360
Views
636
CrossRef citations to date
0
Altmetric
Original Article

How to Characterize a Biological Antioxidant

Pages 1-32 | Received 20 Oct 1989, Published online: 07 Jul 2009

References

  • Halliwell B., Gutteridge J. M.C. Free Radicals in Biology and Medicine, second edition. Clarendon Press, OxfordUK 1989
  • Scott G. Potential toxicological problems associated with antioxidants in plastic and rubber consumables. Free Rad. Res. Commun. 1988; 5: 141–147
  • Grootveld M., Jain R. Recent advances in the development of a diagnostic test for irradiated foodstuffs. Free Rad. Res. Commun. 1989; 6: 271–292
  • Daniels V. Oxidative damage and the preservation of organic artefacts. Free Rad. Res. Commun. 1988; 5: 213–220
  • Fridovich I. Superoxide dismutases. An adaptation to a paramagnetic gas. J. Biol. Chem. 1989; 264: 7761–7764
  • Sies H. Oxidative Stress. Academic Press, New York and London 1985
  • Beyer W. F., Jr., Fridovich I. Catalases – with and without heme. Oxygen Radicals in Biology and Medicine, M. G. Simic, K. A. Taylor, J. F. Ward, C. von Sonntag. Plenum Press, New York 1988; 651–661
  • Gutteridge J. M.C., Stocks J. Caeruloplasmin: physiological and pathological perspectives. CRC Crit. Rev. Clin. Lab. Sci. 1981; 14: 257–329
  • Diplock A. T., Vitamin E. Fat – Soluble Vitamins, A. T. Diplock. Heinemann, London 1985; 154–224
  • Niki E. Antioxidants in relation to lipid peroxidation. Chem. Phys. Lipids 1987; 44: 227–253
  • Burton G. W., Ingold K. U. β-carotene, an unusual type of lipid antioxidant. Science 1984; 224: 569–573
  • Halliwell B. Albumin – an important extracellular antioxidant?. Biochem. Pharmacol. 1988; 37: 569–571
  • Thornalley P. J., Vasak M. Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochim. Biophys. Acta. 1985; 827: 36–44
  • Boldyrev A. A., Dupin A. M., Bunin A., Babizhaev Y., Severin M. A.S.E. The antioxidative properties of carnosine, a natural histidine containing dipeptide. Biochem. Int. 1987; 15: 1105–1113
  • Yamamoto R., Kohn Y., Cundy K. C., Ames B. N. Antioxidant activity of carnosine, homocarnosine and anserine present in muscle and brain. Proc. Nat. Acad. Sci. USA 1988; 85: 3175–3179
  • Cross C. E., Halliwell B., Allen A. Antioxidant protection: a function of tracheobronchial and gastrointestinal mucus. Lancet 1984; i: 1328–1330
  • Graf E. Applications of phytic acid. J. Am. Oil Chem. Soc. 1983; 60: 1861–1867
  • Banks M. A., Martin W. G., Pailes W. H., Castranova V. Taurine uptake by isolated alveolar macrophages and type II cells. J. Appl. Physiol. 1989; 66: 1079–1086
  • Wright C. E., Tallan H. H., Lin Y. Y., Gaull G. E. Taurine: biological update. Ann. Rev. Biochem. 1986; 55: 427–453
  • Schurr A., Rigor B. M. The mechanism of neuronal resistance and adaptation to hypoxia. FEBS Lett. 1987; 224: 4–8
  • Stocker R., Glazer A. N., Ames B. N. Antioxidant activity of albumin-bound bilirubin. Proc. Nat. Acad. Sci. USA 1987; 84: 5918–5922
  • Ames B. N., Cathcart R., Schwiers E., Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc. Nat. Acad. Sci. USA 1981; 78: 6858–6862
  • Sugioka K., Shimosegawa Y., Nakano M. Estrogens as natural antioxidants of membrane phospholipid peroxidation. FEBS Lett. 1987; 210: 37–39
  • Glazer A. N. Fluorescence-based assay for reactive oxygen species: a protective role for creatinine. FASEB J. 1988; 2: 2487–2491
  • Hartman P. E. Ergothioneine as an antioxidant. Meth. Enzymol., in press
  • Scholich H., Murphy M. E., Sies H. Antioxidant activity of dihydrolipoate against microsomal lipid peroxidation and its dependence on α-tocopherol. Biochim. Biophys. Acta 1989; 1001: 256–261
  • Holler T. P., Hopkins P. B. Ovothiols as biological antioxidants. The thiol groups of ovothiol and glutathione are chemically distinct. J. Am. Chem. Soc. 1988; 110: 4837–4838
  • Landi L., Cabrini L., Sechi A. M., Pasquali P. Anti-oxidative effect of ubiquinones on mitochondrial membranes. Biochem. J. 1984; 222: 463–466
  • Tadolini B. Polyamine inhibition of lipid peroxidation. Biochem. J. 1988; 249: 33–36
  • D'Aquino M., Dunster C., Willson R. L. Vitamin A and glutathione-mediated free radical damage: competing reactions with polyunsaturated fatty acids and vitamin C. Biochem. Biophys. Res. Commun. 1989; 161: 1199–1203
  • Ratty A. K., Das N. P. Effects of flavonoids on non-enzymatic lipid peroxidation: structure-activity relationship. Biochem. Med. Metabol. Biol. 1988; 39: 69–79
  • Wayner D. D.M., Burton G. W., Ingold K. U. The antioxidant efficiency of vitamin C is concentration-dependent. Biochim. Biophys. Acta 1986; 884: 119–123
  • Halliwell B. Ascorbic acid, iron overload and desferrioxamine. Br. Med. J. 1983; 285: 296
  • Halliwell B., Hoult J. R.S., Blake D. R. Oxidants, inflammation and anti-inflammatory drugs. FASEB J. 1988; 2: 2867–2873
  • Gutteridge J. M.C., Richmond R., Halliwell B. Inhibition of the iron-catalyzed formation of hydroxyl radicals from superoxide and lipid peroxidation by desferrioxamine. Biochem. J. 1979; 184: 469–472
  • Halliwell B. Protection against tissue damage in vivo by desferrioxamine. What is its mechanism of action?. Free Rad. Biol. Med., in press
  • Aruoma O. I., Halliwell B., Hoey B. M., Butler J. The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide and hypochlorous acid. Free Rad. Biol. Med. 1989; 6: 593–597
  • Aruoma O. I., Halliwell B. Superoxide-dependent and ascorbate-dependent formation of hydroxyl radicals from hydrogen peroxide in the presence of iron. Are lactoferrin and transferrin promoters of hydroxyl radical generation?. Biochem. J. 1987; 241: 273–278
  • Halliwell B., Gutteridge J. M.C. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch. Biochem. Biophys. 1986; 246: 501–514
