1,042
Views
109
CrossRef citations to date
0
Altmetric
Review Article

Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants

, , , &
Pages 291-303 | Received 10 Jul 2015, Accepted 05 Nov 2015, Published online: 14 Jan 2016

References

  • Khan MN, Mohammad F, Mobin M, Saqib MA. Tolerance of plants to abiotic stress: a role of nitric oxide and calcium. In: Khan MN, Mobin M, Mohammad F, Corpas FJ, eds. Nitric oxide in plants: metabolism and role in stress physiology. Switzerland: Springer International Pub.; 2014:225–242.
  • Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 2002;7:1360–1385.
  • Vranova E, Inze D, Breusegem FV. Signal transduction during oxidative stress. J Exp Bot 2002; 53:1227–1236.
  • Ferreira LC, Cataneo AC. Nitric oxide in plants: a brief discussion on this multifunctional molecule. Sci Agric 2010;67:236–243.
  • Kopyra M, Gwózdz FA. Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol Biochem 2003;41:1011–1017.
  • Mazid M, Khan TA, Mohammad F. Role of nitric oxide in regulation of H2O2 mediating tolerance of plants to abiotic stress: a synergistic signaling approach. J Stress Physiol Biochem 2011;7:34–74.
  • Wink DA, Mitchell JB. Chemical biology of NO: insights into regulation, protective and toxic mechanisms of nitric oxide. Free Rad Bio Med 1998;25:434–456.
  • Beligni MV, Lamattina L. Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta 1999;208:337–344.
  • Laspina NV, Groppa MD, Tomaro ML, Benavides MP. Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Sci 2005;169:323–330.
  • Lamattina L, Garcia-Mata C, Graziano M, Pagnussat G. Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 2003;54:109–136.
  • Hasanuzzaman M, Nahar K, Alam MM, Fujita M. Exogenous nitric oxide alleviates high temperature induced oxidative stress in wheat (Triticum aestivum L.) seedlings by modulating the antioxidant defense and glyoxalase system. Aust J Crop Sci 2012;6:1314–1323.
  • Misra AN, Misra M, Singh R. Nitric oxide ameliorates stress responses in plants. Plant Soil Environ 2011;57:95–100.
  • Jelonek MA, Wieczorek JF. Understanding the fate of peroxynitrite in plant cells-from physiology to pathophysiology. Phytochemistry 2011;72:681–688.
  • Gow AJ, Farkouh CR, Munson DA, Posencheg MA, Ischiropoulos H. Biological significance of nitric oxide-mediated protein modifications. Am J Physiol Lung Cell Mol Physiol 2004;287:262–268.
  • Astier J, Lindermayr C. Nitric oxide-dependent posttranslational modification in plants: an update. Int J Mol Sci 2012;13:15193–15208.
  • Martínez-Ruiz A, Lamas S. S-nitrosylation: a potential new paradigm in signal transduction. Cardiovasc Res 2004;62:43–52.
  • Arora D, Bhatla SC. Nitric oxide triggers a concentration-dependent differential modulation of superoxide dismutase (FeSOD and Cu/ZnSOD) activity in sunflower seedling roots and cotyledons as an early and long distance signaling response to NaCl stress. Plant Signal Behav 2015;10:e1071753. DOI: 10.1080/15592324.2015.1071753.
  • Radi R. Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci USA 2004;101:4003–4008.
  • Ischiropoulos H. Biological selectivity and functional aspects of protein tyrosine nitration. Biochem Biophys Res Commun 2003;305:776–783.
  • Ford PC, Fernandez BO, Lim MD. Mechanisms of reductive nitrosylation in iron and copper models relevant to biological systems. Chem Rev 2005;105:2439–2455.
  • Ford PC. Reactions of NO and nitrite with heme models and proteins. Inorg Chem 2010;49:6226–6239.
  • Cooper CE. Nitric oxide and iron proteins. Biochem Biophys Acta 1999;1411:290–309.
  • Brown GC. Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase. FEBS Lett 1995;369:136–139.
  • Drapier JC. Interplay between NO and [Fe-S] clusters: relevance to biological systems. Methods 1997;11:319–329.
