65
Views
248
CrossRef citations to date
0
Altmetric
Original Article

Induction of Haem Oxygenase as a Defence Against Oxidative Stress

Pages 101-112 | Received 31 Oct 1989, Published online: 07 Jul 2009

References

  • ChanceSies B. H., Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 1979; 59: 527–605
  • Halliwell B., Gutteridge J. M.C. Free Rail. Biol. Med. Clarendon Press, Oxford 1985
  • Halliwell B., Gutteridge J. M.C. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch. Biochem. Biophys. 1986; 246: 501–514
  • Tappel A. L. The mechanism of the oxidation of unsaturated fatty acids catalyzed by hematin compounds. Arch. Biochim. Biophys. 1953; 44: 378–394
  • Sics H. Oxidative stress: introductory remarks. Oxidative Sirss, H. Sies. Academic Press, London and New York 1985; 1–8
  • Ames B. N., Cathcart R., Schwiers E., Hochstein P. Uric acid provides an antioxidant defence in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc. Null. Acad. Sci. USA. 1981; 78: 6858–6862
  • Stockcr R., Yamamoto Y., McDonagh A. F., Glazer A. N., Ames B. N. Bilirubin is an antioxidant of possible physiological importance. Science 1987; 235: 1043–1046
  • Colleran E., O'Carra P. Enzymology and comparative physiology of biliverdin reduction. Chemistry and Physiology of Bile Pigments, P. D. Berk, N. I. Berlin. Government Printing Office, Washington, DC 1975; 69–80
  • Stocker R., Glazer A. N., Ames B. N. Antioxidant activity of albumin bound bilirubin. Proc. Natl. Acad. Sci. USA. 1987; 84: 5918–5922
  • Frei B., Stocker R., Ames B. N. Antioxidant defenses and lipid peroxidation in human blood plasma. Proc. Natl. Acad. Sci. USA. 1988; 85: 9784–9752
  • Bowen S. W., Hassan H. M. Induction of the manganese-containing (oxyR-controlled) regulon. J. Biol. Chem. 1988; 263: 14808–14811
  • Christman M. F., Morgan R. W., Jacobson F. S., Ames B. N. Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella tvphimurium. Cell 1985; 41: 753–762
  • Demple B., Halbrook J. Inducible repair of oxidative DNA damage in Escherichia coli. Nature 1983; 304: 466–468
  • Hagensee M E., Moses R. E. Multiple pathways for repair of hydrogen peroxide induced DNA damage in Escherichia coliL. J. Bacleriol. 1989; 171: 991–995
  • Gregory E. M., Goscin S. A., Fridovich I. Superoxide dismutase and oxygen toxicity in a eukaryote. J. Bacterial. 1974; 117: 456–460
  • Alliotte C. T., De Loose M., Van Montagu M., BowlerInzé D. The induction of manganese superoxide dismutase in response to stress in Nicotiunu plumbaginijolia. EMBO J. 1989; 8: 31–38
  • Courgeon A.-M., Rollet E., Becker J., Maisonhaute C., Best-Belpomme M. Hydrogen peroxide (H2O2) induces actin and some heat-shock proteins in Drosophila cells. Eur. J. Biochem. 1988; 171: 163–170
  • Hass M. A., Massaro D. Regulation of the synthesis of superoxide dismutases in rat lungs during oxidant and hyperthermic stresses. J. Biol. Chem. 1988; 263: 776–781
  • Spitz D R., Dewey W. C., Li G. C. Hydrogne peroxide or heat shock induces resistance to hydrogen peroxide in Chinese hamster fibroblasts. J. Cell. Physiol. 1987; 131: 364–373
  • Sawada M., Sofuni T., Ishidate M., Jr. Induction of chromosomal aberrations in active oxygen-generating systems. II A study with hydrogen peroxide resistant cells in culture. Mut. Res. 1988; 197: 133–140
  • Lindquist S. The heat-shock response. Ann. Rev. Biochem. 1986; 55: 1151–1191
  • Whelan S. A., Hightower L. E. Differential induction of glucose-regulated and heat shock proteins: effects of pH and sulfhydryl-reducing agents on chicken embryo cells. J. Cell. Physiol. 1985; 125: 251–258
