17
Views
14
CrossRef citations to date
0
Altmetric
Original Article

Catecholamines Enhance Dihydrolipoamide Dehydrogenase Inactivation by the Copper Fenton System. Enzyme Protection by Copper Chelators

&
Pages 311-322 | Received 03 Aug 1995, Accepted 18 Sep 1995, Published online: 07 Jul 2009

References

  • Correa J. Gutierrez, Stoppani A. O.M. Inactivation of lipoamide dehydrogenaseby cobalt(II) and iron(II) Fenton systems: effect of metal chelators, thiol com pounds and adenine nucleotides. Free Radical Research Communications 1993; 19: 303–314
  • Correa J. Gutierrez, Stoppani A. O.M. Inactivation of heart lipoamide dehydrogenase by copper Fenton systems. Effect of thiol compounds and metal chelators. Free Radical Research 1995; 22: 239–250
  • Rao G. S. Release of 2-thiobarbituric acid reactive products from glutamate, deoxyuridine or DNA during autoxidation of dopamine in the presence of copper ions. Pharmacology and Toxicology 1991; 69: 169466
  • Ryan T. P., Miller D. M., Aust S. D. The role of metals in the enzymatic and nonenzymatic oxidation of epinephrine. Journal of Biochemical Toxicology 1993; 8: 33–39
  • Mattammal M. B., Strong R., White E., Hsu F. Characterization of peroxidative oxidation products of dopamine by mass spectrometry. Journal of Chromatography B 1994; 658: 21–30
  • Herlinger E., Jameson R. F., Linert W. Spontaneous autoxidation of dopamine. Journal of Chemistry Society Perkin Transaction 1995; 2: 259–263
  • Noble P. G., Antel J. P., Yong V. W. Astrocytes and catalase prevent the toxicity of catecholamines to oligodendrocytes. Brain Research 1994; 633: 83–90
  • Linderson Y., Baez S., Segura-Aguilar J. The protective effect of superoxide dismutase and catalase against formation of reactive oxygen species during reduction of cyclized norepinephrine ortho-quinone by DT-diaphorase. Biochimica et Biophysica Acta 1994; 1200: 197–204
  • Spencer J. P.E., Jenner A., Aruoma O. I., Evans P. J., Kaur H., Dexter D. T., Jenner P., Lees A. J., Marsden D. C., Halliwell B. Intense oxidative DNA damage pro moted by L-DOPA and its metabolites. Implications for neurodegenerative disease. FEBS Letters 1994; 353: 246–250
  • Basma A. N., Morris E. J., Nicklas W. J., Geller H. M. L-DOPA cytotoxicity to PC12 cells in culture is via its autoxidation. Journal of Neurochemistry 1995; 64: 825–832
  • Chiueh C. C., Miyake H., Peng M.-T. Role of dopamine autoxidation, hydroxyl radical generation, and calcium overload in underlying mechanisms involved in MFTP-induced parkinsonism. Advances in Neurology. Raven Press, Ltd., New York 1993; 60: 251–257
  • Przedborski S., Jackson-Lewis V., Muthane U., Jiang U., Ferreira M., Naini A. B., Fahn S. Chronic levodopa administration alters cerebral mitochondrial respiratory chain activity. Annals of Neurology 1993; 34: 715–723
  • Pardo B., Mena M. A., Garcia de Yebenes J. L-DOPA inhibits complex IV of the electron transport chain in catecholamine-rich human neuroblastoma NB69 cells. Journal of Neurochemistry 1995; 64: 576–582
  • Ben-Shachar D., Zuk R., Glinka Y. Dopamine neurotoxicity: inhibition of mitochondrial respiration. Journal of Neurochemistry 1995; 64: 718–723
  • Jewett S. L., Eddy L. J., Hochstein P. Is the autoxidation of catecholamines involved in ischemia-reperfusion injury?. Free Radical Biology and Medicine 1989; 6: 185–188
  • Chevion M., Jiang Y., Har-EI R., Berenshtein E., Uretzky G., Kitrossky N. Copper and iron are mobilized following myocardial ischemia: possible predictive criteria for tissue injury. Proceedings of the National Academy of Sciences of the United States of America 1993; 90: 1102–1106
  • Obata T., Hosokawa H., Yamanaka Y. In vivo monitoring of norepinephrine and *OH generation on myocardial ischemic injury by dialysis technique. American Journal of Physiology 1994; 266: H903–H908
  • Gutteridge J. M.C. Ferrous-salt-promoted damage to deoxyribose and benzoate. Biochemical Journal 1987; 243: 709–714
  • Rowley D. A., Halliwell B. Formation of hydroxyl radicals from NADH and NADPH in the presence of copper salts. Journal of Inorganic Biochemistry 1985; 23: 103–108
