37
Views
36
CrossRef citations to date
0
Altmetric
Original Article

Commentary: Oxygen Radicals, A Failure Or A Success of Evolution?

Pages 63-70 | Received 01 Jun 1992, Accepted 09 Nov 1992, Published online: 07 Jul 2009

References

  • McCord J. M. Oxygen derived free radicals in postischemic tisue injury. New England Journal of Medicine 1985; 312: 159–163
  • Flohé L. Superoxide dismutase for therapeutic use: Clinical experience, dead ends and hopes. Molecular and Cellular Biochemistry 1988; 84: 123–131
  • Cerutti P. A. Prooxidant states and tumor promotion. Science 1985; 277: 375–381
  • Bandy B., Davison A. J. Mitochondrial mutations may increase oxidative stress: implications for carcinogenesis and aging?. Free Raadical Biology and Medicine 1990; 8: 523–539
  • Steinbrecher U. P., Zang H., Lougheed M. Role of oxidatively modified LDL in atherosclerosis. Free Radical Biology & Medicine 1990; 9: 155–168
  • Adams J. D., Odunze I. N. Oxygen free radicals and Parkinson's disease. Free Radical Biology and Medicine 1991; 10: 161–169
  • Boveris A., Cadenas E., Stoppani A. O.M. Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochemical Journal 1976; 156: 435–444
  • Turrens J. F., Freeman B. A., Crapo J. A. Hyperoxia increases H2O2 release by lung mitochondria and microsomes. Archives of Biochemistry and Biophysics 1982; 217: 411–421
  • Chance B. The reaction of oxygen with cytochrome oxidase: The role of sequestered intermediates. Oxygen and Living Processes: an interdisciplinary approach, D. L. Gilbert. Springer-Verlag, New York 1981; 200–209
  • Halliwell B. Free radicals, oxygen toxicity and aging. Age pigments, R. S. Sohal. Elsevier, North Holland Biomedical Press: Elsevier. 1981; 1–62
  • Halliwell B., Gutteridge J. M.C. Free Radicals as useful species. Free Radicals in Biology and Medicine, B. Halliwell, J. M.C. Gutteridge. Oxford University Press, Oxford 1989; 366–415
  • Fried R., Fried L. W. Biological role of xanthine oxidase and tetrazolium reductase inhibitor. European Journal of Biochemistry 1973; 33: 439–445
  • Williams R. J.P. The necessary and the desirable production of radicals in biology. Philosophical Transactions of the Royal Society of London 1985; 311: 593–603
  • Haddox M. K., Stephenson J. H., Moser M. E., Goldberg N. E. Oxidative-reductive modulation of guinea pig splenic cell guanylate cyclase. Journal of Biological Chemistry 1978; 253: 3143–3152
  • Vesely D. L., Watson B., Levey G. S. Activation of liver guanylate cyclase by paraquat. Possible role of superoxide ion. Journal of Pharmacology and Experimental Therapeutics 1979; 209: 162–164
  • White A. A., Karr D. B., Patt C. S. Role of lipooxygenase in the O2-dependent activation of soluble guanylate cyclase from rat lung. Biochemical Journal 1982; 204: 383–393
  • Mittal C. K., Murad F. Activation of guanylate cyclase by superoxide dismutase ad hydroxyl radical: A physiological regulation of guanosinc 3′-5′-monophosphate formation. Proceedings of the National Academy of Sciences, USA 1977; 74: 4360–4364
  • White A. A., Crawford K. M., Patt C. S., Lad P. J. Activation of soluble guanylate cyclase from rat lung by incubation or by hydrogen peroxide. Journal of Biological Chemistry 1976; 251: 7304–7312
  • Burje T. M., Wolin M. S. Hydrogen peroxide elicits pulmonary arterial relaxation and guanylate cyclase activation. American Journal of Physiology 1987; 252: H721–H732
  • Burke T. M., Wolin M. S. H2O2 and cGMP may function as an O2 sensor in the pulmonary artery. Journal of Applied Physiology 1989; 66: 167–170
  • Maria Santa C., Revilla E., Fabregat I., Machado A. Hyperoxia and aging increase the guanylate cyclase activity of the rat lung. Age 1989; 12: 1–5