  • Burdon R. H., Gill V. M., Rice-Evans C. Oxidative stress and heat shock protein induction in human cells. Free Rod. Res. Comms. 1987; 3: 129–139
  • Polla B. S. A role for heat shock proteins and inflammation?. Immunol. Today 1988; 9: 134–137
  • Maines M. D. New developments in the regulation of heme metabolism and their implications. CRC Crit. Rev. Toxicol. 1984; 12: 241–314
  • AbrahamLin N. G.J.H.-, Schwartzman C. M.L., Levere R. D., Shibahara S. The physiological significance of heme oxygenase. Int. J. Biochem. 1988; 20: 543–558
  • Maines M. D. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEBJ. 1988; 2: 2557–2568
  • Rutty R. K., Daniel R. F., Ryan D. E., Levin W., Maines M. D. Rat liver cytochrome P-450b, and P-450c are degraded to biliverdin by heme oxygenase. Arch. Biochim. Biophys. 1988; 260: 638–644
  • Aft R. L., Müller G. C. Hemin-mediated DNA strand scission. J. Biol. Chem. 1983; 258: 12069–12072
  • Aft R. L., Müller G. C. Hemin-mediated oxidative degradation of proteins. J. Biol. Chem. 1984; 259: 301–305
  • Lin H., Everse J. The cytotoxic activity of hematoheme: evidence for two different mechanisms. Anal. Biochem. 1987; 161: 323–331
  • Müller-Eberhard U., Vincent S. H. Concepts of heme distribution within hepatocytes. Biochem. Pharmacol. 1985; 34: 719–725
  • Granick S., Sinclair P., Sassa S., Grieninger G. Effects by heme, insulin, and serum albumin on heme and protein synthesis in chick embryo liver cells cultured in a chemically defined medium, and a spectrofluorometric assay for porphyrin composition. J. Biol. Chem. 1975; 250: 9215–9225
  • Cruse I., Maines M. D. evidence suggesting that the two forms of heme oxygenase are products of different genes. J. Biol. Chem. 1988; 263: 3348–3353
  • Maines M. D., Trakshel G. M., Kutty R. K. Characterization of two constitutive forms of rat liver microsomal heme oxygenase. Only one molecular species of the enzyme is inducible. J. Biol. Chem. 1986; 261: 411–419
  • Maines M. D., Kappas A. Cobalt induction of hepatic heme oxygenase; with evidence that cytochrome P-450 is not essential for this enzyme activity. Proc. Nail. Acad. Sci. USA 1974; 71: 4293–4297
  • Maines M. D., Kappas A. Regulation of heme pathway enzymes and cellular glutathione content by metals that do not chelate with tetrapyrroles: blockade of metal effects by thiols. Proc. Natl. Acad. Sci. USA. 1977; 74: 1875–1878
  • Maines M. D., Kappas A. Metals as regulators of heme metabolism. Science 1977; 198: 1215–1221
  • Kuthan H., Ullrich V. Oxidase and oxygenase function of the microsomal cytochrome P450 monooxygenase system. Eur. J. Biochem. 1982; 126: 583–588
  • Terelius Y., Ingelman-Sundberg M. Cytochrome P-450-dependent oxidase activity and hydroxyl radical production in micellar and membranous types of reconstituted systems. Biochem. Pharmacol. 1988; 37: 1383–1389
  • Maines M. D., Kappas A. Cobalt stimulation of heme degradation in the liver. Dissociation of microsomal oxidation of heme from cytochrome P-450. J. Biol. Chem. 1975; 250: 4171–4177
  • Yoshida T., Oguro T., Numazawa S., Kuroiwa Y. Effects of phorone (diisopropylidene acetone), a glutathione (GSH) depletor, on hepatic enzymes involved in drug and heme metabolism in rats: evidence that phorone is a potent inducer of heme oxygenase. Biochem. Biophvs. Res. Commun. 1987; 145: 502–508
  • El Azhary R., Mannering G. J. Effects of interferon inducing agents (polyriboinosinic acid-polyribocytidylic acid, tilorone) on hepatic hemoproteins (cytochrome P-450, catalase. tryptophan 2,3-dioxygenase. mitochondrial cytochromes), heme metabolism and cytochrome P-450-linked monooxygenase systems. Mol. Pharmacol. 1979; 15: 698–707
