42
Views
58
CrossRef citations to date
0
Altmetric
Original Article

Invited Review: Cell Damage in Inflammatory and Infectious Sites Might Involve A Coordinated “Cross-Talk” Among Oxidants, Microbial Haemolysins and Ampiphiles, Cationic Proteins, Phospholipases, Fatty Acids, Proteinases and Cytokines (An Overview)

&
Pages 489-517 | Received 02 Aug 1994, Published online: 07 Jul 2009

References

  • Bemheimer A. W., Rudy B. Interaction between membranes and cytolytic peptides. Biochemica Biophvsica Ada 1986; 864: 123–141
  • Scotland S. M. Toxins. Journal of Applied Bacteriology 1988; 109S–1295, Suppl
  • Bayson K. F., Cohen J. Bacterial endotoxins and current concept in diagnosis and treatment of endotoxemia. Journal of Medical Microbiology 1990; 31: 73–78
  • Diran J. E. Biological effects of endotoxins. In: Gut-derived infectious toxic shock (GITS). Current Studies in Hematology and Blood Transfusion, H. Cottier, R. Kraft. Karger, Basel 1992; 59: 66–99
  • Rietchel E. T., Kirika E. T.S., Schahde U., Mamat U., Schmidt G., Loppnow H., Ulmer A. J., Zahringer U., Seydel U., Di Padova F., Schreier M., Brade H. Bacterial endotoxin: molecular relationship of structure to activity and function. FASEB Journal 1994; 8: 217–225
  • Bacterial enzymes and virulence, I. Holder. CRC Press, Boca Raton, Florida 1985
  • Ginsburg I. Streptococcal enzymes and virulence. Bacterial enzymes and virulence, I. Holder. CRC Press, Boca Raton, Florida 1985; 121–144
  • Giborowski P., Jeljazewicz J. Staphylococcal enzymes and virulence. Bacterial enzymes and virulence, I. Holder. CRC Press, Boca Raton, Florida 1985; 146–183
  • Hentges D. J., Smith L. D.S. Hydrolytic enzymes as virulence factors of anaerobic bacteria. Bacterial enzymes and virulence, I. Holder. CRC Press, Boca Raton, Florida 1985; 105–119
  • Ginsburg I., Sela M. N. The role of leukocytes and their hydrolases in the persistence, degradation and transport of bacterial constituents in tissues, relation to chronic inflammatory processes in staphylococcal, streptococcal and mycobacterial infections and in chronic periodontal disease. Critical Reviews in Microbiology 1976; 4: 249–332
  • Ginsburg I. The role of lysosomal factors of leukocytes in the biodegradation and storage of microbial constituents in infectious granulomas. Lysosomes in applied biology and therapeutics, J. T. Dingle, P. J. Jacques, I. H. Shaw. North Holland Publication, Amsterdam 1972; Vol. 6: 327–406
  • Schrinner E., Richmond M. H., Seibert G., Schwarz U. Surface structures of microorganisms and their interactions with the mammalian host. VCH Publishers, WeinheimFederal Republic of Germany 1988
  • Halliwell B., Gutteridge J. M.C. Free radicals in biology and medicine. 2nd edition. Clarenton Press, Oxford 1989
  • Gallin J. I., Goldstein M., Snyderman R. Inflammation, basic principles and clinical correlates. Raven Press, New York 1992
  • Klebanoff S. F. Oxygen metabolites from phagocytes. Inflammation, basic principles and clinical correlates, 2nd edition, J. I.L. Gallin, M. Goldstein, R. Snyderman. Raven Press, New York 1992; 541–588
  • Farber J. L., Kyle M. E., Coleman J. B. Mechanisms of cell injury by active oxygen species. Laboratory Investigation. 1990; 62: 670–679
  • Ward P. A., Varani J. Mechanisms of neutrophil-mediated killing of endothelial cells. Journal of Leukocyte Biology 1990; 48: 97–102
  • Dean R. T., Gieseg S., Davies M. J. Reactive species and their accumulation on radical-damaged proteins. Trends in Biological sciences 18 November, 1993; 437–441
  • Henson P. M., Johnston R. B. Tissue injury in inflammation, oxidants, proteinases and cationic proteins. Journal of Clinical Investigation 1987; 79: 669–674
  • Ginsburg I. Cationic polyelectrolytes, a new look at their possible roles as opsonins, as stimulators of the respiratory burst in leukocytes, in bacteriolysis and as modulators of immune complex disease. Inflammation 1987; 11: 489–515
  • Hammann K. J., Barker R. L., Ten R. M., Gleich G. J. The molecular biology of eosinophil granule proteins. International Archives of Allergy and Applied Immunology 1991; 94: 202–209
  • Spitznagel J. K. Antibiotic proteins of human neutrophils. Journal of Clinical Investigation 1990; 86: 1386–1391
  • Elsbach P., Weiss J. Phagocytic cells; oxygen independent antimicrobial system. Inflammation basic principles and clinical correlates, 2nd ed., J. I. Gallin, I. M. Goldstein, R. Snyderman. Raven Press, New York 1992; 445–470
  • Leherer R. I. Defensins, antimicrobial and cytotoxic peptides of mammalian cells. Annual Review of Immunology 1993; 11: 105–128
  • Mizel S. B. The interleukins. FASEB Journal. 1989; 3: 2379–2388
  • Cerami A. Inflammatory cytokines. Clinical Immunology unit Immunopathology. 1992; 62: 53–510
  • Collen D., Lijnen H. R. Basic and clinical aspects of fibrinolysis and thrombolysis. Blood. 1991; 78: 3114–3124
  • Morgan B. B. Complement membrane attack on nucleated cells, resistance, recovery and non-lethal effects. Biochemical Journal 1989; 264: 1–15
  • Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB Journal. 1992; 6: 3051–306
  • Koltai M., Hosford D., Braquet P. Role of PAF and cytokines in microvascular tissue injury. Journal of Laboratory and Clinical Medicine. 1992; 119: 461–466
  • Cytotoxic T-cells. biology and relevance to disease. Annuls of the New York Academy of Sciences. 1988; 532
  • McCord J. M. Free radicals in myocardial ischemia, overview and outlook. Free Radicals in Biology and Medicine. 1988; 4: 914–26
  • The respiratory burst and its physiological significance, A. J. Sbarra, R. R. Strauss. Plenum Press, New York 1988
  • Groot G. D., Littauer A. Hypoxia, reactive oxygen and cell injury. Free Radicals in Biology and Medicine. 1989; 6: 541–551
  • Halliwell B. Free radicals, reactive oxygen species and human disease, a critical evaluation with special reference to atherosclerosis. British Journal of Experimental Pathology. 1989; 70: 737–757
  • Halliwell B., Chirico S., Kaur H., Aruoma O. I., Grootveld M., Blake D. R. Oxidative Damage and Repair Chemical and Medical Aspects, K. J.A. Davies. Pergamon Press, New York 1993; 846–853
  • Kontos A. Oxygen radicals in CNS damage. Cliemico-Biologicul Interactions. 1989; 72: 229–255
  • Slivka A., LoBuglio A. F., Weiss S. J. A potential role for hypochlorous acid in granulocyte mediated tumor-cell toxicity. Blood. 1989; 55: 3477–3500
  • Weiss S. J. Tissue destruction by neutrophils. New England Journal of Medicine. 1989; 320: 365–376
  • Jestis A. J., Ginn M. T., Mukhergee G. P., Ward A., Dratz E. A. Death by oxygen, radical views. The New Biologist. 1991; 3: 651–655
  • Seifert R., Schultz G. The superoxide-forming NADP, H oxidase of phagocytes. An enzyme system regulated by multiple mechanisms. Review of Physiology Biochemistry and Pharmacology. 1991; 117: 1–510
  • Morel F., Doussers J., Vignais P. V. The superoxide-generating oxidase of phagocytic cells. Physiology, molecular and pathological aspects. European Journal of Biochemistry. 1991; 201: 523–546
  • Van Der Vilt A., Bast A. Role of reactive oxygen species in intestinal diseases. Free Radicals in Biology and Medicine. 1991; 12: 499–513