  • Cherry P. D., Wolin M. S. Ascorbate activates soluble guanylate cyclase via H2O2-metabolism by catalase. Free Radical Biology and Medicine 1989; 7: 485–490
  • Fontecave M., Graslund A., Reichard P. The function of superoxide dismutase during the enzymatic formation of the free radical of rubonucleotide reductase. Journal of Biological Chemistry 1987; 262: 12332–12337
  • Reichard P., Ehrenberg A. Ribonucleotide reductase a radical enzyme. Science 1983; 221: 514–519
  • Gryglewsky R. J., Palmer R. M.J., Moncada S. superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 1986; 320: 454–456
  • Beckman J. S. The double edged role of nitric oxide in brain function and superoxide mediated injury. Journal of Developmental Physiology 1991; 15: 53–59
  • Radi R., Beckman J. S., Bush K. M., Freeman B. A. Peroxynitrite oxidation of sulfhydrils: the cytotoxic potential of superoxide and nitric oxide. Journal of Biological Chemistry 1991; 226: 4244–4250
  • Radi R., Beckman J. S., Bush K. M., Freeman B. A. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Archives of Biochemistry and Biophysics 1991; 280: 481–487
  • Bellavite P. The superoxide-forming enzymatic system of phagocytes. Free Radical Biology and Medicine 1988; 4: 225–261
  • Ward P., Warren J. S., Johnson K. J. Oxygen radicals, inflammation, and tissue injury. Free Radical Biology and Medicine 1988; 5: 403–408
  • Morcl F., Doussiere J., Vignais P. V. The superoxide-generating oxidase of phagocytic cells. Physiological, molecular and pathological aspects. European Journal of Biochemistry 1991; 201: 523–546
  • May J. M., Häen C. The insulin-like effect of hydrogen peroxide on pathways of lipid synthesis in rat adipocytes. Journal of Biological Chemistry 1979; 254: 9017–9021
  • Muchmore D. B., Little S. A., de Häen C. Counter-regulatory control of intracellular hydrogen peroxide production by insulin and lipolytic hormones in isolated rat epididymal fat cells: a role of free fatty acids. Biochemistry 1982; 21: 3886–3892
  • Mukherjee S. P., Mukherjee C. Similar activities of nerve growth factor and its homologue proinsulin in intracellular hydrogen peroxide production and metabolism in adipocytes. Biochemical Pharmacology 1982; 31: 3163–3172
  • Hayes G. R., Lockwood D. H. Role of insulin receptor phosphorylation in the insulinomimetic effects of hydrogen peroxide. Proceedings of the National Academy of Sciences, USA 1987; 84: 8115–8119
  • Rush D. N., McKenna R. M., Walker S. M., Bakkestad-Legare P., Jeffrey J. R. Catalase increases lymphocyte proliferation in mixed lymphocyte culture. Transplantation Proceedings 1988; 20: 1271–1273
  • Hancock J. T., Maly F. E., Jones O. T. Properties of the superoxide-generating oxidase of B-lymphocyte cell lines. Determination of Michaelis parameters. Biochemical Journal 1989; 262: 373–375
  • Maly F. E., Nakamura M., Gauchat J. F., Urwyler A., Walker C., Dahinden C. A., Cross A. R., Jones O. T., de Week A. L. Superoxide-dependent nitroblue tetrazolium reduction and expression of cytochrome b-245 components by human tonsillar B lymphocytes and B cell lines. Journal of Immunology 1989; 142: 1260–1267
  • Jones O. T., Hancock J. T., Henderson L. M. Oxygen radical production by transformed B lymphocytes. Molecular Aspects in Medicine 1991; 12: 87–92
  • Chiara M. D., Foot A. B., Sobrino F., Jones O. T. Differential effect of cyclosporine A on respiratory burst by several types of human leukocytic cells. Biochemistry International 1991; 23: 1185–1193
  • Meier B., Radeneke H. H., Selle S., Younes M., Sies H. Human fibroblasts release reactive oxygen species in response to interleukin-1 or tumor necrosis factor-alpha. Biochemical Journal 1989; 263: 539–545