  • Fridovich I. Superoxide radical: an endogeneous toxicant. Ann. Rev. Pharmacol. Toxicol. 1983; 23: 239–257
  • Curnutte J. T., Babior B. M. Chronic granulomatous disease. Adv. Human Genet. 1987; 6: 229–297
  • Halliwell B. Superoxide, iron, vascular endothelium and reperfusion injury. Free Rad. Res. Commun. 1989; 5: 315–318
  • Chance B., Sies H., Boveris A. Hydroperoxide metabolism in mammalian organs. Phvsiol. Rev. 1979; 89: 527–605
  • Bielski B. H.J. Reactivity of HO232−, radicals in aqueous solution. J. Phys. Chem. Ref. Data 1985; 14: 1041–1100
  • Wefers H., Sies H. Oxidation of glutathione by the superoxide radical to the disulfide and the sulfonate yielding singlet oxygen. Eur. J. Biochem. 1983; 137: 29–36
  • Schoneich C., Asmus K. D., Dillinger U., Bruchhausen F V. Thiyl radical attack on polyunsaturated fatty acids: a possible route to lipid peroxidation. Biochem. Biophys. Res. Common. 1989; 161: 113–120
  • Nishikimi M. Oxidation of ascorbic acid with superoxide anion generated by the xanthine-xanthine oxidase system. Biochem. Biophys. Res. Commun. 1975; 63: 463–468
  • Halliwell B. Oxidative damage, lipid peroxidation and antioxidant protection in chloroplasts. Chem. Phys. Lipids 1987; 44: 327–340
  • Varma S. D., Richards R. D. Ascorbic acid and the eye lens. Ophlhal. Res. 1988; 20: 164–173
  • Cabelli D. E., Bielski B. H.J. Kinetics and mechanism for the oxidation of ascorbic acid/ascorbate by HO2/O2− radicals. A pulse radiolysis and stopped-flow photolysis study. J. Phys. Chem. 1983; 87: 1809–1812
  • Bielski B. H.J., Richter H. W., Chan P. C. Some properties of the ascorbate free radical. Ann. N. Y. Acad. Sci. 1975; 258: 231–237
  • Halliwell B., Butt V. S. Flavin mononucleotide-sensitized photooxidation of glyoxylate in Good's buffers. Biochem. J. 1972; 129: 1157–1158
  • Andrae U., Singh J., Ziegler-Skylakakis K. Pyruvate and related α-ketoacids protect mammalian cells in culture against hydrogen peroxide-induced cytotoxicity. Toxicol. Lett. 1985; 28: 93–98
  • Varma S. D. Radio-isotopic determination of subnanomolar amounts of peroxide. Free Rad. Res. Commun. 1989; 5: 359–368
  • Varma S. D., Morris S. M. Peroxide damage to the eye lens in vitro. Prevention by pyruvate. Free Rad. Res. Commun. 1988; 4: 283–290
  • Tormey J., Nathan C., O'Donnell F., Lanks K., De Boer C. J., de La Harpe J. Secretion of pyruvate. An antioxidant defense of mammalian cells. J. Exp. Med. 1987; 165: 500–514
  • Halliwell B., Gutteridge J. M.C. Iron as a biological prooxidant. ISI Atlas Sci., Biochem. 1988; 1: 48–52
  • Sutton H. C., Winterbourn C. C. On the participation of higher oxidation states of iron and copper in Fenton reactions. Free Rad. Biol. Med. 1989; 6: 53–60
  • Aruoma O. I., Halliwell B., Dizdaroglu M. Iron ion-dependent modification of bases in DNA by the superoxide radical generating system hypoxanthine/xanthine oxidase. J. Biol. Chem. 1989; 264: 13024–13028
  • Halliwell B. Superoxide-dependent formation of hydroxyl radicals in the presence of iron chelates. Is it a mechanism for hydroxyl radical production in biochemical systems?. FEBS Letts. 1978; 92: 321–326
  • McCord J. M., Day E. D. Superoxide-dependent production of hydroxyl radical catalysed by an iron-EDTA complex. FEBS Letts. 1978; 86: 139–142
  • Beauchamp C., Fridovich I. A mechanism for the production of ethylene from methional. J. Biol. Chem. 1970; 245: 4641–4646
  • Fong K. L., McCay P. B., Poyer J. L., Misra H. P., Keele B. B. Evidence for superoxide-dependent reduction of iron(III) and its role in enzyme-generated hydroxyl radical formation. Chemico-Biol. Int. 1976; 15: 77–89
  • Halliwell B., Gutteridge J. M.C. The importance of free radicals and catalytic metal ions in human disease. Mol. Asp. Med. 1985; 8: 89–193
  • Aruoma O. I., Halliwell B., Gajewski E., Dizdaroglu M. Damage to the bases in DNA induced by hydrogen peroxide and ferric ion chelates. J. Biol. Chem. 1989; 264: 20509–20512
  • Czapski G., Goldstein S., Meyerstein D. What is unique about superoxide toxicity as compared to other biological reductants? A hypthesis. Free Rad. Res. Commun. 1985; 4: 231–236
  • Masarwa M., Cohen H., Meyerstein D., Bakac D. L., Hickman A., Espenson J. H. Reactions of low-valent transition metal complexes with hydrogen peroxide. Are they “Fenton-like” or not? 1. The case of Cuaq+, and Craq+. J. Am. Chem. Soc. 1988; 110: 4293–4297
  • Gutteridge J. M.C., Wilkins S. Copper salt-dependent hydroxyl radical formation. Damage to proteins acting as anti-oxidants. Biochim. Biophys. Acta 1983; 759: 38–41
  • Wolff S. P., Dean R. T. Fragmentation of proteins by free radicals and its effect on their susceptibility to enzymic hydrolysis. Biochem. J. 1986; 234: 399–403
  • Marx G., Chevion M. Site-specific modification of albumin by free radicals. Reaction with copper(II) and ascorbate. Biochem. J. 1986; 236: 397–400
  • Chiou S. H., Chang W. C., Jou Y. S., Chung H. M.M., Lo T. B. Specific cleavages of DNA by acorbate in the presence of copper ions or copper chelates. J. Biochem. (Tokyo) 1985; 98: 1723–17126
  • Stoewe R., Prutz W. A. Copper-catalyzed DNA damage by ascorbate and hydrogen peroxide: kinetics and yield. Free Rad. Biol. Med. 1987; 3: 97–105
  • Brandi G., Cattabeni F., Albano A., Cantoni O. Role of hydroxyl radicals in Escherichia coli killing by hydrogen peroxide. Free Rad. Res. Commun. 1989; 6: 47–55
  • Imlay J. A., Linn S. DNA damage and oxygen radical toxicity. Science 1988; 240: 1302–1309
  • Kyle M. E., Nakae D., Sakaida I., Miccadei S., Farber J. L. Endocytosis of superoxide dismutase is required in order for the enzyme to protect hepatocytes from the cytotoxicity of hydrogen peroxide. J. Biol. Chem. 1988; 263: 3784–3789
