxidative stress in human umbilical vein endothelial cells. Eur J Pharmacol 2007;566:1–10.
  • Chan CY, Mong MC, Liu WH, Huang CY, Yin MC. Three pentacyclic triterpenes protect H9c2 cardiomyoblast cells against high-glucose-induced injury. Free Radical Res 2014;48:402–411.
  • Moon MK, Kang DG, Lee YJ, Kim JS, Lee HS. Effect of Benincasa hispida Cogniaux on high glucose-induced vascular inflammation of human umbilical vein endothelial cells. Vasc Pharmacol 2009;50:116–122.
  • Anastasiadi M, Pratsinis H, Kletsas D, Skaltsounis, AL, Haroutounian SA. Grape stem extracts: polyphenolic content and assessment of their in vitro antioxidant properties. LWT-Food Sci Technol 2012;48:316–322.
  • Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 2006;5:493–506.
  • Langcake P, Pryce RJ. Oxidative dimerisation of 4-hydroxystilbenes in vitro: production of a grapevine phytoalexin mimic. J Chem Soc Chem Commun 1977;7:208–210.
  • Vitrac X, Bornet A, Vanderlinde R, Valls J, Richard T, Delaunay JC, et al. Determination of stilbenes (δ-viniferin, trans-astringin, trans-piceid, cis-and trans-resveratro, ɛ-viniferin) in Brazilian wines. J Agric Food Chem 2005;53:5664–5669.
  • Waffo-Teguo P, Lee D, Cuendet M, Mérillon JM, Pezzuto JM, Kinghorn AD. Two new stilbene dimer glucosides from grape (vitis vinifera) cell cultures. J Nat Prod 2001;64:136–138.
  • Shingai Y, Fujimoto A, Nakamura M, Masuda T. Structure and function of the oxidation products of polyphenols and identification of potent lipoxygenase inhibitors from Fe-catalyzed oxidation of resveratrol. J Agric Food Chem 2011;59:8180–8186.
  • Keylor MH, Matsuura BS, Stephenson CRJ. Chemistry and biology of resveratrol-derived natural products. Chem Rev 2015;115:8976. doi:10.1021/cr500689b.
  • CN Patent No. 101433534A, filed on December 22nd, 2008 and published on May 20th, 2009.
  • Han C, Xu JF, Wang XB, Xu XM, Luo JG, Kong LY. Enantioseparation of racemic trans-δ-viniferin using high speed counter-current chromatography based on induced circular dichroism technology. J Chromatogr A 2014;1324:164–170.
  • Liu QW, Liao XL, Xu J, Zhao J, Luo JG, Kong LY. Development and validation of a sensitive and selective LC–MS/MS method for the determination of trans δ-veniferin, a resveratrol dehydrodimer, in rat plasma and its application to pharmacokinetics and bioavailability studies. J Chromatogr B 2014;958:124–129.
  • Lin YJ, Zhen YZ, Wei J, Liu B, Yu ZY, Hu G. Effects of Rhein lysinate on H2O2-induced cellular senescence of human umbilical vascular endothelial cells. Acta Pharmacol Sin 2011;32:1246–1252.
  • Xu JF, Zhao HJ, Wang XB, Li ZR, Luo J, Yang MH, et al. (±)-Melicolones A and B, rearranged prenylated acetophenone stereoisomers with an unusual 9-oxatricyclo [3.2.1.13,8] nonane core from the leaves of Melicope ptelefolia. Org Lett 2015;17:146–149.
  • Chao CL, Hou YC, Lee Chao PD, Weng CS, Ho FM. The antioxidant effects of quercetin metabolites on the prevention of high glucose-induced apoptosis of human umbilical vein endothelial cells. Birth J Nutr 2009;101:1165–1170.
  • Kumar S, Sitasawad SL. N-acetylcysteine prevents glucose/glucose oxidase-induced oxidative stress, mitochondrial damage and apoptosis in H9c2 cells. Life Sci 2009;84:328–336.
  • Kumar S, Kain V, Sitasawad SL. High glucose-induced Ca2+ overload and oxidative stress contribute to apoptosis of cardiac cells through mitochondrial dependent and independent pathways. BBA-Gen Subjects 2012;1820:907–920.
  • Li Y, Wang K, Feng YT, Fan CX, Wang F, Yan JJ, et al. Novel role of silent information regulator 1 in acute endothelial cell oxidative stress injury. BBA-Mol Basis Dis 2014;1842:2246–2256.
  • Luo JY, Nikolaev AY, Imai SI, Chen D, Su F, Shiloh A, et al. Negative control of p53 by Sir2α promotes cell survival under stress. Cell 2001;107:137–148.
  • Vaziri H, Dessain SK, Eaton EN, Imai SI, Frye RA, Pandita TK, et al. hSIR2SIRT1 functions as an NAD-dependent p53 deacetylase. Cell 2001;107:149–159.
  • Yi JJ, Luo JY. SIRT1 and p53, effect on cancer, senescence and beyond. BBA-Proteins Proteom 2010;1804:1684–1689.
  • Wilkens A, Paulsen J, Wray V, Winterhalter P. Structures of two novel trimeric stilbenes obtained by horseradish peroxidase catalyzed biotransformation of trans-resveratrol and (−)-ɛ-viniferin. J Agric Food Chem 2010;58:6754–6761.
