152
Views
70
CrossRef citations to date
0
Altmetric
Original Article

Reactions of Bovine Liver Catalase with Superoxide Radicals and Hydrogen Peroxide

Pages 251-274 | Received 10 Jun 1994, Published online: 07 Jul 2009

References

  • del Rio L. A., Sandalio L. M., Palma J. M., Bueno P., Corpas F. J. Metabolism of oxygen radicals in peroxisomes and cellular implications. Free Radical Biology & Medicine 1992; 13: 557–580
  • Tolbert N. E., Essner E. Microbodies: peroxisomes and glyoxysomes. Journal of Cell Biology 1981; 91: 271s–283s
  • Goldberg I., Hochman A. Three different types of catalases in Klebsiella pneumoniae. Archives of Biochemistry and Biophysics 1989; 268: 124–128
  • Nadler V., Goldberg I., Hochman A. Comparative study of bacterial catalases. Biochimica el Biophysica Acta 1986; 882: 234–241
  • Hochman A., Shemesh A. Purification and characterization of a catalase-peroxidase from the photosynthetic bacterium Rhodopseudomonas capsulata. The Journal of Biological Chemistry 1987; 262: 6871–6876
  • Deisseroth A, Dounce A. L. Catalase: physical and chemical properties, mechanism of catalysis, and physiological role. Physiological Reviews 1970; 50: 319–375
  • Schonbaum G. R., Chance B. Catalase. The enzymes, P. D. Boyer. Academic Press, New York 1976; Vol. 13: 363–408
  • Esaka M., Asahi T. Purification and properties of catalase from sweet potato root microbodies. Plant & Cell Physiology 1982; 23: 315–322
  • Vainshtein B. K., Melik-Adamyan W. R., Barynin V. V., Vagin A. A., Grebenko A. I. Three-dimensional structure of the enzyme catalase. Nature 1981; 293: 411–412
  • Murshudov G. N., Melik-Adamyan W. R., Grebenko A. I., Barynin V. V., Vagin A. A., Vainshtein B. K., Dauter Z., Wilson K. S. Three-dimensional structure of the catalase from Micrococcus lysodeikticus at 1.5 A resolution. FEBS Letters 1992; 312: 127–131
  • Clayton R. K. Purified catalase from Rhodopseudomonas spheroides. Biochimica et Biophysica Acta 1959; 36: 40–47
  • Tanford C., Lovrien R. Dissociation of catalase into subunits. Journal of the American Chemical Society 1962; 84: 1892–1896
  • Sund H., Weber K., Molbert E. Dissoziation der rinderleber-katalase in ihre untereinheiten. European Journal of Biochemistry 1967; 1: 400–410
  • Schroeder W. A., Shelton J. R., Shelton J. B., Robberson B., Appell G. The amino acid sequence of bovine liver catalase: a preliminary report. Archives of Biochemistry and Biophysics 1969; 131: 653–655
  • Maeda Y., Trautwein A., Gonser U., Yoshida K., Kikuchi-Torii K., Homma T., Ogura Y. Mossbauer effect in bacterial catalase. Biochimica et Biophysica Acta 1973; 303: 230–236
  • Fita I., Rossmann M. G. The active-center of catalase. Journal of Molecular Biology 1985; 185: 21–37
  • Sharma K. D., Anderson L. A., Loehr T. M., Terner J., Goff H. M. Comparative spectral analysis of mammalian, fungal, and bacterial catalases. Resonance Raman evidence for iron-tyrosinate coordination. The Journal of Biological Chemistry 1989; 264: 12772–12779
  • Melik-Adamyan W. R., Barynin V. V., Vagin A. A., Borisov V. V., Vainshtein B. K., Fita I., Murthy M. R.N., Rossmann M. G. Comparison of beef liver and Penicillium vitale catalases. Journal of Molecular Biology 1986; 188: 63–72
  • Reid T. J., Murthy M. R.N., Sicignano A., Tanaka N., Musick W. D.L., Rossmann M. G. Structure and heme environment of beef liver catalase at 2.5 A resolution. Proceedings of the National Academy of Sciences of the United States of America 1981; 78: 4767–4771
  • Murthy M. R.N., Reid T. J., Sicignano A., Tanaka N., Rossmann M. G. Structure of beef liver catalase. Journal of Molecular Biology 1981; 152: 465–499
  • Davison A. J., Kettle A. J., Fatur D. J. Mechanism of the inhibition of catalase by ascorbate. Roles of active oxygen species, copper and semidehydroascorbate. The Journal of Biological Chemistry 1986; 261: 1193–1200
