15
Views
39
CrossRef citations to date
0
Altmetric
Original Article

Superoxide Dismutase Therapy for Myocardial Ischemia

, , &
Pages 703-720 | Published online: 07 Jul 2009

References

  • Ambrosio G., Becker L. C., Hutchens G. M., Weisman H. F., Weisfeldt M. L. Reduction in experimental infarct size by recombinant human superoxide dismutase: insights into pathophysiology of reperfusion injury. Circulation. 1986; 74: 1424–1433
  • Baker J. E., Felix C. C., Olinger G. N., Kalyanaraman B. Myocardial ischemia and reperfusion: Direct evidence for free radical generation by electron spin resonance spectroscopy. Proceedings of the National Academy of Science USA. 1988; 85: 2786–2789
  • Bcrnier M., Hearsc J. D., Manning A. S. Reperfusion-induced arrhythmias and oxygenderived free radicals. Studies with “anti-free radical” interventions and a free radical generating system in the isolated perfused rat heat. Circulation Research. 1986; 58: 331–340
  • Bolli R. Oxygen-Derived Free Radicals and Postischemic Myocardial Dysfunction (“Stunned Myocardium”). JACC. 1988; 12(1)239–249
  • Bolli R., Patel B. S., Jeroudi M. O., Lai E. K., McCay P. B. Demonstration of Free Radical Generation in “Stunned” Myocardium of Intact Dogs with the Use of the Spin Trap alpha-Phenyl N-Tert-Butyl Nitrone. Journal of Clinical Investigation., 82: 476–485
  • Braunwald E. K., Kloner R. A. A Myocardial reperfusion: a double-edged sword?. Journal of Clinical Investigation. 1985; 76: 1713–1719
  • Campbell C. A., Alker K. J., Kloner R. A. Does dissue plasminogen activating factor reduce infarct size in an experimental model of mechanical coronary artery occlusion and reperfusion in dogs. Journal of American Colica Cardiology 1988; 11: 54A
  • Chambers D. E., Parks D. A., Patterson G., Roy R., McCord J. M., Yoshida S., Parmley L. F., Downey J. M. Xanthine oxidase as a source of free radical damage in myocardial ischemia. Journal of Molecular Cellular Cardiology 1985; 17: 145–152
  • Chambers D. E., Yellon D. M., Hearse D. J. Effects of flurbiprofen in altering the sire of myocardial infarcts in dogs: reduction or delay?. American Journal of Cardiology 1983; 51: 884–890
  • Charlat M. L., O'Neill P. G., Egan J. M., Abernathy D. R., Michael L. H., Myers M. L., Roberts R., Bolli R. Evidence for a pathogenetic role of xanthine oxidase in the “stunned” myocardium. American Journal of Physiology 1987; 252: H566–H577
  • Darius H., Yanagisawa A., Brezinski M. E., Lefer A. M. Direct cardioprotective effect of tPA in feline ischemic myocardium. Fed proc. 1986; 45: 808, (abs).
  • Downey J. M., Miura T., Eddy L. J., Chambers D. E., Mellert T., Hearse D. J., Yellon D. M. Xanthine oxidase is not a source of free radicals in the ischemic rabbit heart. Journal of Molecular Cellular Cardiology. 1987; 19: 1053–1060
  • Downey J. M., Shirato C., Miura T., Toyofuku T. Tetrazolium is unreliable as an index of drug induced salvage. Journal of Molecular Cellular Cardiolog. 1988; 20(Supp. V)S 70, abstract.