  • Nordmann R., Ribier C., Rouach H. Implication of free radical mechanisms in cthanol-induced cellular injury. Free Radicals in Biology and Medicine. 1992; 12: 219–240
  • Baggiolini M., Boulay F., Badwey J. A., Curnutte J. T. Activation of neutrophil leukocytes. chemoattractant receptor and respiratory burst. FASEB Journal 1993; 7: 1004–1010
  • Jansen Y. M.W., Van Houten B., Brom P. A.J., Mossman B. T. Cell and tissue responses to oxidative damage. Laboratory Investigation. 1993; 69: 261–274
  • Lehr H. A., Arfors K. E. Mechanisms of tissue damage by leukocytes. Current Opinion in Hematology. 1994; 1: 92–99
  • McPhail L. C., Henson P., Johnston R. B. Respiratory burst enzyme in human neutrophils, evidence for multiple mechanisms of activation. Journal of Clinical Investigation 1981; 67: 710–716
  • Ginsburg I., Borinski R., Lahav M., Matzner Y., Elliasson I., Christensen P., Malamud D. Poly-L-arginine and N-formulated chemotactic peptide act synergistically with lectins and calcium ionophore to induce intense chemiluminescence and superoxide production by human blood leukocytes. Inflammation. 1985; 8: 1–26
  • Ginsburg I. I. Mechanisms of cell and tissue injury induced by group A streptococci: relation to poststreptococcal sequelae. Journal of Infectious Diseases 1972; 126: 294, 340, 419–456
  • Ginsburg I. Action of streptococcal hemolysins and proteolytic enzymes on Enrlich ascites tumor cells. British Journal of Experimental Pathology 1959; 40: 417–423
  • Ginsburg I., Ram N. Effect of antibodies and plasmin on Enrlich ascites tumor cells. Nature 1963; 185: 328–330
  • Schraufstatter I. V., Browner K., Harris A., Hyslop P. A., Jackson J. H., Quehenberger O., Cochrane C. G. Mechanisms of hypochlorite injury to targets. Journal of Clinical Investigation 1990; 85: 554–562
  • Brenofsky C. Nucleotide chloramines and neutrophil-mediated cytotoxicity. FASEB Journal 1991; 5: 295–300
  • Schraufstatter I. V., Hyslop P. A., Jackson J., Cochrane C. C. Mechanisms of oxidant injury of cells. Leukocyte migration unci its sequellae, M. Moval, 1986; 1150–1160, Satellite symposium of the 6th international congress on immunology
  • Liechtenstein A. Mechanisms of neulrophil-mediated oxidative and non-oxidalive tumor lysis. New Horizons of Tumor Immunotherapy, M. Torisu, Y. Yoshida. Elsvier Science Publisher B. V. (Biomedical Division). 1989; 79–100
  • Orrenius S. Mechanisms of oxidative cell damage. Free radicals from basic science to medicine, G. Poli, Fi. Albano, M. U. Dianzani. Birkhauser Verlag, BaselSwitzerland 1990; 47–64
  • Ward P. A. Mechanisms of endothelial cell injury. Journal of Laboratory and Clinical Medicine. 1991; 118: 421–426
  • Vlessis A. A., Muller O., Bartos D., Trunkey D. Mechanisms of peroxide-induced cellular injury in cultures and adult myocytes. FASEB Journal. 1991; 5: 2600–2605
  • Hallecki M. M., Richburgand J. H., Kaufman F. C. Reversible and irreversible oxidant injury to PC12cellsby hydrogen peroxide. Free Radicals in Biology and Medicine. 1992; 12: 137–144
  • Janssen Y. M.W., Van Houten B., Borm P. J.A., Mossman B. T. Cell and tissue responses to oxidative damage. Laboratory Investigation. 1993; 69: 261–274
  • Baker M. S., Feigan J., Lowlher D. A. The mechanism of chondrocyte hydrogen peroxide damage. Depletion of intracellular ATP due to suppression of glucolysis caused by oxidation of glyceraldehydc-3-phosphate dehydrogenase. Journal of Rheumatology. 1989; 16: 7–14
  • Varani J., Phan S. E., Gibbs D. I., Ryan U. S., Ward P. A.P.A. H2O2-mediated cytotoxicity of rat pulmonary endothelial cells, changes in adenosine triphosphate and purine products and effects of protective interventions. Laboratory Investigation. 1990; 63: 683–689
  • Sprag R. G. DNA strand break formation following exposure of bovine pulmonary artery and aortic endothelial cells to reactive oxygen products. American Journal of Respiratory and Cell Biology 1991; 4: 4–10
  • Alto T. K., Raivio K. O. Mechanisms of adenine nucleotide depletion from endothelial cells exposed to reactive oxygen metabolites. Free Radicals in Biology and Medicine. 1993; 14: 177–183
  • Mehrotra S., Makkar P., Wiswanathan P. M. Mitochondrial damage by oxygen species in vitro. Free Radicals in Biology and Medicine. 1991; 10: 277–283
  • Yamamoto Y., Niki E., Eguchi J., Shimasaki H. Oxidation of biological membranes and its inhibition. Free radical chain oxidation of erythrocyte ghost membrane by oxygen. Biochemica et Biophysica Ada. 1985; 819: 29–36
  • Vercelotti G. M., Severson S. P., Duane P., Moldow C. F. Hydrogen peroxide alters signal transduction in human endothelial cells. Journal of Laboratory and Clinical Medicine. 1991; 117: 15–24
  • Bradley J. R., Johnson D. R., Pober J. S. Endothelial cells activation by hydrogen peroxide. Selective increases of intracellular adhesion molecule-1 and major histocompatibility complex class 1. American Journal of Pathology. 1993; 142: 1598–1609
  • Winn J. S., Guille J., Gebieki J. M., Day R. O. Hydrogen peroxide modulate respiratory burst in human neutrophils. Biochemical Pharmacology 1990; 41: 31–36
  • Shingu M., Nonaka S., Nisimukai H., Nobunaga M., Kitamura H., Tomooka K. Activation of complement in normal serum by hydrogen peroxide and hydrogen peroxide-related oxygen radicals produced by activated neutrophils. Immunology 1992; 90: 72–78
  • Vogt V., Damerau B., Von Zabern I., Nolteand R., Brunahl D. Non-enzymatic activation of the fifth component of human complement, by oxygen radicals. Some properties of the activation product C5b-like C5. Molecular Immunology 1989; 26: 1133–1142
  • Natarajan W., Taher M. M., Roehm B., Parinadi N. L., Schmidt H. H.O., Kiss Z., Garcia J. G.N. Activation of endothelial cells phospholipase D by hydrogen peroxide and fatty acid hydroperoxide. Journal of Biological Chemistry 1993; 268: 930–937
  • Ginsburg I., Harris T. N. Oxygen-stable hemolysins of group A streptococci. IV. The mechanisms of lysis of red blood cells by the cell-bound hemolysin. Journal of Experimental Medicine 1965; 121: 647–653
  • Marcus Z., Davies M., Ginsburg I. Oxygen-stable hemolysins of group A streptococci. V. Effect on rat heart and kidney cells grown in tissue culture. Experimental and Molecular Pathology. 1966; 5: 93–107
  • Ginsburg I., Varani J. Interaction of viable group A streptococci and hydrogen peroxide in killing of vascular endothelial cells. Free Radicals in Biology and Medicine. 1993; 14: 495–500
  • Ginsburg I., Gibbs D. F., Schuger L., Johnson K. L., Ryan U. S., Ward P. A., Varani J. Vascular endothelial cells killing by combinations of membrane-active agents and hydrogen peroxide. Free Radicals in Biology and Medicine 1989; 7: 369–375
  • Ginsburg I., Misgav R., Pinson A., Varani J., Kohen R. Synergism among oxidants, proteinases, phospholipases, microbial hemolysins, cationic proteins, proteinases and cytokines. Inflammation 1992; 16: 519–538
  • Ginsburg I., Mitia R. S., Jr., Gibbs D. F., Varani J., Kohen R. Killing of endothelial cells and release of arachidonic acid, synergistic effects among hydrogen peroxide, membrane-damaging agents cationic substances and proteinases and their modulation by inhibitors. Inflammation. 1993; 17: 295–319