  • Halliwell B. Oxidants and human disease - some new concepts. FASEB J. 1987; 1: 358–364
  • Anbar M., Neta P. A compilation of specific bimolecular rate constants for the reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals with inorganic and organic compounds in aqueous solution. Int. J. Appl. Rad. Isotopes 1967; 18: 495–523
  • Aruoma O. I., Halliwell B. The iron-binding and hydroxyl radical scavenging actions of anti-inflammatory drugs. Xenobiotica 1988; 18: 459–470
  • Grootveld M., Halliwell B. Aromatic hydroxylation as a potential measure of hydroxyl-radical formation in vivo. Identification of hydroxylated derivatives of salicylate in human body fluids. Biochem. J. 1988; 237: 499–504
  • Larramendy M., Mello-Filho A., Leme C., Martins E. A., Meneghini R. Iron-mediated induction of sister-chromatid exchanges by hydrogen peroxide and superoxide anion. Mut. Res. 1987; 178: 57–63
  • Hebbel R. P. Auto-oxidation and a membrane-associated “Fenton reagent”: a possible explanation for development of membrane lesions in sickle erythrocytes. Clin. Haematol. 1988; 14: 129–140
  • Hochstein P., Kumar K., Forman S., Sree J. Lipid peroxidation and the cytoxicity of copper. Ann. N. Y. Acad. Sci. 1980; 355: 240–248
  • Stam H., Hulsmann W. C., Jongkind J. F., van der Kraaij A. M.M., Koster J. F. Endothelial lesions, dietary composition and lipid peroxidation. Eicosanoids 1989; 2: 1–14
  • Matsubara T., Saura Y., Hirohata K., Ziff M. Inhibition of human endothelial cell proliferation in vitro and neo-vascularization in vivo by D-penicillamine. J. Clin. Invest. 1989; 83: 158–167
  • Rowley D. A., Halliwell B. Superoxide-dependent and ascorbate-dependent formation of hydroxyl radicals in the presence of copper salts: a physiologically-significant reaction?. Arch. Biochem. Biophys. 1983; 225: 279–284
  • Uchida K., Kawakishi S. Selective oxidation of imidazole ring in histidine residues by the ascorbic acid-copper ion system. Biochem. Biophys. Res. Commun. 1986; 138: 659–665
  • Gardner H. W. Oxygen radical chemistry of polyunsaturated fatty acids. Free Rad. Biol. Med. 1989; 7: 65–86
  • Von Sonntag C. The Chemical Basis of Radiation Biology. Taylor and Francis, London 1988
  • Steenken S. Purine bases, nucleosides and nucleotides: aqueous solution redox chemistry and transformation reactions of their radical cations and e− and OH adducts. Chem. Rev. 1989; 89: 503–520
  • Whitburn K. D., Shieh J., Sellers J., Hoffman R. M.M.Z., Taub I. A. Redox transformations in ferrimyoglobin induced by radiation generated free radicals in aqueous solution. J. Biol. Chem. 1982; 257: 1860–1869
  • Nagy I. Z., Floyd R. A. Hydroxyl free radical reactions with amino acids and proteins studied by electron spin resonance spectroscopy and spin-trapping. Biochim. Biophys. Acta 1984; 790: 238–250
  • Kittridge K. J., Willson R. L. Uric acid substantially enhances the free radical-induced inactivation of alcohol dehydrogenase. FEBS Letts. 1984; 170: 162–164
  • Aruoma O. I., Halliwell B. Inactivation of α1-antiproteinase by hydroxyl radicals. The effect of uric acid. FEBS Letts 1989; 244: 76–80
  • Asmus K. D. Sulfur-centered free radicals. Radioprotectors and Anticarcinogens, T. F. Slater. Academic Press, London 1987; 23–42
  • Sevilla M. D., Yan M., Becker D., Gillich S. ESR investigations of the reactions of radiation-produced thiyl and DNA peroxyl radicals: formation of sulfoxyl radicals. Free Rad. Res. Commun. 1989; 6: 21–24
  • Aruoma O. I., Halliwell B., Butler J., Hoey B. M. Apparent inactivation of α1-antiproteinase by sulphur-containing radicals derived from penicillamine. Biochem. Pharmacol. 1989; 38: 4353–4357
  • Sevanian K. J.A., Davies A., Muakkassah-Kelly S. F., Hochstein P. Uric acid-iron complexes. Biochem. J. 1986; 235: 747–754
  • Rowley D. A., Halliwell B. Formation of hydroxyl radicals from NADH and NADPH in the presence of copper salts. J. Inorg. Biochem. 1985; 23: 103–108
  • Fahey R. C. Protection of DNA by thiols. Pharmacol. Therapeut. 1988; 39: 101–108
  • Willson R. L. Organic peroxy free radicals as ultimate agents in oxygen toxicity. Oxidative Stress, H. Sies. Academic Press, London 1985; 41–72
  • Tamba M., Simone G., Quintiliani M., Del Soldato P. Model experiments to evaluate the protective role of thiols and other reductants against oxidative damage. Pharmacol. Therapeut. 1988; 39: 155–156
  • Burton G. W., Ingold K. U. Vitamin E: application of the principles of physical organic chemistry to the exploration of its structure and function. Acc. Chem. Res. 1986; 19: 194–201
  • Landi L., Pasquali P., Bassi P., Cabrini L. Effect of oxygen free radicals on ubiquinone in aqueous solution and phospholipid vesicles. Biochim. Biophys. Acta 1987; 902: 202–206
  • Richards D. M.C., Dean R. T., Jessup W. Membrane proteins are critical targets in free radical mediated cytolysis. Biochim. Biophys. Acta 1988; 946: 281–288
  • Esterbauer H., Striegl G., Puhl H., Rotheneder M. Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Rad. Res. Commun. 1989; 6: 67–75
  • Vile G., Winterbourn C. C. Inhibition of adriamycin-promoted microsomal lipid peroxidation by β-carotene, α-tocopherol and retinol at high and low oxygen partial pressures. FEBS Letts. 1988; 238: 356–357
  • Di Maschio P., Kaiser S., Sies H. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biochem. Biophys. 1989; 274: 532–538
  • Esterbauer H., Jurgens G., Puhl H., Quehenberger O. Role of oxidatively modified LDL in atherogenesis. Medical, Biochemical and Chemical Aspects of Free Radicals, O. Hayaishi, E. Niki, M. Kondo, T. Yoshikawa. Elsevier, Amsterdam 1988; 1203–1209
