35
Views
23
CrossRef citations to date
0
Altmetric
Original Article

Ischemia and Reperfusion: Effect of Fructose-1,6-Bisphosphate

, , &
Pages 325-339 | Received 31 Jan 1992, Accepted 01 Mar 1992, Published online: 07 Jul 2009

References

  • Humphrey S.M., Cartner A., Hollis D.G. Critical early metabolic change associated with myocardial recovery or failure after total ischemia in the rat heart. Basic Research in Cardiology 1987; 82: 304–316
  • Humphrey S.M., Hollis D.G., Seelye R.N. Myocardial adenine pool and recovery of mechanical function following ischemia. American Journal of Physiology 1985; 248: H644–H651
  • Fenchel G., Storf R., Michel J., Hoffmeister H.E. Relationship between the high-energy phosphate content and various left ventricular functional parameters of the normal and hyper-trophied heart after global ischemia and reperfusion. Journal of Thoracic Cardiovascular Surgery 1988; 36: 75–79
  • Carpenter J.F., Hand S.C. Reversible dissociation and inactivation of phosphofructokinase in the ischemic rat heart. American Journal of Physiology 1986; 250: R512–R518
  • Rovetto M.J., Camberton W.F., Neely J.R. Mechanism of glycolytic inhibition in ischaemic rat hearts. Circulation Research 1975; 37: 742–751
  • Lazzarino G., Nuutinen E.M., Tavazzi B., Cerroni L., Di Pierro D., Giardina B. Preserving effect of fructose-1,6-bisphosphate on high-energy phosphate compounds during anoxia and reperfusion in isolated Langendorff-perfused rat hearts. Journal of Molecular and Cellular Cardiology 1991; 23: 13–23
  • Klein H.H., Schaper J., Puschmann S., Nienaber C., Kreuzer H., Schaper W. Loss of canine myocardial nicotinamide adenine nucleotides determines the transition from reversible to irreversible ischemic damage of myocardial cells. Basic Research in Cardiology 1981; 76: 612–621
  • Olsson R.A., Saito D., Steinhart C.R. Compartmentalization of the adenosine pool of dog and rat hearts. Circulation Research 1982; 50: 617–626
  • Bunger R., Soboll S. Cystosolic and adenylates and adenosine release in perfused working heart. European Journal of Biochemistry 1986; 159: 203–213
  • Foker J.E., Einzig S., Tingchung W. Adenosine metabolism and myocardial preservation. Journal of Thoracic Cardiovascular Surgery 1980; 80: 506–516
  • Vary T.C., Angelakos E.T., Schaffer S.W. Relationship between adenine nucleotide metabolism and irreversible ischemic tissue damage in isolated perfused rat heart. Circulation Research 1979; 45: 218–225
  • Hearse D.J. Reperfusion of the ischemic myocardium. Clinical Research Review 1984; 4: 58–61
  • Takeo S., Sakanashi M. Possible mechanisms for reoxygenation-induced recovery of myocardial high-energy phosphate after hypoxia. Journal of Molecular and Cellular Cardiology 1983; 15: 577–594
  • Granger D.N., Hollwarth N.E., Parks D.A. Ischemia-reperfusion injury: role of oxygen-derived free radicals. Acta Physiologica Scandinavica suppl 1986; 548: 47–63
  • McCord J.M. Oxygen-derived free radicals in postischemic tissue injury. New England Journal of Medicine, 312: 159–163
  • Engerson T.D., McKelvey T.G., Rhyne D.B., Boggio E.B., Snyder S.J., Jones H.P. Conversion of xanthine dehydrogenase to oxidase in ischemic rat tissues. Journal of Clinical Investigation 1987; 79: 1564–1570
  • Zweier J.L., Kuppusamy P., Lutty G.A. Measurement of endothelial cell free radical generation: evidence for a central mechanism of free radical injury in postischemic tissues. Proceeding of the National Academy of Science USA 1988; 85: 4046–4050
  • Ganote C.E., Liu S.Y., Safavi S., Kaltenbach J.P. Anoxia, calcium and contracture as mediators of myocardial enzyme release. Journal of Molecular and Cellular Cardiology 1981; 13: 93–106
  • Ruigrok T.J.C., Boink A.B.T.J., Spies F., Blok F.J., Maas A.H.J., Zimmermann A.N.E. Energy dependence of the calcium paradox. Journal of Molecular and Cellular Cardiology 1978; 10: 991–1002