  • Elias N., Heller M., Ginsburg I. Binding of streptolysin Sto red blood cell ghosts and ghost lipids. Israel Journal of Medical Sciences. 1966; 2: 302–309
  • Ginsburg I., Kohen R. Synergistic effects among oxidants, membrane-damaging agents, fatty acids, proteinases and xenobiotics: Killing of epithelial cells and the release of arachidonic acid. Inflammation. 1994; 19: 101–118, in press
  • Davies K. J.A., Lin S. W., Pacific R. E. Protein damage and degradation by oxygen radicals. IV. Degradation of denatured proteins. Journal of Biological Chemistry 1987; 262: 9914–9920
  • Neuzil J., Gebicki J. M., Stocker R. Radical-induced chain oxidation of proteins and its inhibition by chain-breaking antioxidants. Biochemical Journal. 1993; 293: 601–606
  • Stadtman E. R. Protein oxidation and aging. Science 1992; 257: 1220–1224
  • Varani J., Ginsburg I., Gibbs D. F., Mukhopadhyay P. S., Sulavik C., Johnson K. J., Weinberg Y. M., Ryan U. S., Ward P. A. Hydrogen peroxide induced cell and tissue injury, protective effect of Mn2. Inflammation 1991; 15: 291–301
  • Yedgar S., Dagan A., Dan P., Ginsburg I. Regulation of cell membrane phospholipase A: activity by cell-inpermeable inhibitors. Abstract In 3rd International Conference on Lipid Mediators in Health and Disease, Jerusalem, October 31, 1993; 25
  • Raya S. A., Trembovler V., Shohami E., Lazarovici P. Cytolsins increase intracellular calcium and induce eicodanoids released by pheochromocytoma PC 12 cell culture. Natural Toxins 1993; 1: 263–270
  • Grimminger G. F., Sibelius U., Bhakdi S., Sultropand N., Seeger W. Excherichia coli hemolysin is a potent inductor of phosphoinositide hydrogen and related metabolic responses in human neutrophils. Journal of Clinical Investigation 1991; 88: 1531–1539
  • Sporn P. S., Peter-Golden M., Simon R. H. Hydrogen peroxide-induced arachidonic acid metabolism in the rat alveolar macrophages. American Journal of Respiratory Diseases. 1988; 137: 490–496
  • Prasad M. R., Das D. K. Effect of oxygen-derived free radicals and oxidants on the degradation of in vitro of membrane phospholipids. Free Radicals Research Communications 1989; 7: 381–388
  • Murty S. N.S., Cooney C. G., Clearfield H. R. Hydrogen peroxide-induced alteration in prostaglandin secretion in rat colon in vitro. Inflammation 1990; 14: 645–661
  • Duane P. G., Rice K. L., Charboneau D. E., King M. B., Gillboe D. P., Niewoehner D. E. Relationship of oxidant-mediated cytotoxicity to phospholipid metabolism in endothelial cells. American Journal of Respiratory and Molecular Biology 1991; 4: 408–416
  • Wickenand A. J., Knox K. W. Lipoteicholic acids, a new class of bacterial antigens. Science 1975; 187: 1161–1167
  • Doran J. E. Biological effects of endotoxins in gut-derived infectious-toxic shock (GITS). Current Studies in Blood Transfusions, H. Cottier, R. Kraft. Karger, Basel 1992; 66–99, No. 59
  • Raetz C. R.H., Ulevitch R. J., Wright S. D., Sibley C. H., Ding A., Nathan C. F. Gram-negative endotoxin: an extraordinary lipid with profound effect on eukaryotic signal transduction. FASEB Journal 1991; 5: 2652–2660
  • Neemanand N., Ginsburg I. Red cell sensitizing agent of group A streptococci. II. Immunological and immunopathological properties. Israel Journal of Medical Sciences 1971; 8: 1807–1816
  • Ofek I., Beachey E. H., Jefferson W., Campbell G. L. Gel 1 Membrane binding properties of group A streptococcal lipoteichoic acid. Journal of Experimental Medicine 1975; 141: 990–1003
  • Lopathin D., Kessler R. E. Pretreatment with lipoteichoic acid sensitizes target cells to antibody-dependent cellular cytotoxicity in the presence of antilipoteichoic acid antibodies. Infection and Immunity 1985; 48: 638–643
  • Winkelstein J. H., Thomasz A. Activation of the alternative complement pathway for pneumococcal cell-wall teichoic acid. Journal of Immunology 1978; 120: 174–178
  • Dishon T., Finkel R., Marcus Z., Ginsburg I. Cell sensitizing products of streptococci. Immunology 1967; 13: 555–564
  • Tobias P. S., Mathison J. C., Ulevitch R. J. A family of lipolysaccharide binding proteins involved in responses to Gram negative sepsis. Journal of Biological Chemistry 1988; 263: 13479–13481
  • Yamamoto A., Usami H., Nagamuta M., Sugawara Y., Hamada S., Yamamoto T., Kokeguchi S., Kotani S. The use of lipoteichoic acid (LTA) from streptococcus pyogenes to induce serum factor causing tumor necrosis. British Journal of Cancer 1985; 51: 737–742
  • Ginsburg I., Fligeil S. E.G.P., Ward A., Varani J. Lipoteichoic acid-antilipoteichoic acid complexes induce superoxide generation by human neutrophils. Inflammation 1989; 12: 525–545
  • Levi R., Kotob M., Nagauker O., Majmudar G., Alkan M., Ofek I., Beachey E. H. Stimulation of oxidative burst in human monocytes by lipoteichoic acid. Infection Immunity 1990; 58: 566–568
  • Tarsky-Tsuk D., Levy R. Stimulation of the respiratory burst in peripheral blood monocytes by lipoteichoic acid. The involvement of calcium ions and phospholipase A:. Journal of Immunology. 1990; 144: 2665–2670
  • Oshima Y., Beuth J., Yassin H., Ko H. L., Pulverer G. Stimulation of human monocyte chemiluminescence by staphylococcal lipoteichoic acid. Medical Microbiology and Immunology. 1988; 177: 115–121
  • Keller R., Fischer W., Bassett S. Macrophage response to bacteria, induction of marked secretory and cellular activities by lipoteichoic acid. Infection and Immunity 1992; 60: 3364–3672
  • Yagawa K., Kahku M., Ichinose Y., Nagao S., Tanaka A., Tomoda A. Bophasic effects of muramyl dipeptide and lipopolysaccharide on superoxide anion-generating activities of macrophages. Infection and Immunity. 1984; 45: 82–86
  • Worthen G. S., Seccombe J. F., Clay K. L., Guthrie L. A., Johnston R. B. The priming of neutrophils by lipopolysaccharide for production of intracellular platelet-activating factor. Potential role in mediation of enhanced superoxide secretion. Journal of Immunology 1988; 140: 3553–3559
  • Wright G. G., Read P. W., Mandell G. L. Lipopolysaccharide release a priming substance for platelets that augment the oxidative response of polymorphonuclear neutrophils to chemolactic peptide. Journal Infectious Diseases 1988; 157: 690–696
  • Forehand J. R., Papst M. J., Phillips W. A., Johnston R. B. Lipopolysaccharide priming of human neutrophils for an enhanced respiratory burst, role of intracellular calcium. Journal of Clinical Investigation. 1989; 83: 74–83
  • Forehand J. R., Bomalski J. S., Johnston R. B. Mechanisms of lipopolysaccharide priming for enhanced respiratory burst in human neutrophils. New aspects of human polymorphonuclear leukocytes, W. H. Hirll, P. J. Schollmeyer. Plenum Press. 1991; 65–73
  • Klein J. B., Payene V., Schcpers T. M., McLcish K. R. Bacterial lipopolysaccharide enhance polymorphonuclear leukocyte function independent of changes in intracellular calcium. Inflammation 1990; 14: 599–611
  • Feme M., Duchan Z., Rabinovitz S., Seka M. N., Ginsburg I. The effect of leukocyte hydrolases on bacteria XII. The release of LPS from Salmonella typhi by leukocyte extracts, lysozyme, inflammatory exudates and by serum and synovial fluids and the modulation by anionic and cationic polyelectrolytes of LPS release and the sensitization of erythrocytes. Inflammation. 1978; 3: 59–80