  • Clementi E, Brown GC, Feelisch M, Moncada S. Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc Natl Acad Sci USA 1998;95:7631–7636.
  • Giulivi C. Functional implications of nitric oxide produced by mitochondria in mitochondrial metabolism. Biochem J 1998;332:673–679.
  • Torres J, Cooper CE, Sharpe M, Wilson MT. Reactivity of nitric oxide with cytochrome c oxidase: interactions with the binuclear center and mechanism of inhibition. J Bioenerg Biomemb 1998;30:63–69.
  • Stone JR, Marletta MA. Soluble guanylate cyclase from bovine lung: activation with nitric oxide and carbon monoxide and spectral characterization of the ferrous and ferric states. Biochemistry 1994;33:5636–5640.
  • Martin E, Berka V, Sharina I, Tsai A. Mechanism of binding of NO to soluble guanylyl cyclase: implication for the second NO binding to the heme proximal site. Biochemistry 2011;51:2737–2746.
  • Ding Y, McCoubrey WK, Maines MD. Interaction of heme oxygenase-2 with nitric oxide donors. Is the oxygenase an intracellular ‘sink’ for NO? Eur J Biochem 1999;264:854–861.
  • Maitra D, Byun J, Andreana PR, Abdulhamid I, Diamond MP, Saed GM, et al. Reaction of hemoglobin with HOCl: mechanism of heme destruction and free iron release. Free Radical Bio Med 2011;51:374–386.
  • Ignarro LJ. Nitric oxide: biology and pathobiology. San Diego, CA: Academic Press; 2000.
  • Speelman AL, Lehnert N. Heme versus non-heme iron-nitroxyl {FeN(H)O}8 complexes: electronic structure and biologically relevant reactivity. Acc Chem Res 2014;47:1106–1116.
  • Servid AE, McKay AL, Davis CA, Garton EM, Manole A, Dobbin PS, et al. Resonance Raman spectra of five-coordinate heme-nitrosyl cytochromes c′: effect of the proximal heme-NO environment. Biochemistry 2015;54:3320–3327.
  • Wang J, Lu S, Moenne-Loccoz P, Ortiz de Montellano PR. Interaction of nitric oxide with human heme oxygenase-1. J Biol Chem 2003;278:2341–2347.
  • Chakravarti R, Gupta K, Majors A, Ruple L, Aronica M, Stuehr DJ. Novel insights in mammalian catalase heme maturation: effect of NO and thioredoxin-1. Free Radical Bio Med 2015;82:105–113.
  • Davis KL, Martin E, Turko IV, Murad F. Novel effects of nitric oxide. Annu Rev Pharmacol Toxicol 2001;41:203–236.
  • Brunelli L, Yermilov V, Beckman JS. Modulation of catalase peroxidatic and catalatic activity by nitric oxide. Free Radical Bio Med 2001;30:709–714.
  • Clark D, Dunar J, Navarre DA, Klessig DF. Nitric oxide inhibition of tobacco catalase and ascorbate peroxidise. Mol Plant-Microbe Interact 2000;14:1380–1384.
  • Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, et al. Nitric oxide and salicylic acid signalling in plant defense. Proc Natl Acad Sci USA 2000;97:8849–8855.
  • Singh HP, Batish DR, Kaur G, Arora K, Kohli RH. Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. Environ Exp Bot 2008;63:158–167.
  • Hsu YT, Kao CH. Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regul 2004;42:227–238.
  • Bai X, Yang L, Tian M, Chen J, Shi J, Yang Y, Hu X. Nitric oxide enhances desiccation tolerance of recalcitrant Antiaris toxicaria seeds via protein S-nitrosylation and carbonylation. PLoS One 2011;6:e20714.
  • Hu K, Hu L, Li Y, Zhang F, Zhang H. Protective roles of nitric oxide on germination and antioxidant metabolism in wheat seeds under copper stress. Plant Growth Regul 2007;53:173–183.
  • Song L, Ding W, Zhao MG, Sun BT, Zhang LX. Nitric oxide protects against oxidative stress under heat stress in the calluses from two ecotypes of reed. Plant Sci 2006;171:449–448.