  • Yamamoto K., Niki E. Interaction of α-tocopherol with iron: antioxidant and pro-oxidant effects of α-tocopherol in the oxidation of lipids in aqueous dispersions in the presence of iron. Biochim. Biophys. Acta. 1988; 958: 19–23
  • Aruoma O. I., Evans P. J., Kaur H., Sutcliffe L., Halliwell B. An evaluation of the antioxidant and potential pro-oxidant properties of food additives and of Trolox C., Vitamin E and probucol. Free Rad. Res. Commun., in press
  • Gutteridge J. M.C., Xaio-Chang F. Enhancement of bleomycin-iron free radical damage to DNA by anti-oxidants and their inhibition of lipid peroxidation. FEBS Letts. 1981; 123: 71–74
  • Ochiai M., Nagao M., Wakabayashi K., Sugimura T. Superoxide dismutase acts as an enhancing factor for quercetin mutagenesis in rat-liver cytosol by preventing its decomposition. Mut. Res. 1984; 129: 19–24
  • Srivastava A. K., Padmanaban G. Gossypol-mediated DNA degradation. Biochem. Biophys. Res. Commun. 1987; 118: 1515–1522
  • Laughton M. J., Halliwell B., Evans P. J., Hoult J. R.S. Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol and myricetin. Biochem. Pharmacol. 1989; 38: 2859–2865
  • Borregaard N. The respiratory burst: an overview. The Respiratory Burst and its Physiological Significance, A. J. Sharma, P. R. Strauss. Plenum Press, New York 1989; 1–31
  • Hurst J. K., Barrette W. C., Jr. Leukocyte oxygen activation and microbicidal oxidative toxins. CRC Crit. Rev. Biochem. Mol. Biol. 1989; 24: 271–328
  • Britigan B. E., Rosen G. M., Thompson B. Y., Chai Y., Cohen M. S. Stimulated neutrophils limit iron-catalyzed hydroxyl radical formation as detected by spin-trapping. J. Biol. Chem. 1986; 261: 17026–17032
  • Kaur H., Fagerheim I., Grootveld M., Puppo A., Halliwell B. Aromatic hydroxylation of phenylalanine as an assay for hydroxyl radicals: application to activated human neutrophils and to the heme protein leghemoglobin. Anal. Biochem. 1988; 172: 360–367
  • Halliwell B., Gutteridge J. M.C., Blake D. R. Metal ions and oxygen radical reactions in human inflammatory joint disease. Phil. Trans. Royal Soc. series B 1985; 311: 659–671
  • Gutteridge J. M.C., Paterson S. K., Segal A. W., Halliwell B. Inhibition of lipid peroxidation by the iron-binding protein lactoferrin. Biochem. J. 1981; 199: 259–261
  • Repine J. E., Fox R. B., Berger E. M. Hydrogen peroxide kills Staphylococcus aureus by reacting with staphylococcal iron to form hydroxyl radical. J. Biol. Chem. 1981; 256: 7094–7096
  • Gutteridge J. M.C., Wilkins S. Non-protein-bound iron within bacterial cells and the action of bleomycin. Biochem. Int. 1984; 8: 89–93
  • Rosen H., Klebanoff S. J. Oxidation of microbial iron-sulfur centers by the myeloperoxidase-H2O2-halide antimicrobial system. Infect. Immun. 1985; 47: 613–618
  • Biemond P., Swaak A. J.G., Penders J. M.A., Beindorff C. M., Koster J. F. Superoxide production by polymorphonuclear leucocytes in rheumatoid arthritis and osteoarthritis: in vivo inhibition by the antirheumatic drug piroxicam due to interference with the activation of the NADPH oxidase. Ann. Rheum. Dis. 1986; 45: 249–255
  • Kaplan H. B., Edelson H. S., Korchak H. M., Given W. P., Abramson S., Weissmann G. Effects of non-steroidal anti-inflammatory agents on human neutrophil functions in vitro and in vivo. Biochem. Pharmacol. 1984; 33: 371–378
  • Hurst N. P., French J. K., Bell A. L., Nuki G., O'Donnell M. L., Betts W. H., Cleland L. G. Differential effects of mepacrine, chloroquine and hydroxychloroquine on superoxide anion generation, phospholipid methylation and arachidonic acid release by human blood monocytes. Biochem. Pharmacol. 1986; 35: 3083–3089
  • Weiss S. J. Tissue destruction by neutrophils. N. Eng. J. Med. 1989; 320: 365–376
  • Mayeno A. N., Curran A. J., Roberts R. L., Foote C. S. Eosinophils preferentially use bromide to generate halogenating agents. J. Biol. Chem. 1989; 264: 5660–5668
  • Sbarra A. J., Strauss R. R. The Respiratory Burst and its Physiological Significance. Plenum Press, New York 1989
  • Fliss H. Oxidation of proteins in rat heart and lungs by polymorphonuclear leukocyte antioxidants. Mol. Cell. Biochem. 1988; 84: 177–178
  • Weaver R. C., Kukreja A. B., Hess M. L. Stimulated human neutrophils damage cardiac sarcoplasmic reticulum function by generation of oxidants. Biochim. Biophys. Acta. 1989; 990: 198–205
  • Albrich J. M., Gilbaugh I J.H., II, Callahan K. B., Hurst J. K. Effect of the putative neutrophil-generated toxin, hypochlorous acid, on membrane permeability and transport systems of Escherichia coli. J. Clin. Invest. 1989; 78: 177–184
  • Clark R. A., Stone P. J., El Hag A., Calore J. D., Franzblau C. Myeloperoxidase-catalyzed inactivation of α1-protease inhibitor by human neutrophils. J. Biol. Chem. 1981; 256: 3348–3353
  • Wasil M., Halliwell B., Hutchison D. C.S., Baum H. The antioxidant action of extracellular fluids. Effect of human serum and its protein components on the inactivation of α1-antiproteinase by hypochlorous acid and by hydrogen peroxide. Biochem. J. 1987; 243: 219–223
  • Halliwell B., Wasil M., Grootveld M. Biologically-significant scavenging of the myeloperoxidase-derived oxidant hypochlorous acid by ascorbic acid. Implications for antioxidant protection in the inflamed rheumatoid joint. FEBS Letts. 1987; 213: 15–18
  • Stocker R., Peterhans E. Antioxidant properties of conjugated bilirubin and biliverdin: biologically relevant scavenging of hypochlorous acid. Free Rad. Res. Commun. 1989; 6: 57–66
  • Olszowska E., Olszewski S., Zgliczynski J. M., Stelmaszynska T. Enhancement of proteinase-mediated degradation of proteins modified by chlorination. Int. J. Biochem. 1989; 21: 799–805