  • Sela M. N., Lahavand M., Ginsburg I. Effect of leukocyte hydrolases on bacteria IX. The release of lipoteichoic acid from group A streptococci and from Streptococcus mutatis by leukocyte extracts and by lysozyme, relation to tissue damage in inflammatory sites. Inflammation. 1977; 2: 151–164
  • Horn D., Tomasz A. Release of lipoteichoic acid from Streptococcus sanguis. Stimulation of release during penicillin treatment. Journal of Bacteriology. 1979; 137: 1180–1184
  • Nealon M. J., Beachey E. H., Courtney H. S., Simpson A. Release of fibronectin-lipoteichoic acid complexes from group A streptococci with penicillin. Infection and Immunity 1986; 51: 529–533
  • Sela M., Katchalski E. Biological properties of poly alpha amino acids. Advances in Protein Chemistry 1959; 14: 391–478
  • The pathogenicity of cationic proteins, P. P. Lambert, P. Bergmann, R. Beauwens. Raven Press, New York 1983
  • Ackerman S. J., Loegering D. A., Venge P., Olsson I., Harley J. B., Fauci A. S., Gleich G. J. Distinctive cationic proteins of the human eosinophil granule: major basic protein, osinophilic cationic protein and eosinophil-derived neurotoxin. Journal of Immunology 1983; 131: 2982–29997
  • Lehrer R. I., Ganz T., Selsted M. E., Babior B. M., Cumutte J. T. Neutrophils and host defense. Annals of Internal Medicine 1988; 109: 127–142
  • Gleich G. J., Ottesen E. A., Leiferman K. M., Ackerman S. J. Eosinophils and human disease. International Archives of Allergy and Applied Immunology 1989; 88: 59–62
  • Gleich G. J. Eosinophilic granule basic proteins. Clinical Immunology News 1990; 10: 15–18
  • Spitznagel J. K. Antibiotic proteins of human neutrophils. Journal of Clinical Investigation. 1990; 86: 1381–1386
  • Kagen B. L., Ganz T., Lehrer R. I. Defensins: a family of antimicrobial and cytotoxic peptides. Toxicology 1994; 87: 131–149
  • Gabay J. E., Almeida R. P. Antobiotic peptide and serine protease homologs in human polymorphonuclear leukocytes, defensins and azurocidin. Current Opinion in Immunology 1993; 5: 97–102
  • Lichtenstein A. K., Ganz T., Selsted M. E., Lehrer R. I. In vitro tumor cells cytolysis by peptide defensins of human and rabbit granulocytes. Blood 1986; 68: 1407–1410
  • Morgan D. M.L., Clover J., Pearson J. D. Effects of synthetic polycations on leucine incorporation, lactate dehydrogenase release and morphology of human umbilical vein endothelial cells. Journal of Cell Science. 1988; 91: 231–238
  • Van Kent P. E.M., Dekker C., Mosterd L., Van Den Bersselaar L., Van Den Berg W. B. Allergic arthritis induced by calionic proteins, role of molecular weight. Immunology 1989; 67: 447–452
  • Okrent D. G., Lichtenstein A. K., Ganz T. Direct cytotoxicity of polymorphonuclear leukocyte granule protein to human lung-derived cells and endothelial cells. American Review of Respiratory Disease. 1990; 141: 179–185
  • Batsford S. R. Cationic antigens as mediators of inflammation. Acta Pathologica Microbiologica et Immunologica Scandinavia 1991; 99: 1–9
  • Ginsburg I., Sela M. N., Morag A., Ravid Z., Duchan Z., Feme M., Rabinevitz-Bergner S., Page-Thomas P., Davies P., Nichols J., Humes J., Bonney R. The role of leukocyte factors and cationic polyelectrolytes in the phagocytosis of group A streptococci and Candida albicans by neutrophils macrophages, fibroblasts and epithelial cells, modulation by anionic polyelectrolytes in relation to the pathogenesis of chronic inflammation. Inflammation. 1981; 5: 289–312
  • Ginsburg I., Fligeil S. E.G., Kunkell R. G., Riser B. L., Varani J. Phagocytosis of Candida albicans enhances malignant behavior of murine tumor cells. Science 1987; 238: 1573–1575
  • Ginsburg I., Borinski R., Sadovnic M., Elkam Y., Raisford K. Poly-L-histidine, a potent stimulator of superoxide generation in human blood leukocytes. Inflammation 1987; 11: 253–277
  • Ginsburg I., Borinski R., Malamud D., Struckmayer F., Klimetzek V. Chemiluminescence and superoxide generation by leukocytes stimulated by polyelectrolytes opsonized bacteria, role of polyarginine, polylysine, polyhistidine cytochalasins and inflammatory exudates as modulators of the oxygen burst. Inflammation 1985; 9: 245–271
  • Ginsburg I. Cationic polyelectrolytes, potent opsonic agents which activate the respiratory burst in leukocytes. Free Radical and Research Communications 1989; 8: 11–26
  • Moy J. N., Gleich G. J., Thomas L. L. Noncytotoxic activation of neutrophils by eosinophil granule major basic protein: effect on superoxide anion generation and lysosomal enzyme release. Journal of Immunology 1990; 145: 2626–2632
  • Oseas R. S., Allen J., Yang H. H., Baehner R. L., Boxer L. A. (Rabbit cationic protein enhances leukocyte adhesiveness. Immunology 1981; 33: 523–526
  • Warren J. S.P., Ward A., Johnson K. J., Ginsburg I. Modulation of acute immune-complex-mediated tissue injury by the presence of polyanionic substances. American Journal of Pathology 1987; 128: 67–77
  • Geffner J. R., Trevani A. S., Schatner M., Malchiodi E., Lopez D. H., Lazzari M., Isturiz M. A.M.A. Activation of human neutrophils and monocytes induced by immune complexes prepared with cationized antibodies and antigens. Clinical Immunology and Immunopathology 1993; 69: 9–15
  • Weiler J. M., Edens R. R., Gleich G. J. Eosinophil granule cationic poteins regulate complement. I. Activity on the alternative pathway. Journal of Immunology 1992; 149: 643–648
  • Meedham L., Hallewell P. G., Williams T. J., Gordon J. L. Endothelial function responses and increased vascular permeability induced by polycations. Laboratory Investigations. 1989; 59: 538–548
  • Thomas L. L., Zheutilin L. M., Gleich G. J. Pharmacological control of human basophil histamine release stimulated by eosinophil granule major basic proteins. Immunology. 1989; 66: 611–615
  • Shapiro D. N., Varani J., Ginsburg I. Activation of murine cell hybridoma by cationized bacteria. Immunology 1989; 67: 478–483
  • Ginsburg I. The biochemistry of bacteriolysis, paradoxes, facts and myths. Microbiological Sciences 1988; 5: 137–142
  • Lichtenstein A. K., Ganz T., Nguyen T. M., Selsted M. E., Lehrer R. L. Mechanism of target cell cytolysis by peptide defensins, target cell metabolic activities, possibly involving endocytosis, are crucial for expression of cytotoxicity. Journal of Immunology 1988; 140: 2686–2696
  • Kagan B. L., Selsted M. E., Ganz T., Leprer R. I. Antimicrobial defensin peptide form voltage-dependent ion-permeable channels in planar bilayer membranes. Proceeding of the National Academy of Sciences of the United States of America 1990; 87: 210–214
  • Lichtenstein A. Mechanism of mammalian cell lysis mediated by peptide defensins. evidence for an initial alteration of the plasma membrane. Journal of Clinical Investigation. 1991; 88: 93–100
  • Barker R. L., Gindel R. H., Gleich G. J., Checkel J. L., Loegering D. A., Pease L. R., Hamann K. L. Acidic polyamino acids inhibit human eosinophil granules major basic protein toxicity, evidence of a functional role for ProMBP. Journal of Clinical Investigation 1993; 88: 798–805
  • Lichtenstein A. K., Ganz T., Selsted M., Lehrer R. I. Synergistic cytolysis mediated by hydrogen peroxide combined with peptide defensins. Cellular Immunology 1988; 114: 104–116