  • Elroy-Stein O., Bernstein Y., Groner T. Over production of human Cu/Zn-superoxide dismutase in transfected cells: extention of paraquat-mediated cytotoxicity and enhancemant of lipid peroxidation. EM BO Journal. 1986; 5: 615–622
  • Engler R., Gilpin E. Can superoxide dismutase alter infarct size?. Circulation. 1989; 79: 1137–1142
  • Factor S. M., Cho S., Kirk E. S. Non-specificity of triphenyl tetrazolium chloride (TTC) for the gross diagnosis of acute myocardial infarction. Circulation 1982; 66(Supp I)II-333
  • Farber N. E., Vercellotti G. M., Jacob H. S., Pieper G. M., Gross G. J. Evidence for a Role of Iron-Catalyzed Oxidants in Functional and Metabolic Stunning in the Canine Heart. Circulation Research. 1988; 63: 351–360
  • Ferrari R., Ceconi C., Curello S., Cargnoni A., Medici D. Oxygen free radicals and reperfusion injury; the effect of ischemia and reperfusion on the cellular ability to neutralise oxygen toxicity. Journal of Molecitlar Cellular Cardiology 1986; 18(sup 4)67–69
  • Fishbein M. C., Meerbaum S., Rit J., et al. Early phase acute myocardial infarct size quantification: validation of the triphenyl tetrazolium chloride staining technique. American Heart Journal. 1981; 101: 593–599
  • Fox R. B., Harada R. N., Tate R. M., Repine J. E. Prevention of Thio-urea induced pulmonary edema by hydroxyl-radical scavengers. Journal of Applied Physiology. 1983; 55: 1456–1459
  • Gardner T. J., Stewart J. R., Casale A. S., Downey J. M., Chambers D. E. Reduction of myocardial ischemic injury with oxygen derived free radical scavengers. Surgery. 1988; 94: 423–427
  • Garlick P. B., Davies M. J., Hearse D. J., Slater T. F. Direct detection of free radicals in the reperfused rat heart using electron spin resonance spectroscopy. Circulation Research. 1987; 61: 757–760
  • GISSI, Effectiveness of intravenous thrombolytic treatment in acute myocardial infarction. Lancet., 1: 402–1986, 397
  • Granger D. N., Hotlwarth M. E., Parks D. A. Ischemia reperfusion injury: role of oxygen-derived free radicals. Acta Plipiolica Scand. Supp 1986; 548: 47–63
  • Grinwald P. M. Calcium uptake during post-ischemic reperfusion in the isolated rat heart; influence of extracellular sodium. Journal of Molecular Cellular Cardiology 1982; 14: 359–365
  • Grum C. M., Gallagher K. P., Kirsh M. M., Shlafer M. Absence of detectable xanthine oxidase in human myocardium. Journal of Molecular Cellular Cardiology 1989; 21: 263–267
  • Guaduel Y., Duvelleroy M. A. Role of oxygen radicals in cardiac injury due to reoxygenation. Journal of Moleculur Cellular Cardidogy. 1984; 16: 459–470
  • Guarnieri C., Ferrari R., Visioli O., Caldarera C. M., Nayler W. G. Effect of alpha-tocoph-eral on hypoxic-perfused and reoxygenated rabbit heart muscle. Journal of Molecular Cellular Cardiology 1978; 10: 893–906
  • Hearse D. J., Humphrey S. M. Enzyme release during myocardial anoxia: a study of metabolic protection. Journal of Molecular Cellular Cardiology. 1975; 7: 463–482
  • Hearse D. J., Humphrey S. M., Chain E. B. Abrupt reoxygenation of the anoxic potassium arrested perfused rat heart: a study of myocardial enzyme release. Journal of Molecular Cellular Cardiology. 1973; 5: 395–407
  • Hearse D. J., Humohrey S. M., Nayler W. G., Slade A., Border D. Ultrastructural damage associated with reoxygenation of the anoxic myocardium. Journal of Molecular Cellular Cardiology 1975; 7: 315–324
  • Horneffer P. J., Healy B., Gott V. L., Gardner T. J. The rapid evolution of a myocardial infarction in an end-artery coronary preparation. Circulution 1987; 76: v39–v42
  • Jennings R. B., Ganote C. E. Structural changes in myocardium during acute myocardial ischemia. Circulation Research 1974; 34(sup III)iii156–iii168
  • Jennings R. B., Reimer K. A. Lethal myocardial ischemic injury. America Journal of Pathology. 1981; 102: 241–255
  • Jennings R. B., Reimer K. A. Factors involved in salvaging ischemic myocardium: effect of reperfusion of arterial blood. Circulation 1983; 68(suppl.)125–136
