114
Views
135
CrossRef citations to date
0
Altmetric
Original Article

Free Radical Generation at the Solid/Liquid Interface in Iron Containing Minerals

, &
Pages 593-614 | Received 04 Feb 1995, Published online: 07 Jul 2009

References

  • Halliwell B., Gutteridge J. M.C. Oxygen free radicals and iron in relation to biology and medecine: some problems and concepts. Archives Biochemistry and Biophysics 1986; 246: 501–514
  • Halliwell B., Gutteridge J. M.C. Free Radicals in Biology and Medecine. Clarendon Press, London 1989
  • Fontecave M., Pierre J. L. Activation et toxicité de ľoxigène. Principes des thèrapeutiques antioxydantes. Bulletin de la Societé Chimique Francaise 1991; 128: 505–520
  • Guthrie G. D., Jr., Mossman B. T. Health Effects of Mineral Dusts. Reviews in Mineralogy. Mineralogical Society of America, Washington, D.C. 1993; 28
  • Pézerat H. The surface activity of mineral dusts and the process of oxidative stress. Mechanisms in Fibre Carcinogenesis, R. C. Brown, J. A. Hoskins, N. F. Johnson. NATO ASI series, Plenum press, New York 1991; 387–395
  • Fubini B. The possible role of surface chemistry in the toxicity of inhaled fibers. Fiber Toxicology, D. B. Warheit. Academic Press. 1993; 229–257, Chapter 11
  • Kamp D. W., Graceffa P., Pryor W. A., Weitzman S. A. The role of free radicals in asbestos-induced diseases. Free Radicals in Biology and Medecine 1992; 12: 293–315
  • Goodlick L. A., Kane A. B. Role of reactive oxygen metabolites in crocidolite asbestos toxicity to mouse macrophages. Cancer Research 1986; 46: 5558–5566
  • Mossman B. T., Marsh J. P., Shatos M. A. Alteration of superoxide dismutase activity in tracheal epithelial cells by asbestos and inhibition of cytotoxicity by antioxidants. Laboratory Investigations 1986; 54: 204–212
  • Shatos M. A., Doherty J. M., Marsh J. P., Mossman B. T. Prevention of asbestos-induced cell death in rat lung fibroblasts and alveolar macrophages by scavengers of active oxygen species. Environmental Research 1987; 44: 103–116
  • Mossman B. T., Marsh J. P. Evidence supporting a role for active oxygen species in asbestos-induced toxicity and lung disease. Environmental Health Perspectives 1989; 81: 91–94
  • Vallyathan V., Shi X., Dalai N. S., Irr W., Castranova V. Generation of free radicals from freshly fractured silica dust: potential role in acute silica-induced lung injury. American Review of Respiratory Diseases 1988; 138: 1213–1219
  • Hobson J., Wright J. L., Churg A. Active oxygen species mediate asbestos fiber uptake by tracheal epithelial cells. The FASEB Journal 1990; 4: 3135–3138
  • Weitzman S. A., Graceffa P. Asbestos catalyzes hydroxyl and superoxide generation from hydrogen peroxide. Archives Biochemistry Biophysics 1984; 228: 373–376
  • Zalma R., Bonneau L., Jaurand M. C., Guignard J., Pezerat H. Formation of oxy-radicals by oxygen reduction arising from the surface activity of asbestos. Canadian Journal of Chemistry 1987; 652: 338–2341
  • Leanderson P., Soderkvist P., Tagesson C., Axelson O. Formation of 8-hydroxydeoxyguanosine by asbestos and man-made mineral fibers. British Journal of Industrial Medecine 1988; 45: 309–311
  • Gulumian M., van Wyk J. A., Kolk B. Detoxified crocidolite exhibits reduced radical generation which could explain its lower toxicity: ESR and Mossbauer studies. Effects of Mineral Dusts on Cells, B. T. Mossman, R. Begin. NATO ASI series H, Springer-Verlag, Berlin 1989; Vol. 30: 197–204
  • Weitzman S. A., Chester J. F., Graceffa P. Binding of deferoxamine to asbestos in vitro and in vivo. Carcinogenesis 1988; 9: 1643–1645
  • Zalma R., Guignard J., Pezerat H., Jaurand M. C. Production of radicals arising from surface activity of fibrous minerals. Effects of Mineral Dusts on Cells, B. T. Mossman, R. Begin. NATO ASI Series, Springer-Verlag, Berlin 1989; Vol. H30: 257–264
  • Costa D., Guignard J., Zalma R., Pezerat H. Production of free radicals arising from the surface activity of mineral and oxygen. I. Iron mine ores. Toxicology and Industrial Health 1989; 5: 1061–1078
  • Lund L. G., Aust A. E. Iron mobilization from asbestos by chelators and ascorbic acid. Archives of Biochemistry and Biophysics 1990; 278: 60–64
  • Aust A. E., Lund L. G. The role of iron in asbestos-catalyzed damage to lipids and DNA. Biological Oxidation Systems, C. C. Reddy, G. A. Hamilton, K. M. Madastha. Academic Press, San Diego, CA 1990; Vol II: 597–605
  • Lund L. G., Aust A. E. Iron-catalyzed reactions may be responsible for the biochemical and biological effects of asbestos. BioFactors 1991; 3: 83–89
  • Lund L. G., Aust A. E. Iron mobilization from crocidolite asbestos greatly enhances crocidolite-dependent formation of DNA single-strand breaks in X174 RFI DNA. Carcinogenesis 1992; 13: 637–642