  • Yazdanbakish M., Tai P. C., Spry C. J., Gleich G. J., Roos D. Synergism between eosinophil cationic protein and oxygen metabolites in killing of Schistosomula of Schistosoma mansoni. Journal of Immunology 1987; 138: 3443–3447
  • Klebanoff S. J. Myeloperoxidase-halide-hydrogen peroxide antibacterial system. Journal of Bacteriology 1968; 95: 2131–2138
  • Klebanoff S. J., Waltersdorph A. M., Rosen H. An antimicrobial activity of myeloperoxidase. Methods in Enzymology 1984; 105: 399–403
  • Johnson R. J., Couscr W. G., Chi E. Y., Adler S., Klebanoff S. J. New mechanism for glomerular injury. Mycloperoxidase-hydrogen peroxide-halide system. Journal of Clinical Invesligation. 1987; 79: 1379–1387
  • Johnson R. J., Guggenheim S. J., Klebanoff S. J., Ochi R. F., Wass A., Baker P., Schulze M., Courser W. G. Morphological correlates of glomerular oxidant injury induced by the mycloperoxidase-hydrogen peroxide-halide system of the neutrophil. Laboratory Investigations. 1988; 5: 294–301
  • Weiss S. J., Young J., Lobuglio A. F., Slivka A., Nimen N. F. Role of H2O2 in neutrophil-medialed destruction of cultured endothelial cells. Journal of Clinical Investigation. 1981; 68: 714–721
  • Ferrante A., Kowanko I. C., Bates E. J. Mechanisms of host tissue damage by cytokine-ac-tivated neutrophils. Linnumologv Series, R. G. Coffey, M. Dekker, 1992; Vol. 5: 499–521
  • Agosti J. M., Altman L. C., Garrison H. A., Loegering D. A., Gleich G. J., Klebanoff S. J. The injurious effect of eosinophil peroxidase, hydrogen peroxide and halide on pneumocyles in vitro. Journal of Allergy and Clinical Immunology. 1987; 79: 496–504
  • Motojima S., Frigas E., Loegering D. A., Gleich G. J. (Toxicity of eosinophil cationic proteins for guinea pig tracheal eothelium in vitro. American Review of Respiratory Disease 1989; 139: 801–806
  • Ayars C. H., Altman L. C., McManus M. N., Agosti J. M., Baker C., Luchtel D. L., Loegering D. A., Gleich G. J. Injurious effect of the beosinophil peroxide-hydrogen peroxide-halide system and major basic protein on human nasal epithelium in vitro. American Review of Respiratory Disease. 1989; 140: 125–131
  • Klebanoff S. J., Agisti J. B., Jorgand A., Waltersdorph A. M. Comparative toxicity of the horse eosinophil peroxidase-H2O2-halide system and granule basic isoproteins. Journal of Immunology. 1989; 143: 239–244
  • Slungaard A., Mahoney J. R. Bromide-dependent toxicity of eosinophil peroxidase for endothelium and isolated working rat hearts, a model for eosinophilic endocarditis. Journal of Experimental Medicine 1991; 173: 117–126
  • Sela M. N., Ofek I., Lahav M., Ginsburg I. The effect of leukocyte hydrolases on bacteria XI. Lysis by leukocyte extracts and by myelopoeroxidase of a Staphylococcus auerus mutant which is deficient teichoic acid and the inhibition of bacteriolysis by lipoteichoic acid. Proceeding of the Society for Experimental Biology and Medicine 1970; 159: 125–130
  • Cantin A., Woods D. E. Protection by antibiotics against myeloperoxidase-depcndent cytotoxicity of lung epithelial cells in vitro. Journal of Clinical Investigation 1993; 91: 38–45
  • Kowanko I. C., Bates E. J., Ferrante A. Mechanisms of human neutrophil-mediated cartilage damage in vitro: role of lysosomal enzymes, hydrogen peroxide, and hypochlorous acid. Immunology and Cell Biology 1989; 67: 321–329
  • Katrantzis M., Baker M. S., Handley C. J., Lowther D. A. The oxidant hypochlotite (OCT-) a product of the myeloperoxidase system degrades artucular cartilage proteoglycan aggregate. Free Radicals in Biology and Medicine 1991; 10: 101–109
  • Yoshikawa S., Kayes S. G., Parker J. C. Eosinophils increase lung microvascular permeability via the peroxidase-hydrogen peroxide-halide system. Bronchoconstriction and vasoconstriction unaffected by eosinophil peroxidase inhibition. American Review of Respiratory Disease. 1993; 147: 914–920
  • Davies J. M., Horwitz D. A., Davies K. J.A. Potential role of hypochlorous acid and N-chloroamines in collagen breakdown by phagocytic cells in synovitis. Free Radicals in Biology and Medicine. 1993; 15: 637–643
  • Friedl H. P., Till G. O., Ryan U. S., Ward P. A. Mediator-induced activation of xantin oxidase in endothelial cells. FASEB Journal. 1989; 3: 2512–2518
  • Kusner D. J., King C. H. Protease modulation of neutrophil superoxide response. Journal of Immunology. 1989; 143: 1696–1702
  • Taubman S. B., Cigen R. B. Cell-detaching activity mediated by enzyme(s) obtained from human leukocyte granules. Laboratory Investigations 1975; 32: 555–560
  • Harlan J. M., Killen P. D., Harker L. A., Striker G. E., Wright D. Neutrophil-mediated endothelial injury in vitro, mechanisms of detachment. Journal of Clinical Investigation 1981; 687: 1394–1403
  • Harlan J. M., Schwartz B. R., Reidy M. A., Schwartz S. M., Ochs H. D., Harker L. A. Activated neutrophils disrupt endothelial monolayer integrity by an oxygen radical independent mechanism. Laboratory Investigations 1985; 52: 141–150
  • Ginsburg I., Gibbs D. F., Varani J. Interaction of mammalian cells with polymorphonuclear leukocytes, reactive sensitivity to monolayer disruption and killing. Inflammation 1989; 13: 529–542
  • Starke P. E., Farber J. L. Endogenous defenses against the cytotoxicity of hydrogen peroxide in cultured rat hepatocytes. Journal of Biological Chemistry 1985; 260: 86–92
  • Westlin W. F., Gimbrone M. A. Neutrophil-mediated damage to human vascular endothelium, role of cytokine activation. American Journal of Pathology 1993; 142: 117–128
  • Giraldi T., Nisi C., Sava G. Lysosomal enzyme inhibitors and anti-metastic activity in the mouse. European Journal of Cancer 1977; 13: 1321–1323
  • Varani J., Ginsburg I., Schuger L., Gibbs D. F., Bromberg J., Johnson K. J., Ryan U. S., Ward P. A. Endothelial cell killing by neutrophils. Synergistic interaction of oxygen products and proteases. American Journal of Pathology. 1989; 135: 435–438
  • Gibbs D. F., Varani J., Johnson K. J. The cooperative interaction of oxidants and proteinases in endothelial cell injury by rat neutrophils. Federation of American Societies for Experimental Biology. 1993, Abstract No. 4130
  • Janoff A. Elastase in tissue injury. Annual Reviews of Medicine 1985; 36: 207–216
  • Baird B. R., Cheronis J. C., Sandhaus R. A., Berger E. M., White C. W., Repine J. E. Oxygen metabolites and neutrophil elastase synergistically cause edematous injury in isolated rat lungs. Journal of Applied Physiology. 1986; 61: 2224–2229
  • Bartholomew J. S., Lowther D. A. Receptor-mediated binding of leukocyte elastase by chondrocytes. Arthritis and Rheumatism. 1987; 30: 431–438
  • McGowan S. E., Murry J. J. Direct effect of neutrophil oxidants on elastase-induced extracellular matrix proteolysis. American Review of Respiratory Disease 1987; 135: 1286–1293
  • Rodcll T. C., Cheronis J. C., Repine J. E. Endothelial cell xantine oxidase-derived toxic oxygen metabolites contribute to acute lung injury from neutrophil elastase. Chest 1988; 93: 146s
  • McDonald R. J., Bruekka L. U., Repine J. E. Neutrophil elastase augments acute edematous injury in isolated rat lungs perfused with neutrophil cytoplasts. American Review of Respiratory Disease. 1989; 140: 1825–1827