  • Aruoma O. I., Wasil M., Halliwell B., Hoey B. M., Butler J. The scavenging of oxidants by sulphasalazine and its metabolites. Biochem. Pharmacol. 1987; 36: 3739–3742
  • Wasil M., Halliwell B., Moorhouse C. P., Hutchison D. C.S., Baum H. Biologically-significant scavenging of the myeloperoxidase-derived oxidant hypochlorous acid by some anti-inflammatory drugs. Biochem. Pharmacol. 1987; 36: 3847–3850
  • Kalyanaraman B., Sohnle P. G. Generation of free radical intermediates from foreign compounds by neutrophil-derived oxidants. J. Clin. Invest. 1985; 75: 1618–1622
  • Uetrecht J. P. Idiosyncratic drug reactions: possible role of reactive metabolites generated by leukocytes. Pharmacol. Rev. 1989; 6: 265–273
  • Cuperus R. A., Muijsers A. O., Wever R. Antiarthritic drugs containing thiol groups scavenge hypochlorite and inhibit its formation by myeloperoxidase from human leukocytes. Arth. Rheum. 1985; 28: 1228–1233
  • Matheson N. R. The effect of antiarthritic drugs and related compounds on the human neutrophil myeloperoxidase system. Biochem. Biophys. Res. Commun. 1982; 108: 259–265
  • Svensson B. E., Lindvall S. Myeloperoxidase-oxidase oxidation of cysteamine. Biochem. J. 1988; 249: 521–530
  • Von Ritter C., Grisham M. B., Granger D. N. Sulfasalazine metabolites and dapsone attenuate formyl-methionyl-leucyl-phenylalanine-induced mucosal injury in rat ileum. Gastroenterol. 1989; 96: 811–816
  • Ortiz de Montellano P. R. Control of the catalytic activity of prosthetic heme by the structure of hemoproteins. Acc. Chem. Res. 1987; 20: 289–294
  • Whitburn K. D. The interaction of oxymyoglobin with hydrogen peroxide: a kinetic anomaly at large excesses of hydrogen peroxide. Arch. Biochem. Biophys. 1988; 267: 614–622
  • Aviram I., Wittenberg B. A., Wittenberg J. B. The reaction of ferrous leghemoglobin with hydrogen peroxide to form leghemoglobin(IV). J. Biol. Chem. 1978; 253: 5685–5689
  • Petersen R. L., Symons M. C.R., Taiwo F. A. Application of radiation and electron spin resonance spectroscopy to the study of ferryl myoglobin. J. Chem. Soc., Faradav Trans. I 1989; 85: 2435–2443
  • Kanner J., German J. B., Kinsella J. E. Initiation of lipid peroxidation in biological systems. CRC Crit. Rev. Food Sci. Nutr. 1987; 25: 317–364
  • Grisham M. B. Myoglobin-catalyzed hydrogen peroxide dependent arachidonic acid peroxidation. J. Free Rad. Biol. Med. 1985; 1: 227–232
  • Gutteridge J. M.C. The antioxidant activity of haptoglobin towards haemoglobin-stimulated lipid peroxidation. Biochim. Biophys. Acta 1987; 917: 219–223
  • Gutteridge J. M.C. Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides. FEBS Letts. 1986; 201: 291–295
  • Puppo A., Halliwell B. Formation of hydroxyl radicals from hydrogen peroxide in the presence of iron. Is haemoglobin a biological Fenton reagent?. Biochem. J. 1988; 249: 185–190
  • Puppo A., Halliwell B. Formation of hydroxyl radicals in biological systems. Does myoglobin stimulate hydroxyl radical formation from hydrogen peroxide?. Free Rad. Res. Commun. 1988; 4: 415–422
  • Yoshino S., Blake D. R., Hewitt S., Morris C., Bacon P. A. Effect of blood on the activity and persistence of antigen-induced inflammation in the rat air pouch. Ann. Rheum. Dis. 1985; 44: 485–490
  • Mitsos S. E., Kim D., Lucchesi B. R., Fantone J. C. Modulation of myoglobin-H2O2-mediated peroxidation reactions by sulfhydryl compounds. Lab. Invest. 1988; 59: 824–830
  • Galaris D., Cadenas E., Hochstein P. Glutathione-dependent reduction of peroxides during ferryl- and met-myoglobin interconversion: a potential protective mechanism in musxle. Free Rad. Biol. Med. 1989; 6: 473–478
  • Kanner J., Harel S. Initiation of membranal lipid peroxidation by activated metmyoglobin and methemoglobin. Arch. Biochem. Biophys. 1985; 237: 314–321
  • Harel S., Kanner J. Haemoglobin and myoglobin as inhibitors of hydroxyl radical generation in a model system of “iron redox” cycle. Free Rad. Res. Commun. 1989; 6: 1–10
  • Rice-Evans C., Okunade G., Khan R. The suppression of iron release from activated myoglobin by physiological electron donors and by desferrioxamine. Free Rad. Res. Commun. 1989; 7: 45–54
  • Pathak M. A. Molecular aspects of drug photosensitivity with special emphasis on psoralen photosensitization reaction. J. Nat. Cancer Inst. 1982; 69: 163–170
  • Epstein J. H. Chemical phototoxicity in humans. J. Nat. Cancer Inst. 1982; 69: 265–268
  • Hall R. D., Buettner G. R., Motten A. G., Chignell C. F. Near-infrared detection of singlet molecular oxygen produced by photo-sensitization with promazine and chlorpromazine. Photochem. Photobiol. 1987; 46: 295–300
  • Hasan T., Khan A. U. Phototoxicity of the tetracyclines: photosensitized emission of singlet delta dioxygen. Proc. Nat. Acad. Sci. USA 1986; 85: 4604–4606
  • Dodge A. D., Knox J. P. Photosensitizers from plants. Pest. Sci. 1986; 17: 579–586
  • Mathews-Roth M. M. Photoprotection by carotenoids. Fed. Proc. 1987; 46: 1890–1893
  • Cortese D. A., Kinsey J. H. Hematoporphyrin derivaive phototherapy in the treatment of bronchogenic carcinoma. Chest 1984; 86: 8–13
  • Goosey J., Zigler D. J.S., Jr., Matheson I. B.C., Kinoshita J. H. Effects of singlet oxygen on human lens crystallins in vitro. Invest. Ophthal. Vis. Sci. 1981; 20: 679–683
  • Arudi R. L., Bielski B. H.J., Allen A. O. Search for singlet oxygen luminescence in the disproportionation of HO2/O2−. Photochem. Photobiol. 1984; 39: 703–706
  • Nagano T., Fridovich I. Does the aerobic xanthine oxidase reaction generate singlet oxygen?. Photochem. Photobiol. 1985; 41: 33–37
  • Kanofsky J. R., Wright J., Miles-Richardson G. E., Tauber A. I. Biochemical requirements for singlet oxygen production from purified human myeloperoxidase. J. Clin. Invest. 1984; 74: 1489–1495
