453
Views
16
CrossRef citations to date
0
Altmetric
Original Article

Physicochemical properties of iron oxide nanoparticles that contribute to cellular ROS-dependent signaling and acellular production of hydroxyl radical

, , , , , , & show all
Pages 1153-1164 | Received 24 Sep 2015, Accepted 04 Feb 2016, Published online: 25 Aug 2016

References

  • Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small 2008;4:26–49.
  • Apopa PL, Qian Y, Shao R, Guo NL, Schwegler-Berry D, Pacurari M, et al. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling. Part Fibre Toxicol 2009;6:1.
  • Jain TK, Reddy MK, Morales MA, Leslie-Pelecky DL, Labhasetwar V. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm 2008; 5:316–327.
  • Klostergaard J, Seeney CE. Magnetic nanovectors for drug delivery. Maturitas 2012;73:33–44.
  • Naqvi S, Samim M, Abdin M, Ahmed FJ, Maitra A, Prashant C, et al. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int J Nanomedicine 2010;5:983–989.
  • Park EJ, Kim H, Kim Y, Yi J, Choi K, Park K. Inflammatory responses may be induced by a single intratracheal instillation of iron nanoparticles in mice. Toxicology 2010;275:65–71.
  • Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem 2005;12:1161–1208.
  • Aust AE, Ball JC, Hu AA, Lighty JS, Smith KR, Straccia AM, et al. Particle characteristics responsible for effects on human lung epithelial cells. Res Rep Health Eff Inst 2002;(110):1–65; discussion 67-76.
  • Donaldson K, Brown DM, Mitchell C, Dineva M, Beswick PH, Gilmour P, et al. Free radical activity of PM10: iron-mediated generation of hydroxyl radicals. Environ Health Perspect 1997;105:1285–1289.
  • Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science 2006;311:622–627.
  • Li N, Hao M, Phalen RF, Hinds WC, Nel AE. Particulate air pollutants and asthma. A paradigm for the role of oxidative stress in PM-induced adverse health effects. Clin Immunol 2003;109:250–265.
  • Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 2006;6:1794–1807.
  • Könczöl M, Ebeling S, Goldenberg E, Treude F, Gminski R, Gieré R, et al. Cytotoxicity and genotoxicity of size-fractionated iron oxide (magnetite) in A549 human lung epithelial cells: role of ROS, JNK, and NF-κB. Chem Res Toxicol 2011;24:1460–1475.
  • Charrier JG, Anastasio C. Impacts of antioxidants on hydroxyl radical production from individual and mixed transition metals in a surrogate lung fluid. Atmos Environ 2011;45:7555–7562.
  • Shen H, Barakat AI, Anastasio C. Generation of hydrogen peroxide from San Joaquin Valley particles in a cell-free solution. Atmos Chem Phys 2011;11:753–765.
  • Li L, Dong H, Song E, Xu X, Liu L, Song Y. Nrf2/ARE pathway activation, HO-1 and NQO1 induction by polychlorinated biphenyl quinone is associated with reactive oxygen species and PI3K/AKT signaling. Chem Biol Interact 2014;209:56–67.
  • Ryter SW, Choi AM. Heme oxygenase-1: redox regulation of a stress protein in lung and cell culture models. Antioxid Redox Signal 2005;7:80–91.
  • Gilmour MI, O'Connor S, Dick CA, Miller CA, Linak WP. Differential pulmonary inflammation and in vitro cytotoxicity of size-fractionated fly ash particles from pulverized coal combustion. J Air Waste Manage Assoc 2004; 54:286–295.
  • Oberdorster G. Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health 2001;74:1–8.
  • Chan JK, Charrier JG, Kodani SD, Vogel CF, Kado SY, Anderson DS, et al. Combustion-derived flame generated ultrafine soot generates reactive oxygen species and activates Nrf2 antioxidants differently in neonatal and adult rat lungs. Part Fibre Toxicol 2013;10:34.
  • Abid AD, Kanematsu M, Young TM, Kennedy IM. Arsenic removal from water using flame-synthesized iron oxide nanoparticles with variable oxidation states. Aerosol Sci Technol 2013;47:169–176.