  • Klebanoff S. J., Kinsella M. G., Wight T. N. Degradation of endothelial matrix heparan sulfate proteoglycan by elastase and the myeloperoxidase-H2O2-chloride system. American Journal of Pathology. 1993; 193: 907–917
  • Palmgren M. S., deShazo R. D., Carter R. M., Zimmy M. L., Shah S. V. Mechanisms of neutrophil damage to human alveolar extracellular matrix, the role of serine metalloproteases. Allergy and Clinical Immunology 1992; 89: 905–915
  • Pontremoli S., Melloni E., Michetti M., Sacco O., Sparatore B., Salamino F., Damiani G. Cytolystic effects of neutrophils, role for a membrane-bound neutrophil proteinase. Proceeding of the National Academy of Sciences of the United Stales of America 1986; 83: 1685–1689
  • Adams D. G., Johnson W. J., Fiorito E., Nathan C. F. Hydrogen peroxide and cytolitic factor can interact synergistically in effecting cytolysis of neophastic targets. Journal of Immunology. 1981; 127: 1973–1977
  • Hurkhardt H., Schwingel M., Menninger H., McCartney H. W., Tschsche H. Oxygen radicals as effectors of cartilage destruction. Direct degradative effects of matrix components and direct action via activation of latent collagenase from polymorphonuclear leukocytes. Arthritis and Rheumatism 1986; 29: 379–387
  • Anthony V. B., Owen C., English D. D. Polymorphonuclear leukocyte cytoplasts mediate acute lung injury. Journal of Applied Physiology. 1988; 65: 706–713
  • Abe H., Okajima K., Okabe H., Takatsuki K., Binder B. B. Granulocyte proteases and hydrogen peroxide synergistically inactivate thrombomodulin of endothelial cells in vitro. Journal of Laboratory Clinical Medicine 1994; 123: 874–881
  • Peppin G. J., Weiss S. J. Activation of endogenous metalloprotease, gelatinase by triggered human neutrophils. Proceeding of the National Academy of Sciences of the United States of America. 1986; 83: 4322–4326
  • Weiss S. J., Peppin G., Oritz X., Ragsdale C., Test S. T. Oxidative autoactivation of latent collagenase by human neutrophils. Science 1986; 227: 747–749
  • Michaelis M., Visser M. C., Winterboum C. C. Different effects of hypochlorous acid on human neutrophil metalloproleases: Activation of collagenase and inactivation of collagenase and gelatinase. Archives of Biochemistry and biophysics 1992; 292: 555–562
  • Capodici C., Muthukumaran G., Amoruso M. A., Berg R. A. Activation of neutrophil collagenase by cathepsin G. Inflammation 1992; 13: 245–258
  • Shah S. V., Baricos W. H., Basci A. Degradation of human glomerular basement membrane by stimulated neutrophils, activation of metalloproteinase(s) by reactive oxygen metabolites. Journal of Clinical Investigation 1987; 79: 25–31
  • Weiss S. J., Peppin G. Collagenolytic metalloenzymes of the human neutrophil, characteristics, regulation and potential function in vivo. Biochemical Pharmacology 1986; 35: 189–197
  • Wert Z. C., Mainardi L., Vater C. A., Harris E. D. Endogenous activation of latent collagenase by rheumatoid synovial cells-evidence for the role of plasminogen activator. New England Journal of Medicine 1977; 269: 1017–1023
  • Dennis E. A., Rhee S. G., Billah M. M., Hannun Y. A. Role of phospholipases in generating second messengers in signal transduction. FASEB Journal. 1991; 5: 2068–2077
  • Vadas P., Pruzanski W. Role of secretory phospholipase A2 in the pathobiology of disease. Laboratory Investigation 1986; 55: 391–404
  • Prizanski W., Vadas P. Soluble phospholipase A2 in human pathology, clinical laboratory interface. Biochemistry, molecular biology and physiology of phospholipase A2, and its regulatory factors, A. B. Mukhergee. Plenum Press, New York 1990; 239–251
  • Prizanski W., Vadas P. Phospholipase Ai-mediator between proximal and distal effectors in inflammation. Immunology Today 1991; 12: 143–146
  • Bomalski J. S., Lawton P., Browing J. L. Human extracellular recombinant phospholipase A2 induces an inflammatory response in rabbit joints. Journal of Immunology. 1991; 146: 3904–3910
  • Mormann B. J., Huang C. K., Mackin W. M., Becker E. L. Receptor-mediated activation of phospholipase A2 in rabbit neutrophil plasma membrane. Proceedings of the National Academy of Sciences of the United States of America 1984; 81: 767–770
  • Kennedy S. P., Becker E. L. Ectophospholipase A2 activity of the rabbit peritoneal neutrophil. International Archive of Allergy and Applied Immunology 1987; 83: 238–246
  • Victor M., Weiss J., Klempner M. S., Elsbach P. Phospholipase A2 activity in the plasma membrane of human polymorphonuclear leukocytes. Federation of European Biochemical Societies 1981; 136: 298–300
  • Henderson L. M., Chappell J. B., Jones O. T.G. Superoxide generation is inhibited by phospholipase A2 inhibitors. Role of phospholipase A2 in the activation of NADPH oxidase. Biochemical Journal 1989; 264: 249–255
  • Watson F., Robinson J. J., Edwards S. W. Sequential phospholipase activation in the stimulation of the neutrophil NADPH oxidase. FEMS Microbiology Immunology 1992; 105: 239–248
  • Forehand J. R., Johnston R. B., Bomalski J. S. Phospholipase A2 activity in human neutrophils. Stimulation by lipopolysaccharide and possible involvement in priming for an enhanced respiratory burst. Journal of Immunology 1993; 151: 4918–4925
  • Engelberger W., Bitter-Suermann D., Hadding U. Influence of lysophospholipids and PAF on the oxidative burst. International Journal of Immunopharmacology 1987; 9: 275–282
  • Ginsburg I., Ward P. A., Varani J. Lysophosphatidies enhance superoxide responses in stimulated human neutrophils. Inflammation 1989; 13: 163–174, (1989)
  • Kilgore K. S., Lucchesi B. R. Reperfusion injury after myocardial infarction: The role of free radicals and the inflammatory response. Clinical Biochemistry 1993; 26: 359–370
  • Patophysiology of severe ischemic myocardial injury, H. M. Piper. Kluwer Academic Publisher, Dodrecht/Boston/London 1990
  • Ginsburg I., Kohen R., Ligumsky M. Ethanol synergizes with hydrogen peroxide, peroxyl radical and trypsin to kill epithelial cells in culture. Free Radicals in Biology and Medicine. 1994; 16: 263–269
  • Klebanoff S. J. Oxygen metabolism and the toxic properties of phagocytes. Annals of Internal Medicine 1980; 93: 480–489
  • Dean R., Virelizier J. L. Interferon as macrophage activating factors. I. Enhancement of cytotoxic activity in the absence of other soluble signals. Clinical and Experimental. Immunology 1983; 51: 5011–511
  • Shalaby M. R., Aggrawal B. B., Rinderknecht R., Svedersky L. P., Finkie B. S., Palladino M. A., Jr. Activation of human polymorphonuclear neutrophil functions by interferon-γ and tumor necrosis factor. Journal of Immunology 1985; 135: 2069–2073
  • Freund M., Pick E. The mechanism of action of lymphokines. VIII. Lymphokine-enhanced spontaneous hydrogen peroxide production by macrophages. Immunology 1985; 54: 35–45
  • Wing E. J., Ampel N. M., Waheed A., Shadduck R. K. Macrophage colony stimulating factor (M-CSF) enhances the capacity of murine macrophages to secrete oxygen products. Journal of Immunology 1985; 135: 2052–2056
  • Tsujimoto M., Yokota S., Viclek J., Weissman G. Tumor necrosis factor provokes superoxide anion generation from neutrophils. Biochemical and Biophysical Research Communications 1986; 137: 1094–1099