  • Meier B., Radeke H. H., Selle S. Human fibroblasts release low amounts of reactive oxygen species in response to the potent phagocyte stimulants, serum-treated zymosan, N-formyl-methyionyl-leucyl-phenylalanine, leukolriene B4 or 12-O-tetradecanoylphorbol 13-acetate. Biological Chemistry Hoppe Seyler. 1990; 371: 1021–1025
  • Meier B., Cross A. R., Hancock J. T., Kaup F. J., Jones O. T. Identification of superoxide-generating NADPH oxidase system in human fibroblasts. Biochemical Journal 1991; 275: 241–245
  • Radeke H. H., Cross A. R., Hancock J. T., Jones O. T. Functional expression of NADPH oxidase comonents (alpha- and beta-subunits of cytochrome b558 and 45-kDa flavoprotein by intrinsic human glomerular mesangial cells. Journal of Biological Chemistry 1991; 266: 21025–21029
  • Deme D., Virion A., Hammou N. A., Pommier J. NADPH-dependent generation of H2O2 in a thyroid particulate fraction requires Ca2+. FEBS Letters 1985; 186: 107–110
  • Nakamura Y., Ohtaki S. Extracellular ATP-induced production of hydrogen peroxide in porcine thyroid cells. Journal of Endocrinology 1989; 126: 283–287
  • Dix T. A., Kuhn D. M., Benkovic S. J. Mechanism of oxygen activation by thyroxine hydroxylase. Biochemistry 1987; 26: 3354–3361
  • Egan R. W., Gale P. H., Kuehl F. A. Reduction of hydroperoxides in the prostaglandin biosynthetic pathway by a microsomal peroxidase. Journal of Biological Chemistry 1979; 251: 3295–3302
  • Carpenter M. P. Antioxidant effects on the prostaglandin endoperoxide synthetase product profile. Federation Proceedings 1981; 40: 189–194
  • Wharton A. R., Montgomery M. E., Kent R. S. Effect of hydrogen peroxide on prostaglandin production and cellular integrity in cultured porcine arotic endothelial cells. Journal of Clinical Investigation 1985; 76: 295–302
  • Choi J.-H., Yu B. P. Unsuitability of TBA test as a lipid peroxidation marker due to prostaglandin synthesis in the aging kidney. Age 1990; 13: 61–64
  • Samuelsson B., Dahlén S.-E., Lindgren J. A., Rouzer C. A., Serhan C. N. Leukotrienes and lipoxins: structures, biosynthesis and biological effects. Science 1987; 237: 1171–1176
  • Sohal R. S., Allen R. G. Relationship between oxygen metabolism, aging and development. Advances in Free Radical Biology and Medicine 1986; 2: 117–160
  • Allen R. G., Balin A. K. Oxidative influence on development and differentiation: an overview of a free radical theory of development. Free Radical Biology and Medicine 1989; 6: 631–661
  • Ames B. N. Endogenous oxidative DNA damage, aging, and cancer. Free Radical Research Communications 1989; 7: 121–128
  • Piruzian L. A., Aristarkov V. M. Participation of free radicals in membrane potential generation. Izvestia Akademia Nauka SSSR [Biologia] 1971; 5: 697–703
  • Morre D. J., Crane F. L., Sun I. L., Navas P. The role of ascorbate in biomembrane energetics. Annals of the New York Academy of Sciences 1987; 498: 153–171
  • Scott J. A., Rabito C. A. Oxygen radicals and plasma membrane potential. Free Radical Biology and Medicine 1988; 5: 237–246
  • Kanabus-Kaminska J. M., Girardot J. M. Inhibition of vitamin-K-dependent carboxylates by metal ions and metal complexes: a reassessment. Archives of Biochemistry and Biophycis 1984; 228: 646–652
  • Handin R. I., Karabin R., Boxer G. J. Enhancement of platelet function by superoxide. Journal of Clinical Investigation 1977; 59: 959–965
  • Marcus A. J. Superoxide production and reducing activity in human platelets. Journal of Clinical Investigation 1977; 59: 149–158
  • Guengerich F. P. Cytochromes P-450. Comparative Biochemistry and Physiology 1988; 89C: 1–4