  • Kehrer J.P. Concepts related to the study of reactive oxygen and cardiac reperfusion injury. Free Radical Research Communications 1989; 5: 305–314
  • Green C.J., Gower J.D., Healing G., Cotterill L.A., Fuller B.J., Simpkin S. The importance of iron, calcium and free radicals in reperfusion injury: an overview of studies in ischaemic rabbit kidneys. Free Radical Research Communications 1989; 7: 255–264
  • Chambers D.E., Parks D.A., Patterson G., Roy R., McCord J.M., Yoshida S., Parmley L.F., Downey J.M. Xanthine oxidase as a source of free radical damage in myocardial ischemia. Journal of Molecular and Cellular Cardiology 1985; 17: 145–152
  • Hearse D.J., Manning A.S., Downey J.M., Yellon D.M. Xanthine oxidase: a critical mediator of myocardial injury during ischemia and reperfusion?. Acta Physiologica Scandinavica suppl. 1986; 548: 65–78
  • Gaudeul J., Duvelleroy N.A. Role of oxygen radical in cardiac injury due to reoxygenation. Journal of Molecular and Cellular Cardiology 1984; 16: 459–470
  • Keherer J.P., Piper H.M., Sies H. Xanthine oxidase is not responsible for reoxygenation injury in isolated-perfused rat heart. Free Radical Research Communications 1987; 3: 69–78
  • Bindoli A., Cavallini L., Rigobello M.P., Coassin M.G., Di Lisa F. Modification of the xanthine-converting enzyme of perfused rat heart during ischemia and oxidative stress. Free Radical in Biology & Medicine 1988; 4: 163–167
  • Tavazzi B., Cerroni L., Di Pierro D., Lazzarino G., Nuutinen E.M., Starnes J.W., Giardina B. Oxygen radical injury and loss of high-energy compounds in anoxic and reperfused rat heart: prevention by exogenous fructose-1,6-bisphosphate. Free Radical Research Communications 1990; 10: 167–176
  • Thompson-Gorman S.L., Zweier J.L. Evaluation of the role of xanthine oxidase in myocardial reperfusion injury. Journal of Biological Chemistry 1990; 265: 6656–6663
  • Roth E., Torok B., Zsoldos T., Matkovics B. Lipid peroxidation and scavenger mechanism in experimentally induced heart infarcts. Basic Research in Cardiology 1985; 80: 530–536
  • Rao P.S., Cohen M.V., Mueller H.S. Production of free radicals and lipid peroxides in early experimental myocardial ischemia. Journal of Molecular and Cellular Cardiology 1983; 15: 713–716
  • Garlick P.B., Davies M.J., Hearse D.J., Slater T.F. Direct detection of free-radicals in the reperfused rat heart using electron spin resonance spectroscopy. Circulation Research 1987; 61: 757–760
  • Zweier J.L. Measurement of superoxide-derived free radicals in the reperfused heart. Evidence for a free radical mechanism of reperfusion injury. Journal of Biological Chemistry 1988; 263: 1353–1357
  • Pietri S., Culcasi M., Cozzone P.J. Real-time continuous-flow spin trapping of hydroxyl free radical in the ischemic and postischemic myocardium. European Journal of Biochemistry 1989; 186: 163–173
  • Ambrosio G., Becker L.C., Hutchins G.M., Weisman H.F., Weisfedlt M.L. Reduction in experimental infarct size by recombinant human superoxide dismutase: insights into the pathophysiology of reperfusion injury. Circulation 1986; 74: 1424–1432
  • Ambrosio G., Weisfeldt M.L., Jacobus W.E., Flahery J.T. Evidence of a reversible oxygen radical and mediated component of reperfusion injury: reduction by recombinant human superoxide dismutase administered at the time of reflow. Circulation 1988; 75: 282–287
  • Zweier J.L., Rayburn B.K., Flaherty J.T., Weisfeldt M.L. Recombinant superoxide dismutase reduces oxygen free radical concentrations in reperfused myocardium. Journal of Clinical Investigation 1987; 80: 1728–1734
  • Flaherty J.T., Weisfeldt M.L. Reperfusion injury. Free Radical in Biology and Medicine 1988; 5: 409–419
  • Jolly S.R., Kane W.J., Bailie M.B., Abrams G.D., Lucchesi BR. Canine myocardial reperfusion injury. Its reduction by combined administration of superoxide dismutase and catalase. Circulation Research 1984; 54: 277–282