  • Klebanoff S. J., Vadas M. A., Harlan J. N., Sparks L. H., Gamble G. R., Agosti J. M., Watersdorph A. M. Stimulation of neutrophils by tumor necrosis factor. Journal of Immunology 1986; 136: 4220–4225
  • Figari I. S., Mori N. A., Palladino M. A., Jr. Regulation of neutrophil migration and superoxide production by recombinant tumor necrosis factor a and p: Comparison to recombinant interferon-γ and interleukin-la. Blood. 1987; 70: 979–984
  • Ferrante A., Nandoskar M., Walz A., Goh D. H.B., Kowanko I. C. Effects of tumor factor alpha and interleukin-1 alpha and beta on neutrophil migration, respiratory burst and dcgranulation. International Archives of Allergy and Applied Immunology 1988; 86: 8291
  • Varani J., Bcndelew M. J., Sealy D. E., Kunkel S. L., Gannon D. E., Ryan U. S., Ward P. A. Tumor necrosis factor enhances susceptibility of vascular endothelial cells to neutrophil-mediated killing. Laboratory Investigations. 1988; 59: 292–295
  • Warren J. S., Kunkel S. L., Cunningham T. W., Johnson K. L., Ward P. A. Macrophage derived cytokines amplify immune complex-triggered O: responses by rat alveolar macrophages. American Journal Pathology. 1988; 130: 489–495
  • Ferrante A. Tumor necrosis factor alpha potentiates neutrophil antimicrobial activity: increased fungicidal activity against Tondopsis glaharaia/Candidtt albicans and associated increases in oxygen radical production and lysosomal enzyme release. Infection Immunity 1989; 57: 2115–2122
  • Kaplan S. S., Basford R. E., Wing E. J., Shadduck R. K. The effect of recombinant human granulocyte macrophage cology-stimulating factor on neutrophil activation in patients with refractory carcinoma. Blood. 1989; 73: 636–638
  • Kharazmi A., Nielsen H., Rechitzer C., Bendzen K. Interleukin 6 primes human neutrophils and monocyte oxidative burst response. Immunology Letters. 1989; 21: 177–184
  • Klein J. B., Scherzer J. A., McLeish K. R. Interferon-gamma enhances superoxide production in HL-60 cells stimulated with multiple agonists. Journal of Interferon Research. 1991; 11: 69–74
  • Kownalzki E., Neumann M., Unrich S. Stimulation of human neutrophils granulocytes by monocyte-derived cytokines. Agents and actions. 1989; 26: 180–182
  • Mege J. L., Cambronero J. G., Molski T. F.P., Becker E. L., Shaafi R. I. Effect of granulocyte-macrophage colony-stimulating factor on superoxide production in cytoplasts and intact human neutrophils, role of protein kinase and G-proteins. Journal of Leukocyte Biology 1989; 46: 161–168
  • Nathan C. F. Respiratory burst in adherent human neutrophils, triggering by colony-stimulating factor GSF-GM and GSF-G. Blood 1989; 73: 301–306
  • Sullivan R., Predetle J. P., Socinski M., Elias A., Amman K. Enhancement of superoxide anion release by granulocytes harvested from patients receiving granulocyte-macrophage colony-stimulating factor. British Journal of Hematology. 1989; 71: 475–479
  • Borish L., Rosenbaum R., Albury L., Clark S. Activation of neutrophils by recombinant interleukin 6. Cellular Immunology 1989; 121: 281–289
  • Melingaard A., Vercelloti G. M., Walker G., Nelson R. D., Jacob H. S. Tumor necrosis factor cachectin stimulates eosinophil oxidant production and toxicity towards human endothelium. Journal of Experimental Medicine. 1990; 171: 2025–2041
  • Kumaratilake L. M., Ferrante A., Bates E. J., Kowenko I. C. Augmentation of the human monocyte/macrophage chemiluminescence response during short-term exposure to interferon-gamma and tumor necrosis factor. Clinical and Experimental Immunology. 1990; 80: 257–262
  • West M. A. Role of cytokines in leukocyte activation, phagocytic cells. Current Topics in Membranes and Transport 1990; 35: 537–570
  • Badwey J. A., Bing J., Heyworth P. G., Robinson J. M. Products of inflammatory cells synergistically enhance superoxide production by phagocytic cells. Cell-cell interaction in the release of inflammatory mediators, P. Y.K. Wong, C. N. Serhan. Plenum Press, New York 1991; 19–33
  • Balazowich K. J., Almeida H. I., Boxer L. A. Recombinant human GM-CSF and GM-CSF prime human neutrophils for superoxide production through different signal transduction mechanisms. Journal of Laboratory and Clinical Medicine 1991; 118: 576–584
  • Kapp A., Komann A., Schopf E. Effect of tumor necrosis factor alpha in vivo on human granulocyte oxidative metabolism. Archives for Dermatological Research 1991; 283: 362–365
  • Klein J. B., Scherzer J. A., McLeish K. R. Interferon-γ enhances superoxide production by HL-60 cells stimulated by multiple agonists. Journal of Interferon Research 1991; 11: 69–74
  • Tannenberg S. D. The effect of inflammatory mediators on neutrophil functions. New aspects of human polymorphonuclear leukocytes, W. H. Horol, P. J. Schollmeyer. Plenum Press, New York 1991; 75–92
  • Ferrante A. Activation of neutrophils by interleukins-1 and 2 and tumor necrosis factors. Granulocyte responses to cytokines, basic and clinical research, R. G. Coffey. Marcel Dekker, New York 1992; 417–436
  • Yuo A., Kitagawa S., Motoyoshi K., Azuma E., Saito M., Takaku F. Rapid priming of human monocytes by human hematopoietic growth factor: granulocyte-macrophage colony-stimulating factor (CSF), macrophage-CSF, and interleukin-3 selectively enhance superoxide release triggered by receptor-mediated agonists. Blood 1992; 79: 1553–1557
  • Khwaja A., Carver J. E., Linch D. C. Interaction of granulocyte-macrophage colon) -stimulating factor (CSF). granulocyte CSF. and tumor necrosis factor in priming of the neutrophil respiratory burst. Blood. 1992; 79: 745–753
  • Williams J. G., Jutkovich G. J., Hahnel G. B., Mailer R. W. Macrophage priming by interferon gamma: a selective process with potential harmful effects. Journal Leukocyte Biology 1992; 52: 579–584
  • Baglioni C. Mechanisms of cytotoxicity, cytolysis and growth stimulation by TNF. Tumor necrosis factor: the molecules and their emerging role in medicine, B. Beutler. Raven Press, New York 1992; 425–438
  • Gomez-Cambronero J., Sha'afi R. I. Granulocyte-macrophage colony-stimulating factor and neutrophil, mechanisms of action. Cell-tell interaction in the release of inflammatory mediators, P. Y.K. Wong, C. N. Serhan. Plenum Press, New York 1992; 35–71
  • Tannenberg S. D., Fey D. E., Lieser M. J. Oxidative priming of neutrophils by inlerferon-Y. Journal of Leukocyte Biology 1993; 53: 301–308
  • Ogle J. D., Noel J. G., Sramkoski R. M., Ogle C. K., Alexander J. W. Effects of combination of tumor necrosis factor alpha and chemotactic peptide f-MET-LEU-PHE on phagocytosis of opsonized microspheres by human neutrophils. Inflammation 1992; 16: 57–68
  • Hatsura Y., Tsuru S., Noritake M., Kayashima H., Shimomiya N., Shinomiya M., Rokutanda M. Granulocyte colony-stimulating factor enhances the extracellular emission of reactive oxygen from neutrophils stimulated with formylmethionyl eucylphenylalanine. Cellular Immunology. 1993; 148: 10–17
  • Wozniak A., Betts W. H., Murohy G. A., Rocicinski M. Interleukin-8 prime human neutrophils for enhanced superoxide anion production. Immunology. 1993; 79: 608–615
  • Edward S. W., Say J. E., Hughes V. Gamma interferon enhances the killing of Staphylococcus aureus by human neutrophils. Journal of General Microbiology 1988; 134: 37–42