  • Chance B. Effect of pH upon the reaction kinetics of the enzyme-substrate Compounds of catalase. The Journal of Biological Chemistry 1952; 194: 471–481
  • Margoliash E., Novogrodsky A., Schejter A. Irreversible reaction of 3-Amino-1:2:4-triazole and related inhibitors with the protein of catalase. Biochemical Journal 1960; 74: 339–350
  • Jacob G. S., Orme-Johnson W. H. Catalase of Neurospora crassa. 1. Induction, purification, and physical properties. Biochemistry 1979; 18: 2967–2975
  • Kono Y., Fridovich I. Isolation and characterization of the pseudocatalase of Lactobacillus plantarium. A new manganese-containing enzyme. The Journal of Biological Chemistry 1983; 258: 6015–6019
  • Clairborne A., Malinowski D. P., Fridovich I. Purification and characterization of hydroperoxidase II of Escherichia coli B. The Journal of Biological Chemistry 1979; 254: 11664–11667
  • Poole R. K., Baines B. S., Appleby C. A. Haemoprotein b-590 (Escherichia coli), a reductive catalase and peroxidase: evidence for its close relationship to hydroperoxidase I and a “Cytochrome alb” preparation. Journal of General Microbiology 1986; 132: 1525–1539
  • Johnston M. A., Delwiche E. A. Isolation and characterization of the Cyanide-resistant and Azide-resistant catalase of Lactobacillus plantar urn. Journal of Bacteriology 1965; 90: 352–356
  • Clairborne A., Fridovich I. Purification of the o-dianisidine peroxidase from Escherichia coli B. Physicochemical characterization and analysis of its dual catalatic and peroxidatic activities. The Journal of Biological Chemistry 1979; 254: 4245–4252
  • Chance B., Sies H., Boveris A. Hydroperoxide metabolism in mammalian organs. Physiological Reviews 1979; 59: 527–605
  • Chuang W. J., Van Wart H. E. Resonance Raman spectra of horseradish peroxidase and bovine liver catalase Compound I species. Evidence for predominant 2A2u β-cation radical ground state configurations. The Journal of Biological Chemistry 1992; 267: 13293–13301
  • Keilin D., Hartree E. F. Properties of catalase. Catalysis of coupled oxidation of alcohols. Biochemical Journal 1945; 39: 293–301
  • Keilin D., Hartree E. F. Catalase, peroxidase and metmyoglobin as catalysts of coupled peroxidatic reactions. Biochemical Journal 1955; 60: 310–325
  • Chance B. The reactions of catalase in the presence of the notatin system. Biochemical Journal 1950; 46: 387–402
  • Chuang W. J., Heldt J., Wart E. W. Resonance Raman spectra of bovine liver catalase Compound II. Similarity of the heme environment to horseradish peroxidase Compound II. The Journal of Biological Chemistry 1989; 264: 14209–14215
  • Oshino N., Chance B., Sies H. The properties of the secondary catalase-peroxide complex (Compound II) in the hemoglobin-free perfused rat liver. Archives of Biochemistry and Biophysics 1973; 159: 704–711
  • Keilin D., Nicholls P. Reactions of catalase with hydrogen peroxide and hydrogen donors. Biochimica et Biophysica Acta 1958; 29: 302–307
  • Chance B., Powers L., Ching Y., Poulos T., Schonbaum G. R., Yamazaki I., Paul K. G. X-Ray absorption studies of intermediates in peroxidase activity. Archives of Biochemistry and Biophysics 1984; 235: 596–611
  • Shimizu N., Kobayashi K., Hayashi K. Studies on the equilibria and kinetics of the reactions of ferrous catalase with ligands. The Journal of Biochemistry 1988; 104: 136–140
  • Metodiewa D., Dunford H. B. Spectral studies of intermediate species formed in one-electron reactions of bovine liver catalase at room and low temperatures. A comparison with peroxidase reactions. International Journal of Radiation Biology 1992; 62: 543–553
  • Keilin D., Hartree E. F. Purification of horse-radish peroxidase and comparison of its properties with those of catalase and met haemoglobin. Biochemical Journal 1951; 49: 88–104
  • Chance B. The spectra of the enzyme-substrate complexes of catalase and peroxidase. Archives of Biochemistry and Biophysics 1952; 41: 404–415
