31
Views
13
CrossRef citations to date
0
Altmetric
Original Article

Probing the Structural Basis for Enzyme-Substrate Recognition In Cu, Zn Superoxide Dismutase

, , , &
Pages 287-296 | Published online: 07 Jul 2009

References

  • Fridovich I. Superoxide ond Superoxide Dismutase. Elsevier/North Holland, New York 1979; 67
  • Fielden E. M., Roberts P. B., Bray R. C., Lowe D. J., Mautner G. N., Rotilio G., Calabrese L. The mechanism of action of superoxide dismutase from pulse radiolysis and electron paramagnetic resonance. Biochemical Journal 1974; 139: 49–60
  • Cudd A., Fridovich I. Electrostatic interactions in the reaction mechanism of bovine erythrocyte superoxide dismutase. Journal of Biological Chemistry. 1982; 257: 11443–11447
  • Getzoff E. D., Tainer J. A., Weiner P. K., Kollman P. A., Richardson J. S., Richardson D. C. Electrostatic recognition between superoxide and copper, zinc superoxide dismutase. Nature 1983; 306: 287–290
  • Getzoff E. D., Tainer J. A., Stempien M. M., Bell G. I., Hallewell R. A. Evolution of CuZn superoxide dismutase and the Greek key b˜-barrel structural motif. Proteins Structure. Function and Genetics 1989; 5: 322–336
  • Tainer J. A., Roberts V. A., Fisher C. L., Hallewell R. A., Getzoff E. D. Mechanism and structure of superoxide dismutases. CRC Reviews in Chemistry. 1989, in press.
  • Fisher C. L., Tainer J. A., Pique M. E., Getzoff E. D. Visualization of molecular flexibility effects on electrostatic recognition. Journal of Molecular Graphics. 1990, in press.
  • Taincr J. A., Getzoff E. D., Beem K. M., Richardson J. S., Richardson D. C. Determination and analysis of the 2A structure of copper, zinc superoxide dismutax. Jounral of Molecular Biology 1982; 160: 181–217
  • Steffens G. -J., Bannister J. V., Bannister W. H., Flohé L., Günzler W. A., Kim S. -M. A., Ötting F. The primary structure of Cu-Zn superoxide dismutase from Photobacterium leiognathi: evidence for a separate evolution of Cu-Zn superoxide dismutax in bacteria. Hoppe-Seyler's Zeitschrift für Physrologische Chemie. 1983; 364: 676–690
  • Lee Y. M., Friedman D. J., Ayala F. J. Superoxide dismutase: an evolutionary puzzle. Proceedings of the National Acudemy of Sciences USA. 1985; 82: 824–828
  • Hallewell R. A., Masiarz F. R., Najarian R. C., Puma J. P., Quiroga M. R., Randolph A., Sanchcz-Pescador R., Scandella C. J., Smith B., Steimer K. S., Mullenbach G. T. Human Cu/Zn superoxide dismutase cDNA: isolation of clones synthesising high levels of active or inactive enzyme from an expression library. Nucleic Acids Research 1985; 13: 2017–2034
  • Sherman L., Dafni N., Lieman-Hurwitz J., Groner Y. Nucleotide sequence and expression of human chromosome 21-encoded superoxide dismutase mRNA. Proceedings of the National Academy of Sciences U. S. A. 1983; 80: 5465–5469
  • Steinman H. M., Naik V. R., Abernethy J. L., Hill R. L. Bovine erythrocyte superoxide dismutase. Complete amino acid sequence. Journal of Biological Chemistry. 1974; 249: 7326–7338
  • Schinina M. E., Barra D., Gentilomo S., Bossa F., Capo C., Rotilio G., Calabrese L. Primary structure of a cationic Cu, Zn superoxide dismutase. The sheep enzyme. FEBS Letters 1986; 207: 7–10
  • Schinina M. E., Barra D., Simmaco M., Bossa F., Rotilio G. Primary structure of porcine Cu, Zn superoxide dismutase. FEBS hirers 1985; 186: 267–270
  • Lerch K., Ammer D. Amino acid sequence of copper-zinc superoxide dismutase from horse liver. Journal of Biological Chemistry 1981; 256: 11545–11551
  • Steffens G. J., Michelson A. M., Puget K., Floht L. The amino-acid sequence of rat Cu-Zn superoxide dismutase. Biological Chemistry Hoppe-Seyler. 1986; 367: 1017–1024
  • Bewley G. C. cDNA and deduced amino acid sequence of murine Cu-Zn superoxide dismutase. Nucleic Acids Research 1988; 16: 2728