  • Levin W., Kuntzman R. Biphasic decrease of radioactive hemoprotein from liver microsomal CO-binding proteins. Effect of 3-methylcholanthrene. J. Biol. Chem. 1969; 244: 3671–3676
  • Poulson R. The enzymatic conversion of protoporphyrinogen IX to protoporphyrin IX in mammalian mitochodria. J. Biol. Chem. 1976; 251: 3730–3733
  • Ferreira G. C., Dailey H. A. Mouse protoporphyrinogen oxidase. Kinetic parameters and demonstration of inhibition by bilirubin. Biochem. J. 1988; 250: 597–603
  • Peters W. H.M., Jansen P. L.M. Microsomal UDP-glucuronyl transferase catalyzed bilirubin diglucuronide formation in human liver. J. Hepatol. 1986; 2: 182–194
  • Schmid R., McDonagh A. F. Hyperbilirubinemia. The Metabolic Basis of Inherited Disease, J. B. Stanbury, J. B. Wyngaarden, D. S. Fredrickson. McGraw-Hill, New York 1978; 1221–1257
  • Akerboom T. PM, Bilzer M., Sies H. Relation between glutathione redox changes and biliary excretion of taurocholate in perfused rat liver. J. Biol. Chem. 1984; 259: 5838–5843
  • Matsunaga T., Nagata K., Hanioka N., Tanaka E., Oguri P., Buppodom K., Yoshimura H. Suppressive effect of interferon inducer, polyriboinsinic acid and polyribocytidylic acid on induction of uridine diphosphate-glucuronyltransferases and monooxygenase in liver microsomes of rats. J. Pharmacohiodyn. 1986; 9: 421–427
  • Brodersen R. Localization of bilirubin pools in the non-jaundiced rat, with a note on bilirubin dynamics in normal human adults and in Gilbert's syndrome. Scand. J. Clin. Lab. Invest. 1972; 30: 95–106
  • Bakken A. F., Thaler M. M., Schmid R. Metabolic regulation of heme catabolism and bilirubin production. I. Hormonal control of hepatic heme oxygenase activity. J. Clin. Invest. 1972; 51: 530–536
  • Maines M. D., Veltman J. C. Phenylhydrazine-mediated induction of haem oxygenase activity in rat liver and kidney and development of hyperbilirubinaemia. Inhibition by zinc-protoporphyrin. Biochem. J. 1984; 217: 409–417
  • DeMatteis F., Gibbs A. H. The effect of coballous chloride on liver heme metabolism in the rat. Evidence for inhibition of haem synthesis and for increased haem degradation. Ann. Clin, Res. 1976; 8(Suppl.)17–197
  • Stelzer K. J., Klaassen C. D. Effect of cobalt on biliary excretion of bilirubin and glutathione. J. Toxicol. Environmental Health. 1985; 15: 813–822
  • Stocker R., Lai A., Peterhans E., Ames B. N. Antioxidant activities of bilirubin and biliverdin. Medical, Biochemical and Chemical Aspects of Free Radicals, O. Hayaishi, E. Niki, M. Kondo, T. Yoshikawa. Elsevier, Amsterdam 1989; 465–468
  • Stocker R., Ames B. N. Potential role of conjugated bilirubin and copper in the metabolism of lipid peroxides in bile. Proc. Natl. Acad. Sci. USA. 1987; 84: 8130–8134
  • Stocker R., Peterhans E. Antioxidant properties of conjugated bilirubin and biliverdin: biologically relevant scavenging of hypochlorous acid. Free Radical Res. Comms. 1989; 6: 57–66
  • Stocker R., Peterhans E. Synergistic interaction between vitamin E and the bile pigments bilirubin and biliverdin. Biochim. Biophys. Acta. 1989; 1002: 238–244
  • Kikuchi G., Yoshida T. Function and induction of the microsomal heme oxygenase. Mol. Cell. Biochem. 1983; 53/54: 163–183
  • Shibahara S. Regulation of heme oxygenase gene expression. Seminars Hematol 1988; 25: 370–376
  • Keyse S. M., Tyrrell R. M. Both near ultraviolet radiation and the oxidizing agent hydrogen peroxide induce the 32-kDa stress protein in normal human skin fibroblasts. J. Biol. Chem. 1987; 262: 14821–14825
