19
Views
6
CrossRef citations to date
0
Altmetric
Original Article

Reaction of Bromotrichloromethane Derived Free Radicals with Uracil in a Model System. Structures of Products Formed

, &
Pages 431-442 | Received 29 Nov 1994, Published online: 07 Jul 2009

References

  • Recknagel R. O., Glende E. A. The carbon tetrachloride hepatotoxicity model: Free radicals and calcium homeostasis. Handbook of free radicals and antioxidants in biomedicine, J Miquel, A Quintanilla, H Weber. CRC Press, Boca Raton 1989; vol III: 3–16
  • Slater T. F. Free radical mechanisms in tissue injury. Biochemical Journal 1984; 222: 1–15
  • Castro J. A. Mechanistical studies and prevention of free radical cell injury. Proc IUPHAR 9th lntl Congress Pharmacol. Mac Millan Press Ltd, London 1984; vol 2: 243–250
  • Dianzani M. U. Free radicals in physiology and pathology. Bolletino della Societa Italiana di Biologia Sperimen tale 1992; 68: 491–511
  • Castro J. A. Prevention of chemically induced liver injury. Toxic interactions, R Goldstein, W Hewitt, J B Hook. Academic Press, New York 1990; 233–256
  • Recknagel R. O., Glende E. A., Dolak J. A., Waller R. L. Mechanism of carbon tetrachloride toxicity. Pharmacology and Therapeutics 1989; 43: 139–154
  • Plaa G. L., Witschi H. Chemicals, drugs and lipid peroxidation. Annual Review of Pharmacology and Toxicology 1976; 16: 125–141
  • Comporti M. Biology of disease: lipid peroxidation and cellular damage in toxic liver injury. Laboratory Investigation 1985; 53: 599–623
  • Horton A. A., Fairhurst S. Lipid peroxidation and mechanisms of toxicity. Critical Reviews in Toxicology 1987; 18: 28–79
  • Comporti M. Three models of free radical-induced cell injury. Chemico Biological Interactions 1989; 72: 1–56
  • Kappus H. Lipid peroxidation: Mechanisms, analysis, enzymology and biological relevance. Oxidative stress, H Sies. Academic Press, London 1989; 274–309
  • Esterbauer H., Schaur R. J., Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes. Free Radical Biology and Medicine 1991; 11: 81–128
  • Nicotera P., Orrenius S. Ca2+ and cell death. Annals of the New York Academy of Sciences 1992; 648: 17–27
  • Connor H. D., Lacagnin L. B., Knecht K. T., Thurman R. G., Mason R. P. Reaction of glutathione with a free radical metabolite of carbon tetrachloride. Molecular Pharmacology 1990; 37: 443–451
  • Osawa Y., Martin B. M., Griffin P. R., Yates J. R., Shabanowity J. H., Murphy A. C., Chen L., Cotter R. J., Pohl L. Metabolism-based covalent binding of the hemeprosthetic group to its apoprotein during the reductive debromination of BrCCb by myoglobin. Journal of Biological Chemistry 1990; 265: 10340–10346
  • Osawa Y., Darbyshire J. F., Steinbach P. J., Brooks B. R. Metabolism based transformation of myoglobin to an oxidase by BrCCb and molecular modeling of the oxidase form. Journal of Biological Chemistry 1993; 268: 2953–2959
  • Castro G. D., Díaz Gómez M. I., Castro J. A. Dimethyl disulfide formation during trichloromethyl radical attack on methionine. Biochemical Pharmacology 1989; 38: 4145–4147
  • Castro G. D., Díaz Gómez M. I., Castro J. A. Interaction of trichloromethyl free radicals with phenylalanine. Archives of Toxicology 1991; 65: 340–343
  • Castro G. D., Castro J. A. Cytosine attack by free radicals arising from bromotrichlorometh-ane in the presence of benzoyl peroxide catalyst: A mass spectrometric study. Teratogenesis Carcinogenesis and Mutagenesis 1993; 13: 235–245
  • Castro G. D., Simpson J. T., Castro J. A. Interaction of trichloromethyl free radicals with thymine in a model system. A mass spectrometric study. Chemico Biological Interactions 1994; 90: 13–22
  • Castro G. D., Stamato C. J., Castro J. A. 5-methylcytosine attack by free radicals arising from bromotrichloromethane in a model system. Structure of reaction products. Free Radical Biology and Medicine 1994; 17: 419–428
  • White E., Krueger P. M., McCloskey J. A. Mass spectra of trimethylsilyl derivatives of pyrimidine and purine bases. Journal of Organic Chemistry 1972; 37: 430–438
  • Dizdaroglu M. Chemical determination of free radical-induced damage to DNA. Free Radical Biology and Medicine 1991; 10: 225–242
  • Dizdaroglu M. Application of capillary gas chromatography-mass spectrometry to chemical characterization of radiation-induced base damage of DNA: Implications for assessing DNA repair processes. Analytical Biochemistry 1985; 144: 593–603
  • Darnell J., Lodish H., Baltimore D. Molecular cell biology. Scientific American Books, Inc, New York 1986; 105–129
  • Castro G. D., Díaz Gómez M. I., Castro J. A. Species differences in the interaction between CCU reactive metabolites and liver DNA or nuclear protein fractions. Carcinogenesis 1989; 10: 289–294
  • Díaz Gómez M. I., Castro J. A. Covalent binding of carbon tetrachloride to liver nuclear DNA, proteins and lipids. Toxicology and Applied Pharmacology 1980; 56: 199–206
  • Díaz Gómez M. I., Castro J. A. Nuclear activation of carbon tetrachloride and chloroform. Research Communications in Chemical Pathology and Pharmacology 1980; 27: 191–194
  • Castro J. A., Díaz Gómez M. I., de Ferreyra E. C., de Castro C. R., D'Acosta N., de Fenos O. M. Differences in the carbon tetrachloride-induced damage to components of the smooth and rough endoplasmic reticulum from rat liver. Biochemical and Biophysical Research Communications 1973; 50: 337–343
  • Gravela E., Dianzani M. U. Studies on the mechanism of CC14 induced polyribosomal damage. FEBS Letters 1970; 9: 93–96
  • Smuckler E. A. Alterations produced in the endoplasmic reticulum by carbon tetrachloride. Panminerva Medica 1976; 18: 292–303
  • Smuckler E. A., Koplitz M. The effect of carbon tetrachloride and ethionine on RNA synthesis. Biochimica et Biophysica Acta 1969; 132: 62–79
  • Clawson G. A., MacDonald J. R., Woo C. H. Early hypomethylation of 2–0-ribose moieties in hepatocyte cytoplasmic ribosomal RNA underlies the protein synthetic defect produced by CCU. Journal of Cell Biology 1987; 105: 705–711
  • Castro J. A., Díaz Gómez M. I., de Castro C. R., de Fenos O. M., de Ferreyra E. C., D'Acosta N. Carbon tetrachloride-induced polysome breakdown. Relative importance of lipid peroxidation and of binding to ribosome components in the process. Research Communications in Chemical Pathology and Pharmacology 1975; 10: 93–104
  • Castro J. A., Díaz Gómez M. I. Further studies on the mechanism of carbon tetrachloride-induced polysome breakdown. Research Communications in Chemical Pathology and Pharmacology 1976; 13: 731–741
  • Galelli M., Díaz Gómez M. I., Castro J. A. Decreasedincorporationof 14C-leucine in different liver nuclear protein fractions at early stages of carbon tetrachloride poisoning of the rat. Archives of Toxicology 1994; 68: 206–209

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.