  • Cui XM, Zhang YK, Wu XB, Liu CS. The investigation of the alleviated effect of copper toxicity by exogenous nitric oxide in tomato plants. Plant Soil Environ 2010;56:274–281.
  • Jin JW, Xu YF, Huang YF. Protective effect of nitric oxide against arsenic-induced oxidative damage in tall fescue leaves. Afr J Biotech 2010;9:1619–1627.
  • Xu Y, Sun X, Jin J, Zhou H. Protective effects of nitric oxide on light-induced oxidative damage in leaves of tall fescue. J Plant Physiol 2010;167:512–518.
  • Schiffrin EL. Oxidative stress, nitric oxide and superoxide dismutase: a matter of imbalance underlies endothelial dysfunction in the human coronary circulation. Hypertens 2008;51:31–32.
  • Singh RJ, Hogg N, Goss SPA, Antholine WE, Kalyanaraman B. Mechanism of superoxide dismutase/H2O2-mediated nitric oxide release from S-nitrosoglutathione-role of glutamate. Arch Biochem Biophy 1999;372:8–15.
  • Frank S, Zacharowski K, Wray GM, Thiemermann C, Schifter JP. Identification of copper/zinc superoxide dimutase as a novel nitric oxide-regulated gene in rat glomerular mesangial cells and kidneys of endotoxemic rats. FASEB J 1999;13:869–882.
  • Lin CC, Jih PJ, Lin HH, Lin JS, Chang LL, Shen YH, Jeng ST. Nitric oxide activates superoxide dismutase and ascorbate peroxidase to repress the cell death induced by wounding. Plant Mol Biol 2011;77:235–249.
  • Manai J, Kalai T, Gouia H, Corpas FJ. Exogenous nitric oxide (NO) ameliorates salinity-induced oxidative stress in tomato (Solanum lycopersicum) plants. J Soil Sci Plant Nutr 2014;14:433–446.
  • Teewari RK, Hahn EJ, Paek KY. Modulation of copper toxicity-induced oxidative damage by nitric oxide supply in the adventitious roots of Panax ginseng. Plant Cell Rep 2008;27:171–181.
  • Shi Q, Ding F, Wang X, Wei M. Exogenous nitric oxide protects cucumber roots oxidative stress induced by salt stress. Plant Physio Biochem 2007;45:542–550.
  • Guo Y, Tian Z, Yan D, Zhang J, Qin P. Effects of nitric oxide on salt stress tolerance in Kosteletzkya virginica. Life Sci J 2009;6:67–75.
  • Liu S, Dong YJ, Xu LL, Kong J, Bai XY. Roles of endogenous nitric oxide in regulating ionic equilibrium and moderating oxidative stress in cotton seedlings during salt stress. J Soil Sci Plant Nutr 2013;13:929–941.
  • Yamakura F, Taka H, Fujimura T, Murayama K. Inactivation of human manganese superoxide dismutase is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. J Biol Chem 1998;273:14085–14089.
  • Franco MC, Estevez AG. Tyrosine nitration as mediator of cell death. Cell Mol Life Sci 2014;71:3939–3950.
  • MacMillan-Crow LA, Thompson JA. Tyrosine modifications and inactivation of active site manganese superoxide dismutase mutant (Y34F) by peroxynitrite. Arch Biochem Biophy 1999;366:82–88.
  • Chaki M, Valderrama R, Fernandez-Ocana AM, Carreras A, Lopez-Jaramillo J, Luque F, et al. Protein targets of tyrosine nitration in sunflower (Helianthus annuus L.) hypocotyls. J Exp Bot 2009;60:4221–4234.
  • Holzmeister C, Gaupels F, Geerlof A, Sarioglu H, Sattler M, Durner J, Lindermayr C. Differential inhibition of Arabidopsis superoxide dismutases by peroxynitrite-mediated tyrosine nitration. J Exp Bot 2015;66:989–999.
  • Sehrawat A, Abat JK, Deswal R. RuBisCO depletion improved proteome coverage of cold responsive S-nitrosylated targets in Brassica juncea. Front Plant Sci 2013;4:1–14.