  • Shimizu N., Kobayashi K., Hayashi K. The reaction of superoxide radical with catalase. Mechanism of the inhibition of catalase by superoxide radical. The Journal of Biological Chemistry 1984; 259: 4414–4418
  • Gebicka L., Metodiewa D., Gebicki J. L. Pulse radiolysis of catalase in solution. I. Reactions of O2− with catalase and its Compound I. International Journal of Radiation Biology 1989; 55: 45–50
  • Dhaunsi G. S., Gulati S., Singh A. K., Orak J. K., Asayama K., Singh I. Demonstration of Cu-Zn superoxide dismutase in rat liver peroxisomes. Biochemical and immunochemical evidence. The Journal of Biological Chemistry 1992; 267: 6870–6873
  • del Rio L. A., Lyon D. S., Olah I., Glick B., Marvin L. S. Immunocytochemical evidence for a peroxisomal localization of manganese superoxide dismutase in leaf protoplasts from a higher plant. Planta 1983; 158: 216–224
  • Kono Y., Fridovich I. Superoxide radical inhibits catalase. The Journal of Biological Chemistry 1982; 257: 5751–5754
  • Samejima N., Yang J. Reconstitution of acid-denatured catalase. The Journal of Biological Chemistry 1963; 238: 3256–3261
  • del Rio L. A., Gomez Ortega M., Leal Lopez A., Lopez Gorge J. A more sensitive modification of the catalase assay with the Clark oxygen electrode. Analytical Biochemistry 1977; 80: 409–415
  • Lardinois O. M., Rouxhet P. G. Characterization of hydrogen peroxide and superoxide degrading pathways of Aspergillus niger catalase: a steady-state analysis. Free Radical Research 1994; 20: 29–50
  • McCord J. M., Fridovich I. Superoxide dismutase. An enzymatic function for erythrocuprein (hemocuprein). The Journal of Biological Chemistry 1969; 244: 6049–6055
  • Metodiewa D., Dunford H. B. 3-Aminotriazole is a substrate for lactoperoxidase but not for catalase. Biochemical and Biophysical Research Communications 1991; 180: 585–590
  • Wariishi H., Gold M. H. Lignin peroxidase Compound III. Mechanism of formation and decomposition. The Journal of Biological Chemistry 1990; 265: 2070–2077
  • Rotilio G., Falcioni G., Fioretti E., Brunori M. Decay of oxyperoxidase and oxygen radicals: a possible role for myeloperoxidase. Biochemical Journal 1975; 145: 405–407
  • Dunford H. B., Stillman J. S. On the function and mechanism of action of peroxidases. Coordination Chemisrtry Reviews 1976; 19: 187–251
  • Kohler H., Jenzer H. Interaction of lactoperoxidase with hydrogen peroxide. Formation of enzyme intermediates and generation of free radicals. Free Radical Biology and Medicine 1989; 6: 323–339
  • Huwiler M., Jenzer H., Kohler H. The role of Compound III in reversible and irreversible inactivation of lactoperoxidase. European Journal of Biochemistry 1986; 158: 609–614
  • Nicholls P., Schonbaum G. R. Catalases. The enzymes, P. D. Boyer, L. Lardy, K. Myrback. Academic Press, Orlando, FL 1963; Vol.8: 147–225
  • Kirkman H. N., Galiano S., Gaetani G. F. The function of catalase-bound NADPH. The Journal of Biological Chemistry 1987; 262: 660–666
  • Jenzer H., Jones W., Kohler H. On the molecular mechanism of lactoperoxidase-catalyzed H2O2 metabolism and irreversible enzyme inactivation. The Journal of Biological Chemistry 1986; 261: 15550–15556
  • Cai D., Tien M. On the reactions of lignin peroxidase Compound III (Isozyme H8). Biochemical and Biophysical Research Communications 1989; 162: 464–469
  • Jenzer H., Kohler H., Broger C. The role of hydroxyl radicals in irreversible inactivation of lactoperoxidase by excess H2O2. A spin-trapping/ESR and absorption spectroscopy study. Archives of Biochemistry and Biophysics 1987; 258: 381–390
  • Brill A. S. Peroxidases and Catalase. Comprehensive Biochemistry, M. Florkin, E. H. Stotz. Elsevier Publishing Company, Amsterdam. London, New York 1966; Vol. 14: 447–479

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.