237
Views
8
CrossRef citations to date
0
Altmetric
Original Article

Histidine availability is decisive in ROS-mediated cytotoxicity of copper complexes of Aβ1–16 peptide

, , , &
Pages 405-413 | Received 18 Jun 2015, Accepted 14 Dec 2015, Published online: 28 Jan 2016

References

  • Barnham K, Bush A. Biological metals and metal-targeting compounds in major neurodegenerative diseases. Chem Soc Rev 2014;43:6727–6749.
  • Gaggelli E, Kozlowski H, Valensin D, Valensin G. Copper homeostasis and neurodegenerative disorders (Alzheimer's, prion, and Parkinson's diseases and amyotrophic lateral sclerosis). Chem Rev 2006;106:1995–2044.
  • Smith D, Cappai R, Barnham K. The redox chemistry of the Alzheimer's disease amyloid beta peptide. Biochim Biophys Acta Biomembr 2007;1768:1976–1990.
  • Lovell M, Robertson J, Teesdale W, Campbell J, Markesbery W. Copper, iron and zinc in Alzheimer's disease senile plaques. J Neurol Sci 1998;158:47–52.
  • Atwood C, Huang X, Moir R, Tanzi R, Bush A. Role of free radicals and metal ions in the pathogenesis of Alzheimer's disease. Met Ions Biol Syst 1999;36:309–364.
  • Huang X, Cuajungco M, Atwood C, Hartshorn M, Tyndall J, Hanson G, et al. Cu(II) potentiation of Alzheimer abeta neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J Biol Chem 1999;274:37111–37116.
  • Opazo C, Huang X, Cherny R, Moir R, Roher A, White A, et al. Metalloenzyme-like activity of Alzheimer’s disease β-amyloid: Cu-dependent catalytic conversion of dopamine, cholesterol and biological reducing agents to neurotoxic H2O2. J Biol Chem 2002;277:40302–40308.
  • Huang X, Atwood C, Hartshorn M, Multhaup G, Goldstein L, Scarpa R, et al. The A beta peptide of Alzheimer's disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 1999;38:7609–7616.
  • Kowalik-Jankowska T, Ruta M, Wiśniewska K, Łankiewicz L, Dyba M. Products of Cu(II)-catalyzed oxidation in the presence of hydrogen peroxide of the 1–10, 1–16 fragments of human and mouse beta-amyloid peptide. J Inorg Biochem 2004;98:940–950.
  • Naslund J, Schierhorn A, Hellman U, Lannfelt L, Roses A, Tjernberg L, et al. Relative abundance of Alzheimer A beta amyloid peptide variants in Alzheimer disease and normal aging. Proc Natl Acad Sci USA 1994;91:8378–8382.
  • Faller P. Copper and zinc binding to amyloid-beta: coordination, dynamics, aggregation, reactivity and metal-ion transfer. ChemBioChem 2009;10:2837–2845.
  • Ginotra Y, Ramteke S, Srikanth R, Kulkarni P. Mass spectral studies reveal the structure of Aβ1-16-Cu2+ complex resembling ATCUN motif. Inorg Chem 2012;51:7960–7962.
  • Shearer J, Szalai V. The amyloid-beta peptide of Alzheimer's disease binds Cu(I) in a linear bis-his coordination environment: insight into a possible neuroprotective mechanism for the amyloid-beta peptide. J Am Chem Soc 2008;130:17826–17835.
  • Himes R, Park G, Siluvai G, Blackburn N, Karlin D. Structural studies of copper(I) complexes of amyloid-beta peptide fragments: formation of two-coordinate bis(histidine) complexes. Angew Chem Int Ed Engl 2008;47:9084–9087.
  • Trujano-Oiz L, Gonzales F, Quintanar L. Redox cycling of copper-amyloid β 1-16 peptide complexes is highly dependent on the coordination mode. Inorg Chem 2015;54:4–6.
  • Strozyk D, Launer L, Adlard P, Cherny R, Tsatsanis A, Volitakis I, et al. Zinc and copper modulate Alzheimer Abeta levels in human cerebrospinal fluid. Neurobiol Aging 2009;30:1069–1077.
  • Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D, et al. Isolation and quantification of soluble Alzheimer's beta-peptide from biological fluids. Nature 1992;359:325–327.
  • Karr J, Szalai V. Cu(II) binding to monomeric, oligomeric, and fibrillar forms of the Alzheimer's disease amyloid-beta peptide. Biochemistry 2008;47:5006–5016.
  • Mital M, Wezynfeld N, Fraczyk T, Wiloch M, Wawrzyniak U, Bonna A, et al. A functional role for Aβ in metal homeostasis? N-truncation and high-affinity copper binding. Angew Chem Int Ed 2015;10:10460–10464.
  • Barritt J, Viles J. Truncated amyloid-β(11-40/42) from Alzheimer’s disease binds copper2+ with a femtomolar affinity and influences fibre assembly. J Biol Chem 2015;290:27791–27802.
  • Wang S, Chang K, Yuan C. Enhancement of electrochemical properties of screen-printed carbon electrodes by oxygen plasma treatment. Electrochim Acta 2009;54:4937–4945.
  • Walke G, Rapole S, Kulkarni P. Cisplatin inhibits the formation of a reactive intermediate during copper-catalyzed oxidation of amyloid β peptide. Inorg Chem 2014;53:10003–10005.
  • Srikanth R, Wilson J, Burns C, Vachet R. Identification of the Cu(II) coordinating residues in the prion protein by metal-catalyzed oxidation mass spectrometry: evidence for multiple isomers at low Cu(II) loadings. Biochemistry 2008;47:9258–9268.
  • Ramteke S, Walke G, Joshi B, Rapole S, Kulkarni P. Effects of oxidation on redox and cytotoxic properties of copper complex of Aβ1-16 peptide. Free Radic Res 2014;48:1417–1425.
  • Ramteke S, Ginotra Y, Walke G, Joshi B, Kumbhar A, Rapole S, Kulkarni P. Effects of oxidation on copper-binding properties of Aβ1-16 peptide: a pulse radiolysis study. Free Radic Res 2013;47:1046–1053.
  • Balland V, Hureau C, Saveant J. Electrochemical and homogeneous electron transfers to the Alzheimer amyloid-beta copper complex follow a preorganization mechanism. Proc Natl Acad Sci USA 2010;107:17113–17118.
  • Liu L, Jiang D, McDonald A, Hao Y, Millhauser G, Zhou F. Copper redox cycling in the prion protein depends critically on binding mode. J Am Chem Soc 2011;133:1222–12237.
  • Cassagnes L, Hervé V, Nepveu F, Hureau C, Faller P, Collin F. The catalytically active copper-amyloid-beta state: coordination site responsible for reactive oxygen species production. Angew Chem Int Ed Engl 2013;52:11110–11113.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.