  • Martinez A, Peluffo G, Petruk AA, Hugo M, Pineyro D, Demicheli V, et al. Structural and molecular basis of the peroxynitrite-mediated nitration and inactivation of Trypanosoma cruzi iron-superoxide dismutases (Fe-SODs) A and B. J Biol Chem 2014;269:12760–12778.
  • Liu X, Wang L, Liu L, Guo Y, Ren H. Alleviating effect of exogenous nitric oxide in cucumber seedling against chilling stress. Afr J Biotechnol 2013;10:4380–4386.
  • Esim N, Atici O. Nitric oxide improves chilling tolerance of maize by affecting apoplastic antioxidative enzymes in leaves. Plant Growth Regul 2014;72:29–38.
  • Wang Y, Luo Z, Du R, Liu Y, Ying T, Mao L. Effect of nitric oxide on antioxidative response and proline metabolism in banana during cold storage. J Agr Food Chem 2013;61:8880–8887.
  • Bavita A, Shashi B, Navtej SB. Nitric oxide alleviates oxidative damage induced by high temperature stress in wheat. Indian J Exp Biol 2012;50:372–378.
  • Yang JD, Yun JY, Zhang TH, Zhao HL. Presoaking with nitric oxide donor SNP alleviates heat shock damages in mung bean leaf discs. Bot Stud 2006;47:129–136.
  • Kumari A, Sheokand S, Swaraj K. Nitric oxide induced alleviation of toxic effects of short term and long term Cd stress on growth, oxidative metabolism and Cd accumulation in Chickpea. Braz J Plant Physiol 2010;22:271–284.
  • Sheokand S, Bhankar V, Sawhney V. Ameliorative effect of exogenous nitric oxide on oxidative metabolism in NaCl treated chickpea plants. Braz J Plant Physiol 2010;22:81–90.
  • Li QY, Niu HB, Yin J, Wang MB, Shao HB, Deng DZ, et al. Protective role of exogenous nitric oxide against oxidative-stress induced by salt stress in barley (Hordeum vulgare). Colloids Surf B Biointerfaces 2008;65:220–225.
  • Keyster M, Klein A, Egbichi I, Jacobs A, Ludidi N. Nitric oxide increases the enzymatic activity of three ascorbate peroxidase isoforms in soybean root nodules. Plant Signal Behav 2011;6:956–961.
  • Lozano-Juste J, Colom-Moreno R, Leon J. In vivo protein tyrosine nitration in Arabidopsis thaliana. J Exp Bot 2011;62:3501–3517.
  • Tanou G, Filippou P, Belghazi M, Job D, Diamantidis G, Fotopoulos V, Molassiotis A. Oxidative and nitrosative-based signaling and associated posttranslational modifications orchestrate the acclimation of citrus plants to salinity stress. Plant J 2012;72:585–599.
  • Fares A, Rossignol M, Peltier JB. Proteomics investigation of endogenous S-nitrosylation in Arabidopsis. Biochem Biophys Res Commun 2011;416:331–336.
  • Begara-Morales JC, Chaki M, Sanchez-Calvo B, Mata-Perez C, Leterrier M, Palma JM, et al. Protein tyrosine nitration in pea roots during development and senescence. J Exp Bot 2013;64:1121–1134
  • Correa-Aragunde N, Foresi N, Delledonne M, Lamattina L. Auxin induces redox regulation of ascorbate peroxidase 1 activity by S-nitrosylation/denitrosylation balance resulting in changes of root growth pattern in Arabidopsis. J Exp Bot 2013;64:3339–3349.
  • Yang H, Mu J, Chen L, Feng J, Hu J, Li L, et al. S-nitrosylation positively regulates ascorbate peroxidase activity during plant stress responses. Plant Physiol 2015;167:1604–1615.
  • de Pinto MC, Locato V, Sgobba A, Romero-Puertas MC, Gadaleta C, Delledonne M, de Gara L. S-nitrosylation of ascorbate peroxidase is part of programmed cell death signaling in tobacco Bright Yellow-2 cells. Plant Physiol 2013;163:1766–1775.
