13
Views
11
CrossRef citations to date
0
Altmetric
Original Article

Edta Differentially and Incompletely Inhibits Components of Prolonged Cell-Mediated Oxidation of Low-Density Lipoprotein

, &
Pages 399-417 | Received 02 May 1994, Published online: 07 Jul 2009

References

  • Steinberg D., Parthasarathy S., Carew T. E., Khoo J. C., Witztum J. L. Beyond cholesterol: modifications of low density lipoprotein that increase its atherogenicity. New England Journal of Medicine 1989; 320: 915–924
  • Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993; 362: 801–809
  • Steinbrecher U. P., Parthasarathy S., Leake D. S., Witztum J. L., Steinberg D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proceedings of the National Academy of Sciences USA 1984; 81: 3882–3887
  • Henriksen T., Mahoney E. M., Steinberg D. Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: Recognition by receptors for acetylated low density lipoproteins. Proceedings of the National Academy of Sciences USA 1981; 78: 6499–6503
  • Heinecke J. W., Rosen H., Chait A. Iron and copper promote modification of low density lipoprotein in vitro by free radical oxidation. Journal of Clinical Investigation 1984; 74: 1890–1894
  • Esterbauer H., Gebicki J., Puhl H., Jurgens G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radicals in Biology and Medicine 1992; 13: 341–390
  • Bedwell S., Dean R. T., Jessup W. The action of defined oxygen-centred free radicals on human low-density lipoprotein. Biochemical Journal 1989; 262: 707–712
  • Stocker R., Bowry V., Frei B. Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does alpha-tocopherol. Proceedings of the National Academy of Sciences USA 1991; 88: 1646–1650
  • Berliner J., Territo M. C., Sevanian A., et al. Minimally modified low density lipoprotein stimulates monocyte endothelial interactions. Journal of Clinical Investigation 1990; 85: 1260–1266
  • Sparrow C. P., Parthasarathy S., Steinberg D. Enzymatic modification of low density lipoprotein by purified lipoxygenase plus phospholipase A2 mimics cell-mediated oxidative modification. Proceedings of the National Academy of Sciences USA 1988; 29: 745–753
  • Lenz M. L., Hughes H., Mitchell J. R., et al. Lipid hydroperoxy and hydroxy derivatives in copper-catalyzed oxidation of low density lipoprotein. Journal of Lipid Research 1990; 31: 1043–1050
  • Wang T., We-gui Y., Powell W. S. Formation of monohydroxy derivatives of arachidonic acid, linoleic acid and oleic acid during oxidation of low density lipoprotein by copper ions and endothelial cells. Journal of Lipid Research 1992; 33: 525–537
  • Zhang H., Basra H. J.K., Steinbrecher U. P. Effects of oxidatively modified LDL on cholesterol esterification in cultured macrophages. Journal of Lipid Research 1990; 31: 1361–1369
  • Jialal I., Freeman D. A., Grundy S. M. Varying susceptibilities of different low density lipoproteins to oxidative modification. Arteriosclerosis and Thrombosis 1991; 11: 482–488
  • Warner G. J., Addis P. B., Emanuel H. A., Wolfbauer G., Chait A. Cholesterol oxidation products in oxidatively modified low density lipoproteins. Federation American Society Experimental Biology Journal 1990; 4: A368
  • Esterbauer H., Cheeseman K. H. Determination of aldehydic lipid peroxidation products: malondialdehyde and 4-hydroxynonenal. Methods in Enzymology. 1990; 186: 407–421
  • Pryor W. A., Castle L. Chemical methods for the detection of lipid hydroperoxides. Methods in Enzymology. 1984; 105: 293–299
  • Yamamoto Y., Brodsky M. H., Baker J. C., Ames B. N. Detection and characterization of lipid hydroperoxides at picomole levels by high-performance liquid chromatography. Analytical Biochemistry 1987; 160: 7–13
  • Gutteridge J. M.C., Halliwell B. The measurement and mechanism of lipid peroxidation in biological systems. Trends In Biochemical Science 1990; 15: 129–135
  • Noguchi N., Gotoh N., Niki E. Dynamics of the oxidation of low density lipoprotein induced by free radicals. Biochimica Biophysica Acta 1993; 1168: 348–357
  • Esterbauer H., Striegel G., Puhl H., Rotheneder M. Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Radical Research Communications 1989; 6: 67–75
  • Kritharides L., Jessup W., Gifford J., Dean R. T. A method for defining the stages of low-density lipoprotein oxidation by the separation of cholesterol- and cholesteryl ester-oxidation products using HPLC. Analytical Biochemistry 1993; 213: 79–89
  • Bhadra S., Arshad M. A.Q., Rymaszewski Z., Norman E., Wherley R., Subbiah M. T.R. Oxidation of cholesterol moiety of low density lipoprotein in the presence of human endothelial cells or Cu2+ ions: identification of major products and their effects. Biochemical Biophysical Research Communications 1991; 176: 431–440
  • Hodis H. N., Crawford D. W., Sevanian A. Cholesterol feeding increases plasma and aortic tissue cholesterol oxide levels in parallel: further evidence for the role of cholesterol oxidation in atherosclerosis. Atherosclerosis 1991; 89: 117–126
  • Chung B. H., Segrest J. P., Ray M. J., et al. Single vertical spin density gradient ultracentrifugation. Methods in enzymology 1986; 128: 181–209