  • Jennings R. B., Sommers H. M., Smyth G. A., Flack H. A. Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. AMA Archives of Puthology. 1960; 70: 68–78
  • Jewett S. L., Eddy L. J., Hochstein P. Is the autoxidation of catecholamines involved in ischemia-reperfusion injury?. Free Radical Biology and Medicine 1989; 6: 323–326
  • Jolly S. R., Kane W. J., Bailie M. B., Abrams G. D., Lucchesi B. R. Canine myocardial reperfusion injury: its reduction by the combined administration of superoxide dismutase and catalase. Circulatory Research 1981; 54: 277–285
  • Karlsson K., Marklund S. L. Extracellular superoxide dismutase in the vascular system of mammals. Biochemical Journal. 1988; 255: 223–228
  • Klein H. H., Puschmann S., Schaper J., Schaper W. The mechanism of the tetrazolium reactiom in identifying myocardial infarction. Virchows Archives (Pathol. Anat.) 1981; 393: 287–297
  • Kontos H. A., Wei E. P., Ellis E. F., Jenkins L. W., Polvilshock J. T., Rowe T., Hess M. L. Appearance of superoxide anion radical in cerebral extracellular space during increased prostaglandin synthesis in cats. Circulation Research. 1985; 57: 142–115
  • del Maestro R. F., Bjork J., Arfors K. E. Increase in microvasular permiability induced by enzymatically generated free radicals. Microvascular Research. 1981; 22: 255–270
  • Manning A., Bernier M., Crome R., Little S. H., Heavse D. J. Reperfusion arrhythmias: a study of the role of xanthine oxidase-derived free radicals in the rat heart. Journal of Molecular Cellular Cardiology 1988; 20: 35–40
  • Maxwell M. P., Hearse D. J., Yellon D. M. Species variation in the coronary collateral circulation during regional myocardial ischemia: a critical determinant of the rate of evolution and extent of myocardial infarction. Cardiovascular Research 1987; 21: 737–746
  • McCord J. M. Oxygen-derived free radicals in postischemic tissue injury. New England Journal of Medicine 1985; 312: 159–163
  • McCord J. M., Roy R. S., Schaffer S. W. Free radicals and myocardial ischemia: the role of xanthine oxidase. Advances in Myocardiology. 1985; 5: 183–189
  • Mitchell J. R., Smith C. V., Hughes H., Lenz M. L., Jaeschke H., Scott S., Entman M. L. No evidence for reactive oxygen damage in ischemia-reflow injury. Transactions of the Association of American Physicians 1987; 100: 54–61
  • Miura T., Downey J. M., Hotta D., II, Iimura O. Effect of superoxide dismutase plus catalase on myocardial infarct size in rabbits. Canadian Journal of Cardiology. 1988; 4: 407–411
  • Miura T., Yellon D. M., Hearse D. J., Downey J. M. Determinants of infarct size during permanent occlusion of a coronary artery in the closed chest dog. Journal of the American College of Cardiology 1987; 9: 647–654
  • Myers C. L., Weiss S. J., Kirsh M. M., Shlafer M. Involvement of hydrogen peroxide and hydroxyl radical in the oxygen paradox: reduction of creatine kinase release by catalase, allopurinol or desferoxamine, but not by superoxide dismutase. Journal of Molecular Cellular Cardiology 1985; 17: 675–684
  • Nachlas M., Schnitka T. Macroscopic identification of early myocardial infarcts by alterations in dehydrogenase activity. American Journal of Pathology. 1963; 42: 379–406
  • Nasllund U., Haggmark S., Johansson G., Marklund S. L., Reiz S., Ogberg A. Superoxide dismutase and catalase reduce infarct size in a porcine myocardial ischemia/reperfusion model. Journal of Molecular Cellular Cardiology. 1986; 18: 1077–1084
  • Nejima J., Knight D. R., Fallon J. T., Uemura N., Mandera W. T., Canfield D. R., Cohen M. V., Vatner S. F. Superoxide dismutase reduces reperfusion arrhythmias but fails to salvage regional function or myocardium at risk in conscious dogs. Circulation. 1989; 79: 143–153
  • Nienaber C., Gottwik M., Winkler B., Shaper W. The relationship between the perfusion deficit, infarct size and time after experimental coronary occlusion. Basic Research of Cardiology. 1983; 78: 210–226