  • Wefers H. Singlet oxygen in biological systems. Bioelectrochemistrv and Bioenergetics 1987; 18: 91–104
  • Chou P. T., Khan A. U. L-ascorbic acid quenching of singlet delta molecular oxygen in aqueous media: generalized anti-oxidant property of vitamin C. Biochem. Biophys. Res. Commun. 1983; 115: 932–937
  • Bodannes R. S., Chan P. C. Ascorbic acid as a scavenger of singlet oxygen. FEBS Letts. 1979; 105: 195–196
  • Kwon B. M., Foote C. S. Chemistry of singlet oxygen. 50. Hydroperoxide intermediates in the photooxygenation of ascorbic acid. J. Am. Chem. Soc. 1988; 110: 6852–6853
  • Neely W. C., Martin J. M., Barker S. A. Products and reaction rates of the oxidation of tocopherols with singlet molecular oxygen. Photochem. Photobiol. 1988; 48: 423–428
  • Giles A., Jr., Warner W., Kornhauser A. In vivo protective effect of β-carotene against psoralen phototoxicity. Photochem. Photobiol. 1985; 41: 661–666
  • Machlin L. J. Influences of antioxidant vitamins on cataract formation. Medical, Biochemical and Chemical Aspects of Free Radicals, O. Hayaishi, E. Niki, M. Kondo, T. Yoshikawa. Elsevier, Amsterdam 1988; 351–359
  • Bendich A., Olson J. A. Biological action of carotenoids. FASEB J. 1989; 3: 1927–1932
  • Butler J., Hoey B. M., Lea J. S. The measurement of radicals by pulse radiolysis. Free Radicals. Methodology and Concepts, C.-Evans Rice, B. Halliwell. Richelieu Press, London 1988; 457–479
  • Bull C., McClune G. J., Fee J. A. The mechanism of Fe-EDTA catalyzed superoxide dismutation. J. Am. Chem. Soc. 1983; 105: 5290–5300
  • McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 1969; 244: 6049–6055
  • Halliwell B. Use of desferrioxamine as a probe for iron-dependent formation of hydroxyl radicals. Evidence for a direct reaction between desferal and the superoxide radical. Biochem. Pharmacol. 1985; 34: 229–233
  • Aruoma O. I., Halliwell B., Hoey B. M., Butler J. The antioxidant action of taurine, hypotaurine and their metabolic precursors. Biochem. J. 1988; 256: 251–255
  • Aruoma O. I., Laughton M. J., Halliwell B. Carnosine, homocarnosine and anserine. Could they act as antioxidants in vivo?. Biochem. J. 1989; 264: 863–869
  • Henry L. E.A., Halliwell B., Hall D. O. The superoxide dismutase activity of various photosynthetic organisms measured by a new and rapid assay technique. FEBS Letts. 1976; 66: 303–306
  • Davies M. J., Donkor R., Dunster C. A., Gee C. A., Jonas S., Willson R. L. Desferrioxamine (Desferal) and superoxide free radicals. Formation of an enzyme-damaging nitroxide. Biochem. J. 1987; 246: 725–729
  • Martino A., Boveris E., Stoppani A. O.M. Evaluation of the horseradish peroxidase scopoletin method for the measurement of hydrogen peroxide formation in biological systems. Anal. Biochem. 1977; 80: 145–158
  • Corbett J. T. The scopoletin assay for hydrogen peroxide. A review and a better method. J. Biochem. Biophys. Meth. 1989; 18: 297–308
  • Schroy C. B., Biaglow J. E. Use of an oxidase electrode to determine factors affecting the in vitro production of hydrogen peroxide by Ehrlich cells and 1-chloro-2,4-dinitrobenzene. Biochem. Pharmacol. 1981; 30: 3201–3207
  • Tatsuma T., Okawa Y., Watanabe T. Enzyme monolayer-and bilayer-modified tin oxide electrodes for the determination of hydrogen peroxide and glucose. Anal. Chem. 1989; 61: 2352–2355
  • Halliwell B., Gutteridge J. M.C. Formation of a thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts. FEBS Letts. 1981; 128: 347–352
  • Gutteridge J. M.C. Thiobarbituric acid-reactivity following iron-dependent free-radical damage to amino acids and carbohydrates. FEBS Letts. 1981; 128: 343–346
  • Cheeseman K. H., Beavis A., Esterbauer H. Hydroxyl-radical-induced iron-catalyzed degradation of 2-deoxyribose. Quantitative determination of malondialdehyde. Biochem. J. 1988; 252: 649–653
  • Halliwell B., Gutteridge J. M.C., Aruoma O. I. The deoxyribose method: a simple “test tube” assay for determination of rate constants for reactions of hydroxyl radicals. Anal. Biochem. 1987; 165: 215–219
  • Hoey B. M., Butler J., Halliwell B. On the specificity of allopurinol and oxypurinol as inhibitors of xanthine oxidase. A pulse radiolysis determination of rate constants for reaction of allopurinol and oxypurinol with hydroxyl radicals. Free Rad. Res. Commun. 1988; 4: 259–263
  • Aruoma O. I., Grootveld M., Halliwell B. The role of iron in ascorbate-dependent deoxyribose degradation. Evidence consistent with a site-specific hydroxyl radical generation caused by iron ions bound to the deoxyribose molecule. J. Inorg. Biochem. 1987; 29: 289–299
  • Aruoma O. I., Chaudhary S. S., Grootveld M., Halliwell B. Binding of iron(II) ions to the pentose sugar 2-deoxyribose. J. Inorg. Biochem. 1989; 35: 149–155
  • Gutteridge J. M.C. Reactivity of hydroxyl and hydroxyl-like radical discriminated by release of thiobarbituric-acid-reactive material from deoxyribose, nucleosides and benzoate. Biochem. J. 1984; 224: 761–767
  • Grootveld M., Halliwell B. An aromatic hydroxylation assay for hydroxyl radicals utilizing high-performance liquid chromatography. Use to investigate the effect of EDTA on the Fenton reaction. Free Rad. Res. Commun. 1986; 1: 243–250
  • Hiller K. O., Hodd P. L., Willson R. L. Anti-inflammatory drugs: protection of a bacterial virus as an in vitro biological measure of free radical activity. Chemico-Biol. Int. 1983; 47: 293–305
  • Maples K. R., Mason R. M. Free radical metabolite of uric acid. J. Biol. Chem. 1988; 263: 1709–1712
  • Wayner D. D.M., Burton G. W., Ingold K. U., Barclay L. R.C., Locke S. J. The relative contributions of vitamin E, urate, ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma. Biochim. Biophys. Acta 1987; 924: 408–419