  • Cathcart M. K., Chisolm G. M., McNally A. K., Morel D. W. Oxidative modification of low density lipoprotein (LDL) by activated human monocytes and the cell lines U937 and HL60. In vitro cellular and developmental biology 1988; 24: 1001–1008
  • Van Hinsberg V. W.M., Scheffer M., Havekes L., Kempen H. J.M. Role of endothelial cells and their products in the modification of low-density lipoproteins. Biochimica Biophysica Acta 1986; 878: 49–64
  • Jessup W., Rankin S. M., De Whalley C. V., Hoult J. R.S., Scott J., Leake D. S. Alpha-tocopherol consumption during low-density-lipoprotein oxidation. Biochemical Journal 1990; 265: 399–405
  • Kuzuya M., Yamada K., Hayashi T., et al. Role of lipoprotein-copper complex in copper-catalyzed peroxidation of low-density lipoprotein. Biochimica Biophysica Acta 1992; 1123: 334–41
  • Steinbrecher U. P. Oxidation of human low density lipoprotein results in derivatization of lysine residues of apolipoprotein B by lipid peroxidation decomposition products. Journal of Biological Chemistry 1987; 262: 3603–3608
  • Cheng K. L., Ueno K., Imamura T. EDTA and other complexanes. CRC handbook of organic analytical reagents., K. L. Cheng. CRC Press, Boca Raton, Fla.USA 1978; 213–220
  • Sattler W., Stocker R. Greater selective uptake by Hep G2 cells of high-density lipoprotein cholesteryl ester hydroperoxides than of unoxidized cholesteryl esters. Biochemical Journal 1993; 294: 771–778
  • Halliwell B., Gutteridge J. M.C. Free Radicals in Biology and Medicine. (2nd ed.). Clarendon Press, Oxford 1989
  • Bors W., Erben-Russ M., Michel C., Saran M. Radical mechanisms in fatty acid and lipid peroxidation. Free Radicals, lipoproteins, and membrane lipids, A. Crastes de Paulet. Plenum Press, New York 1990; 1–16
  • Jessup W., Mander E. L., Dean R. The intracellular storage and turnover of apolipoprotein B of oxidized LDL in macrophages. Biochimica Biophysica Acta 1992; 1126: 167–177
  • Lougheed M., Zhang H., Steinbrecher U. P. Oxidized low density lipoprotein is resistant to cathepsins and accumulates within macrophages. Journal of Biological Chemistry 1991; 266: 14519–14525
  • Goldstein J. L., Ho Y. K., Basu S. K., Brown M. S. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein producing massive cholesterol deposition. Proceedings of the National Academy of Sciences USA 1979; 76: 333–337
  • Heinecke J. W., Baker L., Rosen H., Chait A. Superoxide-mediated modification of low density lipoprotein by arterial smooth muscle cells. J. Clin. Invest. 1986; 77: 757–761
  • Steinbrecher U. P., Lougheed M. Scavenger receptor-independent stimulation of cholesterol esterification in macrophages by low density lipoprotein extracted from human aortic intima. Arterioscerosis and Thrombosis 1992; 12: 608–625
  • Brooks C. J.W., Harland W. A., Steel G. Squalene, 26-hydroxycholesterol and 7-ketocholesterol in human atheromatous plaques. Biochimica Biophysica Acta 1966; 125: 620–622
  • Morgan J., Smith J. A., Wilkins G. M., Leake D. S. Oxidation of low density lipoprotein by bovine and porcine aortic endothelial cells and porcine endocardial cells in culture. Atherosclerosis 1993; 102: 209–216
  • Smith L. L., Johnson B. H. Biological effects of oxysterols. Free Radicals in Biology and Medicine 1989; 7: 285–332
  • Minotti G., Aust S. D. Redox cycling of iron and lipid peroxidation. Lipids 1992; 27: 219–26
  • Lamb D. J., Leake D. S. The effect of EDTA on the oxidation of low density lipoprotein. Atherosclerosis 1992; 94: 35–42
  • Nakagawara A., Nathan C. F., Cohn Z. A. Hydrogen peroxide metabolism in human monocytes during differentiation in vitro. Journal of Clinical Investigation 1981; 68: 1243–1252
  • Jessup W., Mohr D., Gieseg S. P., Dean R. T., Stocker R. The participation of nitric oxide in cell free- and its restriction of macrophage-mediated oxidation of low-density lipoprotein. Biochimica Biophysica Acta 1992
  • Jessup W., Dean R. T. Autoinhibition of murine macrophage-mediated oxidation of low-density lipoprotein by nitric oxide synthesis. Atherosclerosis 1993; 101: 145–155
  • Parthasarathy S., Wieland E., Steinberg D. A role for endothelial cell lipoxygenase in the oxidative modification of low density lipoprotein. Proceedings of the National Academy of Sciences USA 1989; 86: 1046–1050
  • Rankin S. M., Parthasarathy S., Steinberg D. Evidence for a dominant roleoflipoxygenase(s) in the oxidation of LDL by mouse peritoneal macrophages. Journal of Lipid Research 1991; 32: 449–456
  • Jessup W., Darley-Usmar V., O'Leary V., Bedwell S. 5-Lipoxygenase is not essential in macro-phage-mediated oxidation of low-density lipoprotein. Biochemical Journal 1991; 278: 163–169
  • Sparrow C. P., Olszewski J. Cellular oxidative modification of low density lipoprotein does not require lipoxygenases. Proceedings of the National Academy of Sciences USA 1992; 89: 128–131
  • Barclay L. R.C., Baskin K. A., Locke S. J., Vinquist M. R. Absolute rate constants for lipid peroxidation for lipid peroxidation and inhibition in model biomembranes. Canadian Journal of Chemistry 1989; 67: 1366–1369
  • Barclay L. R.C., Cameron R. C., Forrest B. J., Locke S. J., Nigam R., Vinqvist M. R. Choles-terol:free radical peroxidation and transfer into phospholipid membranes. Biochimica Biophysica Act 1990; 1047: 255–263

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.