  • Keysc S. M., Tyrrell R. M. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proc. Null. Acad. Sci. USA. 1989; 86: 99–103
  • Taketani S., Kohno H., Yoshinaga T., Tokunaga R. The human 32-kDa stress protein induced by exposure to arsenite and cadmium ions is heme oxygenase. FEBS Lett. 1989; 245: 173–176
  • Hiwasa T., Fujimura S., Sakiyama S. Tumor promotors increase the synthesis of a 32,000-dalton protein in BALB/c 3T3 cells. Proc. Natl. Acad. Sci. USA. 1982; 79: 1800–1804
  • Hiwasa T., Sakiyama S. Increase in the synthesis of a Mr 32.000 protein in BALB/c 3T3 cells after treatment with tumor promotors, chemical carcinogens, metal salts, and heat shock. Cancer Res. 1986; 46: 2474–2481
  • Kagayama H., Tokunaga T., Hiwasa K., Sakiyama S. Isolation and characterization of a complementary DNA clone for a Mr 32,000 protein which is induced with tumor promotors in BALB/c 3T3 cells. Cancer Res. 1988; 48: 4795–4798
  • Gemsa D., Woo C. H., Fudenberg H. H., Schmid R. Erythrocyte catabolism by macrophages in vitro. The effect of hydrocortisone on erythrophagocytosis and on the induction of heme oxygenase. J. Clin. Invest. 1973; 52: 812–822
  • Gemsa D., Woo C. H., Fudenberg H. H., Schmid R. Stimulation of heme oxygenase in macrophages and liver by endotoxin. J. Clin. Invest. 1974; 53: 647–651
  • Kikkawa Y., Yano S., Skoza L. Protective effect of interferon inducers against hyperoxic pulmonary damage. Lab. Invest. 1984; 50: 62–71
  • Tenhunen R., Marver H. S., Schmid R. The enzymatic catabolism of hemoglobin: stimulation of microsomal heme oxygenase by hemin. J. Lab. Clin. Med. 1970; 75: 410–421
  • Burk R. F., Correia M. A. Stimulation of rat hepatic microsomal heme oxygenase by diethyl maleate. Res. Commun. Chem. Pathol. Pharmacol. 1979; 24: 205–207
  • Reiter R., Wendel A. Selenium and drug metabolism - I Multiple modulations of mouse liver enzymes. Biochem. Pharmacol. 1983; 32: 3063–3067
  • Williams D. M., Burk R. F., Jenkinson S. G., Lawrence R. A. Hepatic cytochrome P-450 and microsomal heme oxygenase in copper-deficient rats. J. Nutr. 1981; 111: 979–983
  • Walsch S., Degkwitz E. Activity of microsomal heme oxygenase in liver and spleen of ascorbic acid-deficient guinea pigs, Hoppe-Seyler's Z. Physiol., Chem. 1980; 361: 1243–1249
  • Freeman M. L., Meredith M. J. Glutathione conjugation and induction of a 32,000 dalton stress protein. Biochem. Pharmacol. 1989; 38: 299–304
  • Cajone F., Bernelli-Zazzera A. Oxidative stress induces a subset of heat shock proteins in rat hepatocytes and MH1C1 cells. Chem.-Biol. Interactions. 1988; 65: 235–246
  • Poli G., Dianzani M. U., Cheeseman K. H., Slater T. F., Lang J., Esterbauer H. Separation and characterization of the aldehydic products of lipid peroxidation stimulated by carbon tetrachloride or ADP-iron in isolated rat hepatocytes and rat liver microsomal suspensions. Biochem. J. 1985; 227: 629–638
  • Caltabiano M. M., Koestler T. P., Poste G., Greig R. G. Induction of mammalian stress proteins by a triethylphosphine gold compound used in the therapy of rheumatoid arthritis. Biochem. Biophys. Res. Commun. 1986; 138: 1074–1080
  • Caltabiano M. M., Poste G., Greig R. G. Induction of the 32-kD human stress protein by auranofin and related triethylphosphine gold analogs. Biochem. Pharmacol. 1988; 37: 4089–4093
  • Sadrzadeh S. MH, Anderson D. K., Panter S. S., Hallaway P. E., Eaton J. W. Hemoglobin potentiates central nervous system damage. J. Clin. Invest. 1987; 79: 662–664
  • Sadrzadeh S. MH, Graf E., Panter S. S., Hallaway P. E., Eaton J. W. Hemoglobin. A biological Fenton reagent. J. Biol. Chem. 1984; 259: 14354–14356