  • Thurnham D. I., Situnayake R. D., Koottathep S., McConkey B., Davis M. Antioxidant status as measured by the “TRAP” assay in rheumatoid arthritis. Free Radicals, Oxidant Stress and Drug Action, C.-Evans Rice. Richelieu Press, London 1987; 169–192
  • Stocker B., Frei R., Ames B. N. Antioxidant defenses and lipid peroxidation in human blood plasma. Proc. Nat. Acad. Sci. USA 1988; 85: 9748–9752
  • Lindeman J. N.H., Zoeeren-Grobben D. V., Schriver J., Speek A. J., Poorthuis B. H.J, Berger H. M. The total free radical trapping ability of cord blood plasma in preterm and term babies. Pediat. Res. 1989; 26: 20–24
  • Halliwell B., Gutteridge J. M.C. Antioxidants of extra-cellular fluids. Arch. Biochem. Biophys., submitted
  • Usmar V., Darley M., Hersey A., Garland L. G. A method for the comparative assessment of antioxidants as peroxyl radical scavengers. Biochem. Pharmacol. 1989; 38: 1465–1469
  • Wills E. D. Lipid peroxide formation of microsomes. The role of non-haem iron. Biochem. J. 1969; 113: 325–332
  • Gutteridge J. M.C. The effect of calcium on phospholipid peroxidation. Biochem. Biophys. Res. Commun. 1979; 77: 379–386
  • Minotti G., Aust S. D. The role of iron in the initiation of lipid peroxidation. Chem. Phys. Lipids 1987; 44: 191–208
  • Stocks J., Sharp J. M.C., Gutteridge R. J., Dormandy T. L. Assay using brain homogenate for measuring the antioxidant activity of biological fluids. Clin. Sci. Mol. Med. 1974; 47: 215–222
  • Corbett P. W., Albro J. T., Schroeder J. L. Application of the thiobarbiturate assay to the measurement of lipid peroxidation products in microsomes. J. Biochem. Biophys. Meth. 1986; 13: 185–194
  • Gutteridge J. M.C. Apects to consider when detecting and measuring lipid peroxidation. Free Rad. Res. Commun. 1986; 1: 173–184
  • Gutteridge J. M.C., Halliwell B. Lipid peroxidation in biological systems - measurement and mechanism. Trends Biochem. Sci., in press
  • Pryor W. A. Forum on the detection of lipid hydroperoxides in biological samples. Free Rad. Biol. Med. 1989; 1: 177–21
  • Eluashvili I. A., Pashinova T. P., Bogdanova E. D., Kagan V. E., Prilipko L. L. Effect of chlorpromazine on enzymic oxidation of lipids. Byull. Eksp. Biol. Med. 1977; 84: 323–326
  • Wefers H., Sies H. The protection by ascorbate and glutathione against microsomal lipid peroxidation is dependent on vitamin E. Eur. J. Biochem. 1988; 174: 353–357
  • Liebler D. C., Kling D. S., Reed D. J. Antioxidant protection of phospholipid bilayers by α-tocopherol. J. Biol. Chem. 1986; 261: 12114–12119
  • Packer J. E., Slater T. F., Willson R. L. Direct observation of a free radical interaction between vitamin E and vitamin C. Nature 1979; 278: 737–738
  • Frei B., England L., Ames B. N. Ascorbate is an outstanding antioxidant in human blood plasma. Proc. Nat. Acad. Sci. USA, 86: 6377–6381
  • Lunec J., Blake D. R. The determination of dehydroascorbic acid and ascorbic acid in the serum and synovial fluid of patients with rheumatoid arthritis. Free Rad. Res. Commun. 1985; 1: 31–39
  • Blake D. R., Hall N., Treby D., Halliwell D. A.B., Gutteridge J. M.C. Protection against superoxide and hydrogen peroxide in synovial fluid from rheumatoid patients. Clin. Sci. 1981; 61: 483–486
  • Cross C. E., Forte T., Stocker R., Louie S., Yamamoto Y., Ames B. N., Frei B. Oxidative stress and abnormal cholesterol metabolism in patients with adult respiratory distress syndrome. J. Lab. Clin. Med., in press
  • Iwamoto H., Kobayashi T., Hasegawa E., Morita Y. Reactions of human myeloperoxidase with hydrogen peroxide and its true catalase activity. J. Biochem. (Tokyo) 1987; 101: 1407–1412
  • Kettle A. J., Winterbourn C. C. The mechanism of myeloperoxidase-dependent chlorination of monochlorodimendon. Biochim. Biophys. Acta 1988; 957: 185–191
  • Green T. R., Fellman J. H., Eicher A. L. Myeloperoxidase oxidation of sulfur-centered and benzoic acid hydroxyl radical scavengers. FEBS Letts. 1985; 192: 33–36
  • Puppo A., Aruoma O. I., Bolli R., Halliwell B. Biochemical mechanisms accounting for the cardioprotective action of mercapto-propionylglycine. Biochem. J., submitted
  • Wasil M., Halliwell B., Moorhouse C. P. Scavenging of hypochlorous acid by tetracycline, rifampicin and some other antibiotics: a possible antioxidant action of rifampicin and tetracycline?. Biochem. Pharmacol. 1988; 37: 775–778
  • Midden W. R., Wang S. Y. Singlet oxygen generation for solution kinetics: clean and simple. J. Am. Chem. Soc. 1983; 105: 4129–4135
  • Dahl T. A., Midden W. R., Hartman P. E. Pure exogenous singlet oxygen: nonmutagenicity in bacteria. Mut. Res. 1988; 201: 127–136
  • Rougee M., Bensasson R. V., Land E. J., Pariente R. Deactivation of singlet molecular oxygen by thiols and related compounds, possible protectors against skin photosensitivity. Photochem. Photohiol. 1988; 47: 485–489
  • Krinsky N. I., Deneke S. M. Interaction of oxygen and oxy-radicals with carotenoids. J. Nat. Cancer Inst. 1982; 69: 205–210
  • Puppo A., Halliwell B. Generation of hydroxyl radicals by soybean nodule leghaemoglobin. Planta 1988; 173: 405–410
  • Kanner J., Harel S. Desferrioxamine as an electron donor. Inhibition of membranal lipid peroxidation initiated by H2O2-activated metmyoglobin and other peroxidizing systems. Free Rad. Res. Commun. 1987; 3: 309–317
  • Touati D. The molecular genetics of superoxide dismutase in E. coli. An approach to understanding the biological role and regulation of SODs in relation to other elements of the defence system against oxygen toxicity. Free Rad. Res. Commun. 1989; 8: 1–9
  • Schellhorn H., Hassan H. M. Response of hydroperoxidase and superoxide dismutase deficient mutants of Escherichia coli K-12 to oxidative stress. Can. J. Microbiol. 1988; 34: 1171–1176