  • Nakamura T., Hishiuma I. Protective effect of tocoferol on the formation of TBA-reactive materials in rat liver. Tocoferol, Oxygen and Biomembranes, C. de Duve, O. Hayaishi. Elsevier/North-Holland Biomedical Press, Amsterdam 1978; 95–108
  • Tappel A.L. Vitamin E and selenium protection from in vivo lipid peroxidation. Annual of New York Academy of Science 1980; 355: 18–31
  • Jarasche E.D., Bruder G., Heid H.V. Significance of xanthine oxidase in capillary endothelial cells. Acta Physiological Scandinavica suppl. 1986; 548: 39–46
  • Arnold W.L., DeWall R.A., Kezdi P., Zwart H.H. The effect of allopurinol on the degree of early myocardial ischemia. American Heart Journal 1980; 99: 614–620
  • DeWall R.A., Vasko K.A., Stanley E.L., Kezdi P. Responses of the ischemic myocardium to allopurinol. American Heart Journal 1971; 82: 362–369
  • Wexler B.D., McMurtry J.P. Allopurinol amelioration of the pathophysiology of acute myocardial infarction in rats. Atherosclerosis 1971; 39: 71–77
  • Schinetti M.L., Lazzarino G. Inhibition of phorbol ester-stimulated chemiluminescence and superoxide production in human neutrophils by fructose-1,6-diphosphate. Biochemical Pharmacology 1986; 35: 1762–1764
  • Markov A.K., Finch CD., Hellems H.K. Prevention of superoxide generation and inhibition of oxygen burst in human and canine neutrophils with fructose-1,6-diphosphate (FDP). Microcirculation - An Update, T. Masaharu, A. Makishige, M. Yoshio, O. Masaya. Excerpta Medica, Amsterdam 1987; Vol. 1: 691–696
  • Schinetti M.L., Greco R., Lazzarino G., Soldani G., Bertelli A. Mast cell histamine release induced by doxorubicin and the inhibitory effect of fructose-1,6-diphosphate. Arzneimittel-Forschung/ Drug Research 1983; 33: 834–836
  • Lazzarino G., Viola A.R., Mulieri L., Rotilio G., Mavelli I. Prevention by fructose-1,6-bisphosphate of cardiac oxidative damage induced in mice by subchronic doxorubicin treatment. Cancer Research 1987; 47: 6511–6516
  • Bernardini N., Danesi R., Bernardini M.C., Del Tacca M. Fructose-1,6-diphosphate reduces acute ECG changes due to doxorubicin in isolated rat heart. Experientia 1988; 44: 1000–1002
  • Danesi R., Bernardini N., Marchetti A., Bernardini M., Del Tacca M. Protective effects of fructose-1,6-diphosphate on acute and chronic doxorubicin cardiotoxicity in rats. Cancer Chemotherapy and Pharmacology 1990; 25: 326–332
  • Rao S.B., Mehendale H.M. Protective role of fructose-1,6-bisphosphate during CC14 hepatotoxicity in rats. Biochemical Journal 1989; 262: 721–725
  • Gregory G.A., Yu A.C.H., Chan P.H. Fructose-1,6-bisphosphate protects astrocytes from hypoxic damage. Journal of Cerebral Blood Flow and Metabolism 1989; 9: 29–34
  • Farias L.A., Smith E.E., Markov A.K. Prevention of ischemic-hypoxic brain injury and death in rabbits with fructose-1,6-diphosphate. Stroke 1990; 21: 606–613
  • Markov A.K., Oglethorpe N.C., Blake T.M., Lehan P.H., Hellems H.K. Hemodynamic, electrocardiographic, and metabolic effects of fructose diphosphate on acute myocardial ischemia. American Heart Journal 1990; 100: 639–646
  • Markov A.K., Fletcher J.A., Lehan P.H. Reduction of mortality and myocardial ischemia reperfusion injury with fructose-1,6-diphosphate (FDP). Journal of American College of Cardiology 1986; 7: 167A
  • Eddy L.J., Chambers D., Honig S., Downey J.M. Lack of a direct metabolic effect of fructose-1,6-diphosphate in ischemic myocardium. American Journal of Physiology 1981; 241: H576–H582
  • Merli M., Bergui G., Cattani C., Berti F., Marchetti M. Recovery of post-arrest cardiac performance: effect of fructose-1,6-diphosphate in the isolated rabbit heart. European Review for Medical Pharmacological Sciences 1985; 11: 175–182