  • Gutteridge J. M.C., Smith A. Antioxidant protection by haemopexin of haem stimulated lipid peroxidation. Biochem. J. 1988; 256: 861–865
  • Pimstone N. R., Engel P., Tenhunen R., Seitz P. T., Marver H. S., Schmid R. Inducible heme oxygenase in the kidney: a model for homeostatic control on hemoglobin catabolism. J. Clin. Invest. 1971; 50: 2042–2050
  • Ames B. N. Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science 1983; 221: 1256–1264
  • Cerutti P. A. Prooxidant states and tumor promotion. Science 1985; 227: 375–381
  • Stout D. L., Becker F. F. Heme enzyme patterns in genetically and chemically induced mouse liver tumors. Cancer Res. 1986; 46: 2756–2759
  • Cheeseman K., Collins H., Proudfoot M. K., Slater T. F., Burton G. W., Webb A. C., Ingold K. U. Studies on lipid peroxidation in normal and tumour tissues. The Novikoffrat liver tumour. Biochem. J. 1988; 235: 507–514
  • Jungi T. W., Peterhans E. Change in chemiluminescence reactivity pattern during in vitro differentiation of human monocytes to macrophages. Blut 1988; 56: 213–220
  • Clerget M., Polla B. S. Erythrophagocytosis induces stress (heat shock) protein synthesis by human monocytes-macrophages. Proc. Natl. Acad. Sci. USA., In Press
  • Chang S.-W., Lauterburg B. H., Voelkel N. F. Endotoxin causes neutrophil independent oxidative stress in rats. J. Appl. Physiol. 1988; 65: 358–367
  • Peterhans E., Jungi T. W., Stocker R. Autotoxicity and reactive oxygen in viral disease. OAT-Radicals in Molecular Biology and Pathology, P. Cerutti, I. Fridovich, J. McCord. Alan Liss, New York 1988; 82: 543–562
  • Karin M. Metallothioeins: proteins in search of function. Cell, 41: 9–10
  • Yoshida R., Imanishi J., Oku T., Kishida T., Hayaishi O. Induction of pulmonary indolea-mine 2,3-dioxygenase by interferon. Proc. Natl. Acad. Sci. USA 1981; 78: 129–132
  • Christen S., Peterhans E., Stocker R. Antioxidant activities of some tryptophan metabolites. Implications for inflammatory diseases?. Proc. Natl. Acad. Sci. USA. 1989, In Press
  • Hayaishi O. Indoleamine 2,3-dioxygenase-with special reference to the mechanism of interferon action. Biken J., 28: 39–49
  • Gutcher Raynor G. R.W.J., Farrell P. M. An evaluation of vitamin E status in premature infants. Am. J. Clin. Nutr., 40: 1078–1089
  • Pearson H. A. Life-span of the fetal blood cell. J. Pediatr. 1967; 70: 166–171
  • Gross S. J. Vitamin E and neonatal bilirubinemia. Pediatrics 1979; 64: 321–323
  • Abraham N. G., Lin J. H.-C, Mitrione S. M., Schwartzman M. L., Levere R. D., Shibahara S. Expression of heme oxygenase gene in rat and human liver. Biochem. Biophys. Res. Commun. 1988; 150: 717–722
  • Silverman W. A., Flynn J. T. Retinopathy of prematurity Contemporary issues in fetal and neonatal medicine. Blackwell Scientific Publications, Boston 1985
  • Heyman E., Ohlsson Girschek A. Retinopathy of prematurity and bilirubin. New Engl. J. Med. 1989; 320: 256
  • Sugi K., Hirota M., Inoue M., Morino Y., Sato T. Oxidative stress in jaundiced rats: does bilibrubin function a an antioxidant?. Medical, Biochemical and Chemical Aspects of Free Radicals, O. Hayaishi, E. Niki, M. Kondo, T. Yoshikawa. Elsevier, Amsterdam 1989; 469–472
  • Drummond G. S., Kappas A. Prevention of neonatal hyperbilirubinemia by tin protoporphyrin IX, a potent competitive inhbitor of heme oxidation. Proc. Natl. Acad. Sci. USA 1981; 78: 6466–6470
  • Sisson T. RC, Drummond G. S., Samonte D., Calbio R., Kappas A. Sn protoporphyrin blocks the increase in serum bilirubin levels that develops postnatally in homozygous gunn rats. J. Exp. Med. 1988; 167: 1247–1252

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.