  • Nichols GA, Hillier TA, Erbey JR, Brown JB. Congestive heart failure in type 2 diabetes prevalence, incidence, and risk factors. Diabetes Care 2001;24: 1614–1619.
  • Kang MC, Lee SH, Lee WW, Kang N, Kim EA, Kim SY, et al. Protective effect of fucoxanthin isolated from Ishige okamurae against high-glucose induced oxidative stress in human umbilical vein endothelial cells and zebrafish model. J Funct Foods 2014;11:304–312.
  • Vlachogianni IC, Fragopoulou E, Kostakis IK, Antonopoulou S. In vitro assessment of antioxidant activity of tyrosol, resveratrol and their acetylated derivatives. Food Chem 2015;177:165–173.
  • Huerta-García E, Ventura-Gallegos JL, Victoriano MEC, Montiél-Dávalos A, Tinoco-Jaramillo G, López-Marure R. Dehydroepiandrosterone inhibits the activation and dysfunction of endothelial cells induced by high glucose concentration. Steroids 2012;77:233–240.
  • Guo CR, Li L, Yang XL, Meng ZQ, Li F, Zhang CF, et al. Protective effects of timosaponin B-II on high glucose-induced apoptosis in human umbilical vein endothelial cells. Environ Toxicol Pharmacol 2014;37:37–44.
  • Jiang JY, Yu SN, Jiang ZC, Liang CH, Yu WB, Li J, et al. N-Acetyl-Serotonin protects HepG2 cells from oxidative stress injury induced by hydrogen peroxide. Oxid Med Cell Longev 2014;2014. doi:10.1155/2014/310504.
  • Sun X, Chen RC, Yang ZH, Sun GB, Wang M, Ma XJ, et al. Taxifolin prevents diabetic cardiomyopathy in vivo and in vitro by inhibition of oxidative stress and cell apoptosis. Food Chem Toxicol 2014;63:221–232.
  • Cao G, Cai H, Cai BC, Tu SC. Effect of 5-hydroxymethylfurfural derived from processed Cornus officinalis on the prevention of high glucose-induced oxidative stress in human umbilical vein endothelial cells and its mechanism. Food Chem 2013;140:273–279.
  • Rajakumar P, Anandhan R, Vadla GP, Vellaichamy E. Synthesis and cardio protective biological applications of glucodendrimers by H9c2 cell studies. Carbohyd Polym 2014;99:403–414.
  • Chu HL, Chien JC, Duh PD. Protective effect of Cordyceps militaris against high glucose-induced oxidative stress in human umbilical vein endothelial cells. Food Chem 2011;129:871–876.
  • Jin MM, Zhang L, Yu HX, Meng J, Sun Z, Lu RR. Protective effect of whey protein hydrolysates on H2O2-induced PC12 cells oxidative stress via a mitochondria-mediated pathway. Food Chem 2013;141:847–852.
  • Cheng YX, Feng YK, Zhu M, Yan B, Fu SB, Guo J, et al. Synthetic liver X receptor agonist T0901317 attenuates high glucose-induced oxidative stress, mitochondrial damage and apoptosis in cardiomyocytes. Acta Histochem 2014;116:214–221.
  • Liu J, Deng WJ, Fan L, Tian LM, Jin LY, Jin ZS, et al. The role of radix hedysari polysaccharide on the human umbilical vein endothelial cells (HUVECs) induced by high glucose. Eur J Intern Med 2012;23:287–292.
  • Brentnall M, Rodriguez-Menocal L, De Guevara RL, Cepero E, Boise LH. Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol 2013;14:32.
  • Wu D, Hu QX, Liu XH, Pan LL, Xiong QH, Zhu YZ. Hydrogen sulfide protects against apoptosis under oxidative stress through SIRT1 pathway in H9c2 cardiomyocytes. Nitric Oxide 2015;46:204–212.
  • Yun JM, Chien A, Jialal I, Devaraj S. Resveratrol up-regulates SIRT1 and inhibits cellular oxidative stress in the diabetic milieu: mechanistic insights. J Nutr Biochem 2012;23:699–705.
  • Guarente L. Sirtuins as potential targets for metabolic syndrome. Nature 2006;444:868–874.
  • Alcendor RR, Gao SM, Zhai PY, Zablocki D, Holle E, Yu XZ, et al. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res 2007;100:1512–1521.
  • Zhou S, Chen HZ, Wan YZ, Zhang QJ, Wei YS, Huang S, et al. Repression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia-induced endothelial dysfunction. Circ Res 2011;109: 639–648.
  • Han MK, Song EK, Guo Y, Ou X, Mantel C, Broxmeyer HE. SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. Cell Stem Cell 2008;2:241–251.
  • Distelhorst CW, Bootman MD. Bcl-2 interaction with the inositol 1, 4, 5-trisphosphate receptor: role in Ca2+ signaling and disease. Cell Calcium 2011;50:234–241.
  • Hsu CP, Zhai P, Yamamoto T, Maejima Y, Matsushima S, Hariharan N, et al. Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation 2010;122:2170–2182.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.