  • Bricknell O.L., Daries P.S., Opie L.H. A relationship between adenosine triphosphate, glycolysis and ischemic contracture in the isolated rat heart. Journal of Molecular and Cellular Cardiology 1981; 13: 941–945
  • Apstein C.S., Decklebaum L., Hogopian L., Hood W.B., Jr. Acute cardiac ischemia and reperfusion: relaxation and glycolysis. American Journal of Physiology 1978; 236: H637–H648
  • Bricknell O.L., Opie L.H. Effect of substrates on tissue metabolic changes in isolated rat heart during underperfusion and on release of lactate dehydrogenase and arrythmias during reperfusion. Circulation Research 1978; 43: 102–115
  • Hearse D.J., Chain E.B. The role of glucose in the survival and “recovery” of the anoxic isolated perfused rat heart. Biochemical Journal 1972; 128: 1125–1133
  • Carlsson L. A crucial role of ongoing anaerobic glycolysis in attenuating acute ischemia-induced release of myocardial noradrenaline. Journal of Molecular and Cellular Cardiology 1988; 20: 247–253
  • Marchionni N., Conti A., De Alfieri W., Di Bari M., Ferrucci L., Lombardi A., Moschi G., Pini R., Vannucci A. Hemodynamic and electrocardiographic effects of fructose-1,6-diphosphate in acute myocardial infarction. American Journal of Cardiology 1985; 56: 266–269
  • Pasotti C., Nicrosini S., Fiori G. Impiego del fruttosio-1,6-difosfato in pazienti con cardiopatia ischemica cronica. Studio ecocardiografico. European Review for Medical Pharmacological Science 1989; 11: 315–320
  • Lureti F.G., Poggi Longostrevi G. Miglioramento deila prestazione muscolare dopo fruttosio-1,6-difosfato in pazienti affetti da cardiopatia ischemica. European Review for Medical Pharmacological Science 1988; 10: 479–485
  • Grandi A.M., Muggia C., Barzizza F., Venco A., Finardi G. Improved left ventricular function after short-term treatment with fructose-1,6-diphosphate: echocardiographic study in chronic ischemic heart disease and idiopathic dilated cardiomyopathy. Clinical Therapy 1988; 10: 372–380
  • Pieri P., Moscatelli G., Acito P. A radionuclide cineangiographic study of the effects of fructose-1,6-diphosphate in patients with impaired left ventricular function. Advance in Therapy 1989; 6: 39–45
  • Malusardi R., Oddone A., Orlandi M., Manzi G. II fruttosio-1,6-difosfato (FDP) nell' ischemia miocardica transitoria indotta de pacing atriale. Minerva Cardioangiologica 1988; 36: 439–444
  • Marchionni N., Moschi G., Di Bari M., Ferrucci L., Paoletti M., Salani B., Fattirolli F. Improved exercise tolerance by IV fructose-1,6-diphosphate in chronic, stable angina pectoris. Journal of Clinical Pharmacology 1988; 28: 807–811
  • Korte I., Hockwin O., Kaskel D. Utilization of fructose-1,6-diphosphate as glycolytic substrate in bovine lens homogenates. Documents of Ophthalmology Proceeding Series 1978; 18: 163–173
  • Cheng H-M., Chylack L.T., Von Saltza I. Supplementing glucose metabolism in human senile cataracts. Investigation of Ophthalmological Vision Sciences 1981; 21: 812–818
  • Nuutinen M.E., Lazzarino G., Giardina B., Hassinen I.E. Effect of exogenous fructose-1,6-bisphosphate on glycolysis in the isolated perfused rat heart. American Heart Journal 1991; 2: 523–527
  • Hassinen I.E., Nuutinen M.E., Ito K., Nioka S., Lazzarino G., Giardina B., Chance B. Mechanism of the effect of exogenous fructose-1,6-bisphosphate on myocardial energy metabolism. Circulation 1991; 83: 584–593
  • Starnes J.W., Seiler K.S., Bowles D.K., Giardina B., Lazzarino G. Fructose-1,6-bisphosphate improves efficiency of work in the isolated perfused rat heart. American Journal of Physiology 1991, (in press)
  • Tavazzi B., Starnes J.W., Lazzarino G., Di Pierro D., Nuutinen E.M., Giardina B. Exogenous fructose-1,6-bisphosphate is a metabolizable substrate for the isolated normoxic rat heart. Basic Research in Cardiology, (in press)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.