  • Begara-Morales JC, Sanchez-Calvo B, Chaki M, Valderrama R, Mata-Perez C, Lopez-Jaramillo J, et al. Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation. J Exp Bot 2014;65:527–538.
  • Baier M, Dietz KJ. Alkyl hydroperoxide reductases: the way out of the oxidative breakdown of lipids in chloroplasts. Trends Plant Sci 1999;4:166–168.
  • Huang X, von Rad U, Durner J. Nitric oxide induces transcriptional activation of the nitric oxide-tolerant alternative oxidase in Arabidopsis suspension cells. Planta 2002;215:914–923.
  • Misra MK, Sarwat M, Bhakuni P, Tuteja R, Tuteja N. Oxidative stress and ischemic myocardial syndromes. Med Sci Review 2009;15:RA209–RA219.
  • Rouhier N, Jacquot JP. The plant multigenic family of thiol peroxidases. Free Radical Bio Med 2005;38:1413–1421.
  • Lindermayr C, Saalbach G, Durner J. Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 2005;137:921–930.
  • Romero-Puertas MC, Laxa M, Mattè A, Zaninotto F, Finkemeier I, Jones AM, et al. S-nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration. Plant Cell Online 2007;19:4120–4130.
  • Abat JK, Deswal R. Differential modulation of S-nitrosoproteome of Brassica juncea by low temperature: change in S-nitrosylation of Rubisco is responsible for the inactivation of its carboxylase activity. Proteomics 2009;9:4368–4380.
  • Lin NA, Wang Y, Tang J, Xue P, Li C, Liu L, et al. Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice. Plant Physiol 2012;158:451–464.
  • Wagener F, Volk HD, Willis D, Abraham NG, Soares MP, Adema GJ, Figdor CG. Different faces of the heme-heme oxygenase system in inflammation. Pharmacol Rev 2003;55:551–571.
  • Lad L, Wang J, Li H, Friedman J, Bhaskar B, de Montellano PRO, Poulos TL. Crystal structures of the ferric, ferrous, and ferrous–NO forms of the Asp140Ala mutant of human heme oxygenase-1: catalytic implications. J Mol Biol 2003;330:527–538.
  • Muramoto T, Kohchi T, Yokota A, Hwang I, Goodman HM. The Arabidopsis photomorphogenic mutant hy1 is deficient in phytochrome chromophore biosynthesis as a result of a mutation in a plastid heme oxygenase. Plant Cell 1999;11:335–348.
  • Davis SJ, Bhoo SH, Durski AM, Walker JM, Vierstra RD. The heme-oxygenase family required for phytochrome chromophore biosynthesis is necessary for proper photomorphogenesis in higher plants. Plant Physiol 2001;126:656–669.
  • Matsumoto F, Obayashi T, Sasaki-Sekimoto Y, Ohta H, Takamiya KI, Masuda T. Gene expression profiling of the tetrapyrrole metabolic pathway in Arabidopsis with a mini-array system. Plant Physiol 2004;135:2379–2391.
  • García-Mata C, Lamattina L. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 2001;126:1196–1204.
  • Liu YH, Xu S, Ling TF, Xu LL, Shen WB. Heme oxygenase/carbon monoxide system participates in regulating wheat seed germination under osmotic stress involving the nitric oxide pathway. J Plant Physiol 2010;167:1371–1379.
  • Zhao MG, Tian QY, Zhang WH. Nitric oxide synthase dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol 2007;144:206–217.
  • Xie YJ, Xu S, Han B, Wu MZ, Yuan XX, Han Y, et al. Evidence of Arabidopsis salt acclimation induced by up-regulation of HY1 and the regulatory role of RbohD-derived reactive oxygen species synthesis. Plant J 2011;66:280–292.
  • Xie YJ, Mao Y, Lai DW, Zhang W, Zheng TQ, Shen WB. Roles of NIA/NR/NOA1-dependent nitric oxide production and HY1 expression in the modulation of Arabidopsis salt tolerance. J Exp Bot 2013;64:3045–3060.
  • Zhao MG, Chen L, Zhang LL, Zhang WH. Nitric reductase dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiol 2009;151:755–76.