  • Chung C. C., Aust A. E. Effect of long-term removal of iron from asbestos by desferoxamine B on subsequent mobilization by other chelators and induction of DNA single-strand breaks. Archives of Biochemistry and Biophysics 1994; 308: 64–69
  • Buettner G. R., Oberley L. W. Considerations in the spin-trapping of superoxide and hydroxyl radicals in aqueous systems using 5,5dimethyl-l-pyrroline-l-oxide. Biochemistry Biophysics Research Communications 1978; 83: 69–74
  • Zalma R. Contribution à ľètude de la réactivité de surface des fibres minerales. Relation possibles avec leurs propriétés cancérogènes. Thesis, Universitè P. et M. Curie, Paris 1988
  • Mottola H. A., Simpson B. E., Gorin G. Absorptiometric determination of hydrogen peroxide in submicrogram amounts with Leuco Crystal Violet and peroxidase as catalyst. Analytical Chemistry 1970; 42: 410–412
  • Gulumian M., Bhoolia D. J., Theodorou P., Röllin H. B., Pollak H., van Wyk J. A. Parameters which determine the activity of the transition metal iron in crocidolite asbestos: ESR, Mössbauer spectroscopic and iron mobilization studies. South African Journal of Science 1993; 89: 405–409
  • Mollo L., Merlo E., Giamello E., Volante M., Bolis V., Fubini B. Effect of chelators on the surface properties of asbestos. Cellular and Molecular Effects of Mineral and Synthetic Dusts and Fibres, J. M.G. Davis, M. C. Jaurand. NATO ASI Series, Springer-Verlag. 1994; Vol. H 85: 425–432
  • Yamazaki I., Piette L. H. ESR Spin-trapping studies on the reaction of Fe2 with H202-reactive species in oxygen toxicity in biology. Journal of Biological Chemistry 1990; 165: 13589–13594
  • Gulumian M., Van Wyk J. Hydroxyl radical production in the presence of fibres by a Fenton-type reaction. Chemical and Biological Interactions 1987; 62: 89–97
  • Fubini B., Bolis V., Giamello E., Volante M. Chemical functionalities at the broken fibre surface relatable to free radicals production. Mechanisms in Fibre Carcinogenesis, R. C. Brown, J. A. Hoskins, N. F. Johnson. NATO ASI series, Plenum press, New York 1991; 415–432
  • Maples K. L., Johnson N. F. Fiber-induced hydroxyl radical formation: correlation with mesothelioma induction in rats and humans. Carcinogenesis 1992; 13: 2035–2039
  • Halliwell B. Use of desferrioxamine as a probe for iron-dependent formation of hydroxyl radicals. Evidence for a direct reaction between Desferal and the superoxide radical. Biochemical Pharmacology 1985; 34: 229–233
  • Davies M. J., Donkor R., Dunster C. A., Gee C. A., Jonas S., Willson R. L. Desferrioxamine (Desferal) and superoxide free radicals. Formation of an enzyme-damaging nitroxide. Biochemistry Journal 1987; 246: 725–729
  • Halliwell B. Protection against tissue damage in vivo by desferrioxamine: what is its mechanism of action?. Free Radicals in Biology and Medecine 1989; 7: 645–651
  • Bucher J. R., Tien M., Aust S. D. The requirement for ferric in the initiation of lipid peroxidation by chelated ferrous iron. Biochemistry and Biophysics Research Communications 1983; 111: 777–784
  • Braughler J. M., Duncan L. A., Chase R. L. The involvement of iron in lipid peroxidation. Importance of ferric to ferrous ratios in initiation. Journal of Biological Chemistry 1986; 22: 10282–10289
  • Minotti G., Aust S. D. The requirement for iron (III) in the initiation of lipid peroxidation by iron (II) and hydrogen peroxide. Journal of Biological Chemistry 1987; 262: 1098–1104
  • Smith J. B., Cusumano J. C., Babbs C. F. Quantitative effects of iron chelators on hydroxyl radical production by the superoxide-driven Fenton reaction. Free Radical Research Communications 1990; 8: 101–106
  • Miller D. M., Buettner G. R., Aust S. D. Transition metals as catalysts of “autoxidation” reactions. Free Radicals in Biology and Medecine 1990; 8: 95–109
  • Graf E., Mahoney J. R., Bryant R. G., Eaton J. W. Iron-catalyzed hydroxyl radical formation. Stringent requirement for free iron coordination site. Journal of Biological Chemistry 1984; 259: 3620–3624
  • Chevion M. A site-specific mechanism for free radical induced biological damage: the essential role of redox-active transition metals. Free Radicals in Biology and Medecine 1988; 5: 27–37
  • Aust S. D., Chignell C. F., Bray T. M., Kalyanaraman B., Mason R. P. Contemporary issues in toxicology. Free Radicals in Toxicology. Toxicology and Applied Pharmacology 1993; 120: 168–178
  • Berger M., de Hazen M., Nejjari A., Fournier J., Guignard J., Pezerat H., Cadet J. Radical oxidation reactions of the purine moiety of 2′-deoxyribonucleosides and DNA by iron-containing minerals. Carcinogenesis 1993; 14: 41–46
  • Steinhof D., Mohr U., Hahnemann S. Carcinogenesis studies with iron oxides. Experimental Pathology 1991; 43: 189–194
  • Chen S. Y., Hayes R. B., Liang S. R., Li Q. G., Stewart P. A., Blair A. Mortality experience of haematite mine workers in China. British Journal of Industrial Medecine 1990; 47: 175–181

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.