  • Natvig D. O., Imlay K., Touati D., Hallewell R. A. Human copper-zinc superoxide dismutase complements superoxide dismutase-deficient Escherichia coli mutants. J. Biol. Chem. 1989; 262: 14697–14701
  • Van Loon A. P.G.M., Pesold-Hurt B., Schatz G. A yeast mutant lacking mitochondrial manganese-superoxide dismutase is hypersensitive to oxygen. Proc. Nat. Acad. Sci. USA 1986; 83: 3820–3824
  • Phillips J. P., Campbell S. D., Michaud D., Charbonneau M., Hilliker A. J. Null mutation of copper/zinc superoxide dismutase in Drosophila confers hypersensitivity to paraquat and reduced longevity. Proc. Nat. Acad. Sci. USA 1989; 86: 2761–2765
  • Matthews A. E., Harding S., Jones S., Ellis C. J.K., Booth I. W., Muller D. P.R. Spinocerebellar degeneration associated with a selective defect of vitamin E absorption. N. Eng. J. Med. 1985; 313: 32–35
  • Kaur H., Halliwell B. Action of biologically-relevant oxidizing species upon uric acid. Identification of uric acid oxidation products. Chemico-Biological Int., in press
  • Grootveld M., Halliwell B. Measurement of allantoin and uric acid in human body fluids. A potential index of free radical reactions in vivo?. Biochem. J. 1987; 243: 803–808
  • Rice-Evans C., Halliwell B. Free Radicals: Methodology Concepts. Richelieu Press, London 1988
  • Steinberg D., Parthasarathy S., Carew T. E., Khoo J. C., Witztum J. L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N. Eng. J. Med. 1989; 320: 915–924
  • Curtis W. E., Muldrow M. E., Parker N., Barkley B., Linas R. S.L., Repine J. E. N, N'-dimethylthiourea dioxide formation from N.N'-dimethylthiourea reflects hydrogen peroxide concentrations in simple biological systems. Proc. Nat. Acad. Sci. USA 1988; 85: 3422–3425
  • Sasaki F., Kinoshita T., Takahama H., Watanabe K. Cytochemical studies of hydrogen peroxide production in the tadpole tail of Rana japonica during metamorphic climax. Histochem. J. 1988; 20: 99–107
  • Oshino N., Jamieson D., Chance B. The properties of hydrogen peroxide production under hyperoxic and hypoxic conditions of perfused rat liver. Biochem. J. 1975; 146: 53–65
  • Yusa T., Beckman J. S., Crapo J. D., Freeman B. A. Hyperoxia increases H2O2, production by brain in vivo. J. Appl. Physiol. 1987; 63: 353–358
  • Foerster E. C., Fahrenkemper T., Rube U., Graf P., Sies H. Peroxisomal fatty acid oxidation as detected by H2O2 production in intact perfused liver. Biochem. J. 1981; 196: 705–712
  • Halliwell B., Grootveld M. The measurement of free radical reactions in humans. Some thoughts for future experimentation. FEBS Letts. 1987; 213: 9–14
  • Babbs C. F., Griffin D. W. Scatchard analysis of methane sulfinic acid production from dimethyl sulfoxide: a method to quantify hydroxyl radical formation in physiologic systems. Free Rad. Biol. Med. 1989; 6: 493–503
  • Bendich A., Machlin L. J., Scandurra O., Burton G. W., Wayner D. D.M. The antioxidant role of vitamin C. Adv. Free Rad. Biol. Med. 1986; 2: 419–444
  • Chow C. K., Thacker R. R., Changchit C., Bridges R. B., Rehm S. R., Humble J., Turbek J. Lower levels of vitamin C and carotenes in plasma of cigarette smokers. J. Am. Coll. Nut. 1986; 5: 305–312
  • Davison A. J., Kettle A. J., Fatur D. J. Mechanism of the inhibition of catalase by ascorbate. Roles of active oxygen species, copper and semidehydroascorbate. J. Biol. Chem. 1986; 261: 1193–1200
  • Shamberger R. J. Genetic toxicology of ascorbic acid Mut. Res. 1984; 133: 135–159
  • Redei G. N., Acedo G. P., Sandhu S. S. Mutagenicity of ascorbic acid for the plant Arabidopsis. Mut. Res. 1984; 129: 57–62
  • Giblin F. J., McCready J. P., Kodama T., Reddy V. N. A direct correlation between the levels of ascorbic acid and H2O2 in aqueous humor. Exp. Eye Res. 1984; 38: 87–93
  • Halliwell B., Foyer C. H. Ascorbic acid, metal ions and the superoxide radical. Biochem. J. 1976; 155: 697–700
  • Buettner G. R. Ascorbate oxidation in the presence of iron and copper chelates. Free Rad. Res. Commun. 1986; 1: 349–353
  • Gutteridge J. M.C. Copper-phenanthroline induced site specific oxygen radical damage to DNA. Detection of loosely bound trace copper in biological fluids. Biochem. J. 1984; 218: 983–985
  • Gutteridge J. M.C., Rowley D. A., Griffiths E., Halliwell B. Low-molecular-weight iron complexes and oxygen radical reactions in idiopathic haemochromatosis. Clin. Sci. 1985; 68: 463–467
  • Grootveld M., Bell J. D., Halliwell B., Aruoma O. I., Bomford A., Sadler P. J. Non-transferrin-bound iron in plasma or serum from patients with idiopathic hemochromatosis. Characterization by high performance liquid chromatography and nuclear magnetic resonance spectroscopy. J. Biol. Chem. 1989; 264: 4417–4422
  • Evans P. J., Bomford A., Halliwell B. Non-caeruloplasmin copper and ferroxidase activity in mammalian serum. Ferroxidase activity and phenanthroline-detectable copper in human serum in Wilson's disease. Free Rad. Res. Commun. 1989; 7: 55–62
  • Halliwell B., Aruoma O. I., Mufti G., Bomford A. Bleomycin-detectable iron in serum from leukaemic patients before and after chemotherapy. Therapeutic implications for treatment with oxidant-generating drugs. FEBS Letts. 1988; 241: 202–204
  • Halliwell B. Oxidants and the central nervous system: some fundamental questions. Acta Neurol. Scand., in press
  • Gey K. F., Stahelin H. B., Brubacher G. B. Plasma levels of essential antioxidants inversely related to subsequent cancer. Medical, Biochemical and Chemical Aspects of Free Radicals, O. Hayaishi, E. Niki, M. Kondo, T. Yoshikawa. Elsevier, Amsterdam 1988; 377–384

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.