  • Sevanian A., Nordenbrand K., Kim E., Ernster L., Hochstein P. Microsomal lipid peroxidation: the role of NADPH-cytochrome P450 reductase and cytochrome P450. Free Radical Biology Medicine 1990; 8: 145–152
  • Holme E. Does superoxide anion participate in 2-oxoglutarate-dependent hydroxylation?. Biochemical Journal 1982; 205: 339–345
  • Dillard C. J., Litov R. E., Savin W. M., Dumelin E. E., Tappel A. L. Effects of exercise, vitamin E, and ozone on pulmonary function and lipid peroxidation. Journal of Applied Physiology 1978; 45: 927–932
  • Davies J. K.A., Quintanilha A. T., Brooks G. A., Packer L. Free radicals and tissue damage produced by exercise. Biochemical and Biophysical Research Communications 1982; 107: 1198–1205
  • Jackson M. J., Edwards R. H.T., Symons M. C.R. Electron spin resonance studies of intact mammalian skeletal muscle. Biochimica et Biophysica Acta 1985; 847: 185–190
  • Alessio H. M., Goldfarb A. H. Lipid peroxidation and scavenger enzymes during exercise:adaptive response to training. Journal of Applied Physiology 1988; 64: 1333–1336
  • Ramasarma T. Generation of H2O2 in biomembranes. Biochimica et Biophysica Acta 1982; 694: 69–93
  • Sekhar B. S., Kurup C. K.R., Ramasarma T. Microsomal redox systems in brown adipose tissue: high lipid peroxidation, low cholesterol biosynthesis and no detectable cytochrome P-450. Molecular and Cellular Biochemistry 1990; 92: 147–157
  • Barja de Quiroga G., Lopez-Tones M., Perez-Campo R., Abelenda M., Nava M. P., Puerta M. L. Effect of cold acclimation on GSH, antioxidant enzymes and lipid peroxidation in brown adipose tissue. Biochemical Journal 1991; 277: 289–292
  • Buzadzic B., Spacis M., Saicic Z. S., Radojicic R., Petrovic V. M., Halliwell B. Antioxidant defenses in the ground squirrel Citellus citellus 2 The effect of hibernation. Free Radical Biology and Medicine 1990; 9: 407–413
  • Foerder C. A., Klebanoff S. J., Shapiro B. M. Hydrogen peroxide production, chemiluminescence and the respiratory burst of fertilisation. Interrelated events in early sea urchin development. Proceedings of the National Academy of Sciences USA 1978; 75: 3183–3187
  • Shapiro B. M. The control of oxidant stress at fertilization. Science 1991; 252: 533–536
  • Henry J. P., Monny C., Michelson A. M. Characterization and properties of Pholas luciferase as a metalloglycoprotein. Biochemistry 1975; 14: 3458–3466
  • Aneshansley D. J. Thermal concomitants and biochemistry of the explosive discharge mechanism of some little known bombardier beetles. Experientia 1983; 39: 366–368
  • Galliard T. Lipolytic and lipoxygenase enzymes in plants and their action in wounded tissue. Biochemistry of wounded plant tissues, G. Kahl. Walter de Gruyter, Berlin 1978; 155–201
  • Konze J. R., Elstner E. F. Ethane and ethylene formation by mitochondria as indication of aerobic lipid degradation in response to wounding of plant tissues. Biochimica el Biophysica Acta 1978; 528: 213–221
  • Thompson J. E., Legge R. L., Barber R. F. The role of free radicals in senescence and wounding. News in Phytology 1987; 105: 317–344
  • Halliwell B. Lignin synthesis: the generation of hydrogen peroxide and superoxide by horseradish peroxidase and its stimulation by manganese (II) and phenols. Planta 1978; 140: 81–88
  • Docampo R., Moreno S. N.J., Mason R. P. Free radical intermediates in the reaction of pyruvate-ferredoxin oxidoreductase in Trichomonas foetus hydrogenosomes. Journal of Biological Chemistry 1987; 262: 12417–12421
  • Kerscher L., Oesterhelt D. Pyruvate: ferrodoxin oxireductase-new findings on an ancient enzyme. Trends in Biochemical Sciences 1982; 7: 371–375

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.