  • Rocha H. A., Bannister W. H., Bannister J. V. The amino-acid sequence of copper/zinc superoxide dismutase from swordfish liver. Comparison of copperlzinc superoxide dismustase sequences. European Journal of Biochemistry 1984; 145: 477–484
  • Seto N. O. L., Hayashi S., Tener G. M. The sequence of the Cu-Zn superoxide dismutase gene of drosophila. Nucleic Acids Research 1987; 15: 10601
  • Steffens G. J., Michelson A. M., Otting F., Puget K., Strassburger W., Floht L. Primary structure of Cu-Zn superoxide dismutase of Brassica oleracea proves homology with corresponding enzymes of animals, fungi and prokaryotes. Biol. Chem. Hoppe-Seyler. 1986; 367: 1007–1016
  • Cannon R. E., White J. A., Scandalios J. G. Cloning of cDNA for maize superoxide dismutase 2 (SOD2). Proceedings of the National Academy of Sciences U. S. A. 1987; 84: 179–183
  • Kitagdwa Y., Tsunasawa S., Tanaka N., Katsube Y., Sakiyama F., Asada K. Amino acid sequence of copper, zinc-superoxide dismutase from spinach ledves. Journal of Biochcmistry 1986; 99: 1289–1298
  • Lerch K., Schenk E. Primary structure of copper-zinc superoxide dismutase from. Neuro-spora crassa. Journal of Biological Chemistry. 1985; 260: 9559–9566
  • Johansen J. T., Overbalk-Peterson C., Martin B., Haxmann V., Svendsen I. The complete amino acid sequence of copper, zinc superoxide dismutase from. Saccharomyces cerevisiae. Carlsberg Research Communications 1979; 44: 201–271
  • Steinman H. Bacteriocuprein superoxide dismutase of Photobacterium leiognathi. Isolation and sequence of the gene and evidence for a precursor form. Journal of Biological Chemistry. 1987; 262: 1882–1887
  • Steinman H. M. The amino acid sequence of copper-zinc superoxide dismutase from bakers' yeast. Journal of Biological Chemistry 1980; 255: 6758–6765
  • Richardson J. S., Getzoff E. D., Richardson D. C. The b˜ bulge: a common small unit of nonrepelitive protein structure. Proceedings of the National Academy of Sciences U. S. A. 1978; 75: 2574–2578
  • Tainer J. A., Getzolff E. D., Richardson J. S., Richardson D. C. Structure and mechanism of copper, zinc superoxide dismutase. Nature 1983; 306: 284–287
  • Beyer W. F., Jr., Fridovich I., Mullenbach G. T., Hallewell R. Examination of the role of arginine-143 in the human copper and zinc superoxide dismutase by site-specific mutagenesis. Journal of Biological Chemictry. 1987; 262: 11182–11187
  • McLachlan A. D. Repeated folding pattern in copper-zinc superoxide dismutase. Nature 1980; 285: 267–268
  • Gilbert W. Why genes in pieces?. Nature 1978; 271: 501
  • Gilbert W. Gene-in-pieces revisited. Science 1985; 228: 823–824
  • Craik C. S., Rutter W. J., Fletterick R. Splice junctions: association with variation in protein structure. Science 1983; 220: 1125–1129
  • Hallewell R. A., Mullenbach G. T., Stempien M. M., Bell G. I. Sequence of a cDNA coding for mouse manganese superoxide dismutase. Nucleic Acids Research 1986; 14: 9539
  • Levanon D., Lieman-Hurwitz J., Dafni N., Wigderson M., Sherman L., Bernstein Y., Laver-Rudich Z., Danciger E., Stein O., Groner Y. Architecture and anatomy of the chromosomal locus in human chromosome 21 encoding the Cu/Zn superoxide dismutase. EM BO Journal 1985; 4: 77–84
  • Malinowski D. P., Fridovich I. Chemical modification of arginine at the active site of the bovine erythrocyte superoxide dismutase. Biochemistry 1979; 18: 5909–5917
  • Sharp K., Fine R., Honig B. Computer simulations of the diffusion of a substrate to an active site of an enzyme. Science 1987; 236: 1460–1463
  • Max N. L., Getzoff E. D. Spherical harmonic molecular surfaces. IEEE Computer Graphics ond Applications 1988; 8: 42–50

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.