  • Bai XG, Chen JH, Kong XX, Todd CD, Yang YP, Hu XY, Li DZ. Carbon monoxide enhances the chilling tolerance of recalcitrant Baccaurea ramiflora seeds via nitric oxide-mediated glutathione homeostasis. Free Radic Biol Med 2012;53:710–720.
  • Noriega GO, Balestrasse KB, Batlle A, Tomaro ML. Heme oxygenase exerts a protective role against oxidative stress in soybean leaves. Biochem Biophys Res Commun 2004;323:1003–1008.
  • Besson-Bard A, Gravot A, Richaud P, Auroy P, Duc C, Gaymard F, et al. Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Plant Physiol 2009;149:1302–1315.
  • Han B, Yang Z, Xie Y, Nie L, Cui J, Shen WB. Arabidopsis HY1 confers cadmium tolerance by decreasing nitric oxide production and improving iron homeostasis. Mol Plant 2014;7:388–403.
  • Santa-Cruz DM, Pacienza NA, Polizio AH, Balestrasse KB, Tomaro ML, Yannarelli GG. Nitric oxide synthase like dependent NO production enhances heme oxygenase up-regulation in ultraviolet-B-irradiated soybean plants. Phytochemistry 2010;71:1700–1707.
  • Xuan W, Zhu FY, Xu S, Huang BK, Ling TF, Qi JY, et al. The heme oxygenase/carbon monoxide system is involved in the auxin-induced cucumber adventitious rooting process. Plant Physiol 2008;148:881–893.
  • Xuan W, Xu S, Li M, Han B, Zhang B, Zhang J, et al. Nitric oxide is involved in hemin-induced cucumber adventitious rooting process. J Plant Physiol 2012;169:1032–1039.
  • Chen YH, Chao YY, Hsu, YY, Hong CY, Kao CH. Heme oxygenase is involved in nitric oxide- and auxin-induced lateral root formation in rice. Plant Cell Rep 2012;31:1085–1091.
  • Wu MZ, Wang FQ, Zhang C, Xie YJ, Han B, Huang JJ, Shen WB. Heme oxygenase-1 is involved in nitric oxide- and cGMP-induced a-Amy2/54 gene expression in GA-treated wheat aleurone layers. Plant Mol Biol 2013;81:27–40.
  • Noriega GO, Yannarelli GG, Balestrasse KB, Batlle A, Tomaro ML. The effect of nitric oxide on heme oxygenase gene expression in soybean leaves. Planta 2007;226:1155–1163.
  • Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am J Physiol 1996;271:C1424–C1437.
  • Juckett M, Zheng YH, Yuan H, Pastor T, Antholine W, Weber M, Vercellotti G. Heme and the endothelium. Effects of nitric oxide on catalytic iron and heme degradation by heme oxygenase. J Biol Chem 1998;273:23388–23397.
  • Foresti R, Hoque M, Bains S, Green CJ, Motterlini R. Haem and nitric oxide: synergism in the modulation of the endothelial haem oxygenase-1 pathway. J Biochem 2003;372:381–390.
  • Liu Y, Li X, Xu L, Shen W. De-etiolation of wheat seedling leaves: cross talk between heme oxygenase/carbon monoxide and nitric oxide. PLoS One 2013;8:e81470.
  • Foresti R, Motterlini R. The heme oxygenase pathway and its interaction with nitric oxide in the control of cellular homeostasis. Free Radical Res 1999;31:459–475.
  • Motterlini R, Foresti R, Intaglietta M, Winslow RM. NO-mediated activation of heme oxygenase: endogenous cytoprotection against oxidative stress to endothelium. Am J Physiol 1996;270:H107–H114.
  • Bishop A, Marquis JC, Cashman NR, Demple B. Adaptive resistance to nitric oxide in motor neurons. Free Radical Biol Med 1999;26:978–986.
  • Alvarez C, Calo L, Romero LC, Gracia I, Gotor C. An O-Acetylserine(thiol)lyase homolog with L-cysteine homeostasis in Arabidopsis. Plant Physiol 2010;52:656–669.
  • Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 2010;48:909–930.
  • Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanisms in plants under stressful conditions. J Bot 2012;2012;1–26.