  • Przyklenk K., Kloner R. A. Superoxide dismutase plus catalase improve contractile function in the canine model of the “stunned myocardium”. Circulation Research. 1986; 58: 148–156
  • Przyklenk K., Kloner R. A. Reperfusion injury by oxygen free radicals? Effect of superoxide dismutase plus catalase, given at the time reperfusion, on myocardial infarct size, contractile function, coronary microvascular. Circulation Research. 1989; 64: 86–96
  • Reimerand K. A., Jennings R. B. The wavefront phenomenon of myocardial ischemiccell death II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Laboratory Investigation 1979; 40: 633–640
  • Reimer K. A., Lowe J. E., Rassmussen M. M., Jennings R. B. The wavefront phenomenon of ischemic cell death. I. Myocardial infarct size vs. duration of coronary occlusion in dogs. Circulation. 1977; 56: 786–794
  • Reimer K. A., Rasmussen M. M., Jennings R. B. Reduction by propranolol of myocardial necrosis following temporary coronary artery occlusion in dogs. Circulation Research. 1973; 33: 353–363
  • Schaper J., Mulch J., Winkler B., Schaper W. Ultrastructural, functional and biochemical criteria for estimation of revenibility of ischemic injury: a study on the effects of global ischemia in the isolated dog heart. Journal of Molecular Cellular Cardiology. 1979; 11: 521–541
  • Scott M. D., Meshnick S. R., Eaton J. W. Superoxide dismutase-rich bacteria. Journal of Biological Chemistry. 1987; 262: 3640–3645
  • Shirato C., Miura T., Downey J. M. Superoxide dismutase (single dose) delays rather than prevents necrosis inreperfused rabbit hearts. FASEB Journal. 1988; 2: A 918, abstract.
  • Shlafer M., Myers C. L., Adkins S. Mitochondrial hydrogen peroxide generation and activities of glutathione proxidase and superoxide dismutase following global ischemia. Journal of Molecular Cellular Cardiology. 1987; 19: 1195–1206
  • Simpson P. J., Lucchesi B. R. Free radicals and myocardial ischemia and reperfusion injury. Journal of Loboratory Clinical Investigation. 1987; 110: 13–30
  • Sunnergen K. P., Rovetto M. J. Myocyte and endothelial injury with ischemia reperfusion in isolated rat hearts. American Journal of Physiology. 1987; 252: H1211–H1217
  • Tamura Y., Chi L., Driscoll E. M., Jr., Hoff P. T., Freeman B. A., Gallagher K. P., Lucchesi B. R. Superoxide Dismutase Conjugated to Polyethylene Glycol Provides Sustained Protection Against Myocardial Ischemia/Reperfusion Injury in Canine Heart. Circulation Research 1988; 63: 944–959
  • TIMI. The thrombolysis in myocardial infarction (TIMI) trial: Phase one findings. New England Journal of Medicine. 1985; 312: 832–936
  • Uraizee A., Reimer K. A., Murry C. E., Jennings R. B. Failure of superoxide dismutase to limit infarct size of myocardial infarction after 40 minutes of ischemia and 4 days of reperfusion in dogs. Circulation 1987; 15: 1237–1248
  • Vander Heide R. S., Sobotka P. A., Ganote C. E. Effect of free radical scavenger DMTU and Mannitol on the oxygen paradox in perfused rat hearts. Journal of Molecular Cellular Cardiology. 1987; 19: 615–625
  • Werns S. W., Shea M. J., Driscoll E. M., Cohen C., Abrams G. D., Pitt B., Lucchesi B. R. The independent effects of oxygen radical scavengers on canine infarct size reduction by superoxide dismutase and not catalax. Circulation Research. 1985; 56: 895–898
  • Werns S. W., Simpson P. J., Mickelson J. K., Shea M. J., Pitt B., Lucchesi B. R. Sustained limitation by superoxide dismutase of canine myocardial injury due to regional ischemia followed by reperfusion. Journal of Cardiovascular Pharmacology 1988; 11: 36–44
  • Zweier J. L. Measurement of Superoxide-derived Free Radicals in the Reperfused Heart. The Journal of Biologicol Chemistry. 1988; 263(3)1353–1357
  • Zweier J. L., Rayburn B. K., Flaherty J. T., Weisfeldt M. L. Recombinant Superoxide Dismutax Reduces Oxygen Free Radical Concentrations in Reperfused Myocardium. The Journal of Clinical Investigation. 1987; 80(6)1728–1734

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.