  • Kowanko I. C., Ferrante A., Harvey D. P., Carman K. L. Granulocyte-macrophage colony-stimulating factor augments neutrophil killing of Torulopsis glahrala and stimulates neutrophil respiratory burst and degranulation. Clinical and Experimental Immunology. 1991; 83: 225–230
  • Roilides E., Uhlig K., Venzon D., Pizzo P. A., Walsh T. J. Enhancement of oxidative response and damage caused by human neutrophils to Asppergitlus fumigatus hyphae by granulocyte colony-stimulating factor and gamma interferon. Infection Immunity 1993; 61: 1185–1193
  • Kushner B. H., Cheung N. K.V. GM-CSF enhances 3F8 monoclonal antibody-dependent cellular cytotoxicity against human melanoma and neuroblastoma. Blood 1989; 73: 1936–1941
  • Baud L., Affres H., Perez J., Ardiallou R. Reduction in tumor necrosis factor and cytotoxicity by hydrogen peroxide. Journal of Immunology 1990; 166: 556–560
  • Abramson S. L., Gallin J. I. 11-4 inhibits superoxide production by human mononuclear phagocytes. Journal of Immunology 1991; 244: 625–630
  • Simon R. H., DeHart P. D., Nadeau D. M. Resistance of rat pulmonary alveolar endothelial cells to neutrophil-and oxidant-induced injury. American Journal of Respiratory Cellular and Molecular Biology 1989; 1: 221–229
  • Dallegri F., Ballestrero A., Ottonello L., Patrone F. Platelets as inhibitory cells in neutrophil-medialed cytolysis. Journal of Laboratory and Clinical Medicine. 1989; 114: 502–509
  • Berger E. M., Beehler C. J., Harada R. N., Repine J. E. Human phagocytic cells as oxygen metabolite scavengers. Inflammation. 1990; 14: 613–619
  • Scott M. D., Lubin B. H., Zuo L. X., Kuypres F. A. Erythrocyte defense against hydrogen peroxide: Preeminent importance of catalase. Journal of Laboratory and Clinical Medicine. 1991; 188: 7–16
  • Chevion M. A site-specific mechanism for free radical induced biological damage: the essential role of redox-active transition metals. Free Radical Biology and Medicine. 1988; 5: 27–37
  • Scott J. A., Fischman A. J., Homey C. J., Fallon J. T., Khaw B. A., Peto C. A., Rabito C. A. Morphologic and functional correlates of plasma membrane injury during oxidant exposure. Free Radicals in Biology and Medicine. 1990; 6: 361–367
  • Nathan C., Silverstein S. S., Brukner L. H., Cohn Z. A. Extracellular cytolysis by activated macrophages and granulocytes. II. Hydrogen peroxide as a mediator of cytotoxicity. Journal of Experimental Medicine 1979; 149: 100–113
  • Martin J. Neutrophils kill pulmonary endothelial cells of a hydrogen peroxide-dependent pathway. American Review of Respiratory Disease 1984; 130: 209–213
  • Becker E. L. The cytotoxic action of neutrophils on mammalian cells in vitro. Progress in Allergy. 1988; 40: 183–208
  • Varani J., Fligiel S. E.G., Till G. O., Kunkel R. G., Ryan W. S., Ward P. A. Pulmonary endothelial cell killing by human neutrophils. Possible involvement of hydroxyl radical. Laboratory Investigations 1985; 53: 656–663
  • Gannon D. E., Varani J., Phan S. H., Ward J. H., Kaplan J., Till G. O., Simon R. H., Ward P. A. Source of iron in neutrophil-mediated killing of endothelial cells. Laboratory Investigations. 1987; 57: 34–44
  • Puppo A., Halliwell B. Formation of hydroxy! radicals from hydrogen peroxide in the presence of iron. Biochemical Journal. 1988; 249: 185–190
  • Gerschenson L. E., Rottelo R. J. Apoptosis, a different type of cell death. FASEB Journal. 1992; 6: 2450–2455
  • Butlke T. M., Sandstrom P. A. Oxidative stress as a mediator of apoptosis. Immunology Todav 1994; 15: 7–10
  • Catheart M. K., McNally A. K., Morel D. W., Chislom G. M. Superoxide anion participation in human monocyte-mediated oxidation of low density lipoprotein in conversion of low-density lipoproteins to cytotoxins. Journal of Immunology. 1989; 142: 1963–1969
  • McCord J. M., Fridovich I. Superoxide dismutase, the first twenty years (1969 1988). Fire Radicals in Biology and Medicine. 1988; 5: 363–369
  • Flore L. Superoxide dismutase for therapeutic use: clinical experience, dead ends and hopes. Molecular and Cellular Biochemistry. 1988; 84: 123–131
  • Greenwald R. A. Superoxide dismutase and catalasc as therapeutic agents for human disease. A critical review. Free Radicals in Biology and Medicine. 1990; 8: 201–209
  • Gross A. R. Inhibitors of leukocyte superoxide generating oxidase: mechanisms of action and methods for their evaluation. Free Radicals in Biology and Medicine. 1990; 8: 71–93
  • Halliwell B., Gutteridge J. M.C., Cross C. E. Free radicals, antioxidants, and human disease: Where are we now?. Journal of Laboratory and Clinical Medicine 1992; 119: 598–620
  • Rice-Evans C. A., Diplock A. T. Current status of antioxidant therapy. Free Radical in Biology and Medicine. 1993; 15: 77–96
  • Rose R. C., Bode A. M. Biology of free radical scavengers: an evaluation of ascorbate. FASEB Journal 1993; 7: 1135–1142
  • Harris E. D. Regulation of antioxidant enzymes. FASEB Journal. 1992; 6: 2675–2683
  • Chwalwijk J., Van Der Berg W. B., Van Der Pute L., Joosten L. A.B., Van Bersselaar L. Cationization of catalase, peroxidase and superoxide dismutase. Effect of improved intraarticular retention on experimental arthritis in mice. Journal of Clinical Investigation. 1985; 76: 198–205
  • Gibbs D. F., Varani J., Ginsburg I. Formation and use of poly-L-histidine catalasc complexes: protection from hydrogen peroxide-mediated injury. Inflammation. 1989; 13: 465–474
  • Kohen R., Kakundaand A., Rubinstein A. The role of cationized catalase and cat ionized glucose oxidase in mucosal oxidative damage induced in the rat Jejunum. Journal of Biological Chemistry. 1992; 267: 21349–21354
  • Rubinstein A., Kakunda A., Kohen R. Protection of the rat Jejunal mucosa against oxidative injury by cationized superoxide dismutase. Journal of Pharmaceutical Sciences. 1993; 82: 1285–1287
  • Nussier A. K., Billar T. R. Inflammation, immunoregulation, and inducible nitric oxide sythase. Journal of Leukocyte Biology. 1993; 54: 171–178
  • Feldman P. L., Griffith O. W., Stuehr D. J. The surprising life of nitric oxide. Chemical and Engineering News. 1993; 20: 26–38
  • Cazevieille C., Muller A., Meynier F., Bonne C. Superoxide and nitric oxide cooperation in hypoxia/reoxygenation-induced neuron injury. Free Radicals in Biology and Medicine. 1993; 14: 389–395
  • Beckman J. S., Beckman T. W., Chen J., Marshall P. A., Freeman B. A. Apparent hydroxyl radical production by peroxinitrite: implications for endothelial injury from nitric oxide and superoxide. Proceeding of the National Academy of Sciences of the United States of America. 1990; 87: 1620–1624
  • Rubanyi G. M., Ho E. H., Cantor E. H., Lumma W. C., Parker B. L.M. Cytoproteclive function of nitric oxide: inactivation of superoxide radical induced by human leukocytes. Biochemical and Biophysical Research Communications. 1991; 181: 1392–1397
  • Ginsburg I. Can hemolytic streptococci be considered “forefathers” of modern phagocytes? Both cell types freely migrate in tissues and kill targets by a “cross-talk” among their secreted agonists. Comparative Biochemistry and Physiology 1994, in press

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.