9
Views
11
CrossRef citations to date
0
Altmetric
Original Article

SerniauinoneI Free Radical Formation by Daunorubicin Aglycone Incorporated into the Cellulir Membranes of Intact Chinese Hamster Ovary Cells

, , &
Pages 9-18 | Received 20 Feb 1995, Published online: 07 Jul 2009

References

  • Gianni L., Corden B. J., Myers C. E. The biochemical basis of anthracycline toxicity and anti-tumor activity. Reviews in Biochemical Toxicology 1983; 5: 1–82
  • Weiss R. B. The anthracyclines: will we ever find a better doxorubicin?. Seminars in Oncology 1992; 19: 670–686
  • Gutteridge J. M.C. Lipid peroxidation and possible hydroxyl radical formation stimulated by the self-reduction of a doxorubicin-iron(III) complex. Biochemical Pharmacology 1984; 33: 1725–1728
  • Gianni L., Zweier J. L., Levy A., Myers C. E. Characterization of the cycle of iron-mediated electron transfer from adriamycin to molecular oxygen. Journal of Bidogical Chemistry 1985; 260: 4826–6820
  • Halliwell B., Gutteridge J. M.C. Free Radicals in Biology and Medicine. 2nd ed. Clarendon, Oxford 1989; 87: 11671–79
  • Bachur N. R., Gordon S. L., Gee M. V., Kon H. NADPH cytochrome P-450 reductase activation of qui-none anticancer agents to free radicals. Proceedings of the National Academy of Sciences of the United States of America 1979; 76: 954–957
  • Kalyanaraman B., Perez-Reyes E., Mason R. P. Spin-trapping and direct electron spin resonance investigations of the red ox metabolism of quinone anticancer drugs. Biocliimica et Biophysica Acta 1980; 630: 119–130
  • Hoey B. M., Butler J., Lea J. S., Sarna T. A comparison of the free radical properties of several anthracycline anti-tumour drugs and some of their analogues. Free Radical Research Communications 1988; 5: 169–176
  • Zweier J. L., Gianni L., Muindi J., Meyers C. E. Differences in O2 reduction by the iron complexes of adriamycin and daunomycin: the importance of the side-chain hydroxyl group. Biochimica et Biophysica Acta 1986; 884: 326–336
  • Takanashi S., Bachur N. R. Daunorubicin metabolites in human urine. Journal of Pharmacology and Experimental Therapeutics 1975; 195: 41–49
  • Zini G., Vicario G. P., Lazzati M., Arcamone F. Disposition and metabolism of [14–14C] 4-demethoxydaunorubicin HC1 (idarubicin) and [14–14C] daunorubicin HCI in the rat. Cancer Chemotherapy and Pharmacology 1986; 16: 107–115
  • Takanashi S., Bachur N. R. Adriamycin metabolism in man. Evidence from urinary metabolites. Drug Metabolism and Disposition 1976; 4: 47–79
  • Sokolove P. M. Interaction of adriamycin aglycones with isolated mitochondria. Biochemical Pharmacology 1993; 46: 497–691
  • Schwartz H. S., Paul B. Biotransformations of daunorubicin aglycones by rat liver microsomes. Cancer Research 1984; 44: 2480–2484
  • Arcamone F., Franceschi G., Orezzi P., Cassinelli G., Barbieri W., Mondelli R. The structure of daunomycinone. Journal of the American Chemical Society 1964; 86: 5334–5335
  • Marks D. C., Belov L., Davey M. W., Davey R. D., Kidman A. D. The MTT cell viability assay for cyto-toxicity testing in multidrug-resistant human leukemic cells. Leukemia Research 1992; 16: 1165–1173
  • Swartz H. M., Bolton J. R., Borg D. C. Biological Applications of Electron Spin Resonance. John Wiley & Son, Toronto 1972; 100
  • Kalyanaraman B., Morehouse K. M., Mason R. P. An electron paramagnetic resonance study of the interactions between the adriamycin semiquinone, hydrogen peroxide, iron-chelators, and radical scavengers. Archives of Biochemistry and Biophysics 1991; 286: 164–171
  • Nakazawa H., Andrews P. A., Callery P. S., Bachur N. R. Superoxide radical reactions with an-thracycline antibiotics. Biochemical Pharmacology 1985; 34: 481–490
  • Alegria A. E., Samuni A., Mitchell J. B., Riesz P., Russo A. Free radicals induced by adriamycin-sensitive and adriamycin-resistant cells: A spin trapping study. Biochemistry 1989; 28: 8653–8658
  • Yesair D. W., Thayer P. S., McNitt S., Teague K. comparative uptake, metabolism and retention of anthracyclines by tumors growing in vitro and. in vivo. European Journal of Cancer 1980; 16: 901–907
  • Davies K. J.A., Doroshow J. H. Redox cycling of anthracyclines by cardiac mitrochondria. I. Anthracycline radical formation by NADH dehydrogenase. Journal of Biological Chemistry 1986; 261: 3060–3067
  • Myers C. E., Mimnaugh E. G., Yeh G. C., Sinha B. K. Biochemical mechanisms of tumor cell kill by the anthracyclines. Anthracycline and anthracenedione-based anticancer agents, J. W. Lown. Elsevier, Amsterdam 1988; 6: 527–569
  • Crane F. L., Sun I. L., Clark M. G., Grebing C., Low H. Transplasma-membrane redox systems in growth and development. Biochimica et Biophysica Acta 1985; 811: 233–264
  • Sun I. L., Crane F. L., Grebing C. Inhibition of plasma membrane NADH dehydrogenase by adriamycin and related anthracycline antibiotics. Journal of Bio-energetics and Biomembranes 1984; 16: 209–221
  • Hales B. J., Case E. E. Immobilized radicals. IV. Biological semiquinone anions and neutral semiquinone. Biochimica et Biophysica Acta 1981; 637: 291–302
  • Swallow A. J. Physical chemistry of semiquinones. Function of quinones in energy conserving systems, B. L. Trumpower. Academic Press, New York 1982; 59–72
  • Gutierrez P. L., Gee M. V., Bachur N. R. Kinetics of anthracycline antibiotic free radical formation and reductive glycosidase activity. Archives of Biochemistry and Biophysics 1983; 223: 68–75

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.