  • Ondetti M. A. From peptides to peptidases: a chronicle of drug discovery. Annual Review of Pharmacology and Toxicology 1994; 34: 1–16
  • Solen G. Radioprotective effect of N-acetylcysteine in vitro using the induction of DNA breaks and end-point. international Journal Radiation Biology 1993; 64: 359–366
  • Puppo A., Cecchini R., Aruoma O. I., Bolli R., Halliwell B. Scavenging of hypochlorous acid and of myoglobin-derived oxidants by the cardioprotective agent mercaptopropionylglycine. Free Radical Research Communications 1990; 10: 371–381
  • Scheer B., Zimmer G. Dihydrolipoic acid pre vents hypoxic/reoxygenation and peroxidative damage in rat heart mitochondria. Archives of Biochemistry and Biophysics 1993; 302: 385–390
  • Suzuki Y. J., Tsuchiya M., Packer L. Antioxidant activities of dihydrolipoic acid and its structural homologues. Free Radical Research Communications 1993; 18: 115–122
  • Lmstad R. A. Copper catalyzed oxidation of ascorbate (vitamin C). Inhibitory effect of catalase, superoxide dismutase, serum proteins (ceruloplasmin, albumin, apotransferrin) and amino acids. International Journal of Biochemistry 1987; 19: 309–313
  • Kukreja R. C., Loesser K. E., Kearns A. A., Naseem S. A., Hess M. L. Protective effects of histidine during ischemia-reperfusion in isolated perfused rat hearts. American Journal of Physiology 1993; 264: H1370–GH1381
  • van Maanen J.M.S., Verkerk U. H., Broersen J., Lafleur M. V.M., de Vries J., Retél J., Pinedo H. M. Semi-quinone formation from the catechol and orthoquinone metabolites of the antitumor agent VP-16–213. Free Radical Research Communications 1988; 4: 371–384
  • van der Merwe M.J., Jenkins K., Theron E., van der Walt B.J. Interaction of the dicatecholsrooperol and nordihydroguaiaretic acid with oxidative systems in the human blood. Biochemical Pharmacology 1993; 45: 303–311
  • Cohen G., Heikkila R. E. The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents. Journal of Biological Chemistry 1974; 249: 2447–2452
  • Matthews R. G., Williams C. H. Identification of the thiol residues involved in modifications of pig heart lipoamide dehydrogenase by cupric ion and byiodoacetamide. Biochimica et Biophysica Acta 1974; 370: 39–48
  • Ozawa T., Ueda J., Hanaki A. Copper(II)-albumin complex can activate hydrogen peroxide in the presence of biological c; first ESR evidence for the formation of hydroxyl radical. Biochemical and Molecular Biology International 1993; 29: 247–253
  • Ueda J. I., Shimazu Y., Ozawa T. Reactions of copper(II)-oligopeptide complexes with hydrogen per oxide: effects of biological reductants. Free Radical Biology and Medicine 1995; 18: 929–933
  • Kable E. P.W., Parsons P. G. Potency, selectivity and cell cycle dependence of catechols in human tumour cells. in nitro, Biochemical Pharmacology 1988; 37: 1711–1715
  • Misik V., Mak I. T., Stafford R. E., Weglicki W. B. Reactions of captopril and epicaptopril with transition metal ions and hydroxyl radicals: an EPR spectroscopy study. Free Radical Biology and Medicine 1993; 15: 611–619
  • Andreoli S. P. Captopril scavenges hydrogen per oxide and reduces, but does not eliminate, oxidant-induced cell injury. American Journal of Physiology 1993; 264: F120–F127
  • Chopra K., Singh M., Kaul N., Ganguly N. K. Oxygen free radicals and protective effect of captopril on myocardial infarct size. Archives Internationales de Pharmacodynamie et de Thérapie 1993; 322: 55–65
  • Sun J.-Z., Kaur H., Halliwell B., Li X.-Y., Bolli R. Use of aromatic hydroxylation of phenylalanine to mea sure production of hydroxyl radicals after myocardial ischemia in vivo. Direct evidence for a pathogenetic role of the hydroxyl radical in myocardial stunning. Circulation Research 1993; 73: 534–549
  • Mira M. L., Silva M. M., Queirzo M. J., Manso C. F. Angiotensin converting enzyme inhibitors as oxygen free radicals scavengers. Free Radical Research Communications 1993; 19: 173–181
  • Adams J. D., Odunze I. N. Oxygen free radicals and Parkinson's disease. Free Radical Biology and Medicine 1991; 10: 161–169

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.