  • Guo B, Kennedy IM. Gas-phase flame synthesis and characterization of iron oxide nanoparticles for use in a health effects study. Aerosol Sci Technol 2007;41:944–951.
  • Kumfer BM, Shinoda K, Jeyadevan B, Kennedy IM. Gas-phase flame synthesis and properties of magnetic iron oxide nanoparticles with reduced oxidation state. J Aerosol Sci 2010;41:257–265.
  • Jung H, Guo B, Anastasio C, Kennedy IM. Quantitative measurements of the generation of hydroxyl radicals by soot particles in a surrogate lung fluid. Atmos Environ 2006;40:1043–1052.
  • Vidrio E, Jung H, Anastasio C. Generation of hydroxyl radicals from dissolved transition metals in surrogate lung fluid solutions. Atmos Environ 2008;42:4369–4379.
  • Vidrio E, Phuah CH, Dillner AM, Anastasio C. Generation of hydroxyl radicals from ambient fine particles in a surrogate lung fluid solution. Environ Sci Technol 2009;43:922–927.
  • MacAteer, Davis JM. Basic cell culture: a practical approach, basic cell culture and the maintenance of cell lines. New York: Oxford University Press; 1994.
  • Vogel CF, Sciullo E, Park S, Liedtke C, Trautwein C, Matsumura F. Dioxin increases C/EBPbeta transcription by activating cAMP/protein kinase A. J Biol Chem 2004;279:8886–8894.
  • Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 2000;132:365–386.
  • Cornell RM, Schwertmann U. The iron oxides - structure, properties, reactions, occurrences and uses. 2nd ed. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co; 2003.
  • Ball BR, Smith KR, Veranth JM, Aust AE. Bioavailability of iron from coal fly ash: mechanisms of mobilization and of biological effects. Inhal Toxicol 2000;12:209–225.
  • Hilty FM, Teleki A, Krumeich F, Büchel R, Hurrell RF, Pratsinis SE, et al. Development and optimization of iron- and zinc-containing nanostructured powders for nutritional applications. Nanotechnology 2009;20:475101. doi: 10.1088/0957-4484/20/47/475101.
  • Veranth JM, Smith KR, Hu AA, Lighty JS, Aust AE. Mobilization of iron from coal fly ash was dependent upon the particle size and source of coal: analysis of rates and mechanisms. Chem Res Toxicol 2000;13:382–389.
  • van Maanen JM, Borm PJ, Knaapen A, van Herwijnen M, Schilderman PA, Smith KR, et al. In vitro effects of coal fly ashes: hydroxyl radical generation, iron release, and DNA damage and toxicity in rat lung epithelial cells. Inhal Toxicol 1999;11:1123–1141. [10562700][pubmedMismatch]
  • Chao CC, Lund LG, Zinn KR, Aust AE. Iron mobilization from crocidolite asbestos by human lung carcinoma cells. Arch Biochem Biophys 1994;314:384–391.
  • Ross D. Quinone reductases multitasking in the metabolic world. Drug Metab Rev 2004;36:639–654.
  • Gozzelino R, Jeney V, Soares MP. Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol 2010; 50:323–354.
  • Sydlik U, Bierhals K, Soufi M, Abel J, Schins RP, Unfried K. Ultrafine carbon particles induce apoptosis and proliferation in rat lung epithelial cells via specific signaling pathways both using EGF-R. Am J Physiol Lung Cell Mol Physiol 2006;291:L725–L733.
  • Weissenberg A, Sydlik U, Peuschel H, Schroeder P, Schneider M, Schins RP, et al. Reactive oxygen species as mediators of membrane-dependent signaling induced by ultrafine particles. Free Radic Biol Med 2010;49:597–605.
  • Xia W, Song HM, Wei Q, Wei A. Differential response of macrophages to core-shell Fe3O4@Au nanoparticles and nanostars. Nanoscale 2012;4:7143–7148.
  • Hayden MS, Ghosh S. Signaling to NF-kappaB. Genes Dev 2004;18:2195–2224.
  • Schreck R, Rieber P, Baeuerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J 1991;10:2247–2258.
  • Parasassi T, Brunelli R, Costa G, De Spirito M, Krasnowska E, Lundeberg T, et al. Thiol redox transitions in cell signaling: a lesson from N-acetylcysteine. Scientific World J 2010;10:1192–1202.
  • Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 1999;13:76–86.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.