  • Chaki M, Valderrama R, Fernández-Ocaña AM, Carreras A, Gómez-Rodríguez MV, Pedrajas JR, et al. Mechanical wounding induces a nitrosative stress by downregulation of GSNO reductase and a rise of S-nitrosothiols in sunflower (Helianthus annuus) seedlings. J Exp Bot 2011;62:1803–1813.
  • Mamaeva AS, Fomenkov AA, Nosov AV, Moshkov IE, Mur LAJ, Hall MA, Novikova GV. Regulatory role of nitric oxide in plants. Russ J Plant Physl 2015;62:427–440.
  • del Rio LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB. Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol 2006;141:330–335.
  • Innocenti G, Pucciariello C, Gleuher ML, Hopkins J, Stefano M, Delledonne M, et al. Glutathione synthesis is regulated by nitric oxide in Medicago truncatula roots. Planta 2007;225:1597–1602.
  • Xiong Y, Uys JD, Tew KD, Townsend DM. S-glutathionylation: from molecular mechanisms to health outcomes. Antioxid Redox Signal 2011;15:233–270.
  • Kim JM, Kim H, Kwon SB, Lee SY, Chung SC, Jeong DW, Min BW. Intracellular glutathione status regulates mouse bone marrow monocyte-derived macrophage differentiation and phagocytic activity. Biochem Biophys Res Commun 2004;325:101–108.
  • Beltran B, Orsi A, Clementi E, Moncada S. Oxidative stress and S-nitrosylation of proteins in cells. Br J Pharmacol 2000;129:953–960.
  • Wang D, Liu Y, Tan X, Liu H, Zeng G, Hu X, et al. Effect of exogenous nitric oxide on antioxidative system and S-nitrosylation in leaves of Boehmeria nivea (L.) Gaud under cadmium stress. Environ Sci Pollut Res 2015;22:3489–3497.
  • Hasanuzzaman M, Anwar M, Fujita M. Nitric oxide modulates antioxidant defense and the methyl glyoxal detoxification system and reduces salinity-induced damage of wheat seedlings. Plant Biotechnol Rep 2011;5:353–365.
  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Morishima I. Enhanced tolerance to ozone and drought intransgenic tobacco overexpressing dehydroascorbatereductase in cytosol. Physiol Plant 2006;127:57–65.
  • Eltayeb AL, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahar T, et al. Overexpression of monodehydroascorbatereductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stress. Planta 2007;225:1255–1264.
  • Wang Z, Zhang L, Xiao Y, Chen W, Tang K. Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis. J Integr Plant Biol 2010;52:400–409.
  • Gong B, Li X, Bloszies S, Wen D, Sun S, Wei M, et al. Sodic alkaline stress mitigation by interaction of nitric oxide and polyamines involves antioxidants and physiological strategies in Solanum lycopersicum. Free Radical Biol Med 2014;71:36–48.
  • Lee U, Wie C, Fernandez BO, Feelisch M, Vierling E. Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermotolerance and plant growth in Arabidopsis. Plant Cell 2008;20:786–802.
  • Barroso JB, Corpas FJ, Carreras A, Rodríguez-Serrano M, Esteban FJ, Fernández-Ocaña A, et al. Localization of S-nitrosoglutathione and expression of S-nitrosoglutathione reductase in pea plants under cadmium stress. J Exp Bot 2006;57:1785–1793.
  • Chaki M. Function of reactive nitrogen species in sunflower (Helianthus annuus) in response to abiotic and biotic stresses [Ph.D. Thesis]. Jaén: University of Jaén; 2007. 241 p.
  • Gong B, Wen D, Wang X, Wie M, Yang F, Li Y, Shi Q. S-nitrosoglutathione reductase-modulated redox signaling controls sodic alkaline stress responses in Solanum lycopersicum L. Plant Cell Physiol 2015;56:790–802.
  • Palmer LA, deRonde K, Brown-Steinke K, Gunter S, Jyothikumar, Forbes MS, Lewis SJ. Hypoxia-induced changes in protein S-nitrosylation in female mouse brainstem. Am J Respir Cell Mol Biol 2015;52:37–45.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.