29
Views
38
CrossRef citations to date
0
Altmetric
Original Article

Altered Levels of Scavenging Enzymes in Embryos Subjected to a Diabetic Environment

, , &
Pages 451-459 | Received 07 Oct 1995, Published online: 07 Jul 2009

References

  • Mills J. L. Malformations in infants of diabetic mothers. Teratology 1982; 25: 385–394
  • Hanson U., Persson B., Thunell S. Relationship between hemoglobin Alc in early type 1 (insulin-dependent) diabetic pregnancy and the occurrence of spontaneous abortion and fetal malformation in Sweden. Diabetologia 1990; 33: 100–104
  • Erksson U. J., Borg L. A.H., Forsberg H., Styrud J. Diabetic embryopathy. Studies with animal and in vitro models. Diabetes 1991; 40((Suppl 2))94–98
  • Styrud J., Thunberg L., Nybacka O., Eriksson U. J. Correlations between maternal metabolism and deranged development in the offspring of normal and diabetic rats. Pediatric Research 1995; 37: 343–353
  • Cockroft D. L., Coppola P. T. Teratogenic effects of excess glucose on head-fold rat embryos in culture. Teratology 1977; 16: 141–46
  • Horton W.E., Jr., Sadler T. W. Effects of maternal diabetes on early embryogenesis. Alterations in morphogenesis produced by the ketone body, B-hydroxybuty rate. Diabetes 1983; 32: 610–616
  • Eriksson U. J., Borg L. A.H. Diabetes and embryonic malformations. Role of substrate-induced free-oxygen radical production for dysmorphogenesis in cultured rat embryos. Diabetes 1993; 42: 411–419
  • Eriksson U. J., Borg L. A.H. Protection by free oxygen radical scavenging enzymes against glucose-induced embryonic malformations. in vitro. Diabetologia 1991; 34: 325–331
  • Jenkinson P. C., Anderson D., Gangolli S. D. Malformations induced in cultured rat embryos by enzymatically generated active oxygen species. Teratogenesis, Carcinogenesis and Mutagenesis 1986; 6: 547–554
  • Sun Y. Free radicals, antioxidant enzymes and carcinogenesis. Free Radical Biology and Medicine 1990; 8: 583–599
  • Cagliero E., Forsberg H., Sala R., Lorenzi M., Eriksson U. J. Maternal diabetes induces increased expression of extracellular matrix components in rat embryos. Diabetes 1993; 42: 975–980
  • Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 1979; 18: 5294–5299
  • Lieman-Hurwitz J., Dafni N., Lavie V., Groner Y. Human cytoplasmic superoxide dismutase cDNA clone: A probe for studying the molecular biology of Downs syndrome. Proceedings of the National Academy of Sciences 1982; 79: 2808–2811
  • Xiang K., Cox N. J., Halliwell R. A., Bell G. I. Multiple Taq I RFLPs at the human manganese super-oxide dismutase (SOD 2) locus on chromosome 6. Nucleic Acids Research 1987; 15: 7654
  • Nakashima H., Yamamoto M., Goto K., Osumi T., Hashimoto T., Endo H. Isolation and characterization of the rat catalase-encoding gene. Gene 1989; 79: 279–288
  • Mullenbach G. T., Tabrizi A., Irvine B. D., Bell G. I., Tainer J. A., Halliwell R. A. Selenocysteine's mechanism of incorporation and evolution revealed in cDNAs of three glutathione peroxidam. Protein 1988; 2: 239–246
  • Gunning P., Ponte P., Okayama H., Engel J., Blau H., Kedes L. Isolation and characterization of full-length cDNA clones for human a-, P- and γ-Actin mRNAs: Skeletal but not cytoplasmic actins have an amino-terminal cystine that is subsequently removed. Molecular and Cellular Biology 1983; 3: 787–795
  • Munim A., Asayama K., Dobashi K., Suzuki K., Kawaoi A., Kato K. Immunohistochemical localization of superoxide dismutases in fetal and neonatal rat tissues. Journal off Histochemistry and Cytochemistry 1992; 40: 1705–1713
  • Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 1951; 193: 265–275
  • Puget K., Michelson A. M. Iron containing superoxide dismutases from luminous bacteria. Biochimie 1974; 56: 1255–1267
  • Johansson L. H., Borg L. A.H. A spectrophotometric method for determination of catalase activity in small. tissue samples. Analytical Biochemistry 1988; 174: 331–336
  • Paglia D. E., Valentine W. N. Studies on the quantitative and qualitative characterisation of erythro-cyte glutathione peroxidase. Journal of Laboratory and Clinical Medicine 1967; 70: 158–169
  • Kissane J. M., Robins E. The fluorometric measurement of deoxyribonucleic acid in animal tissues with special reference to the central nervous system. Journal of Biological Chemistry 1958; 233: 184–188
  • Hinegardner R. T. An improved fluorometric assay for DNA. Analytical Biochemistry 1971; 39: 197–201
  • Ostle B. Statistics in research. (2nd Ed). Iowa State University Press, Ames, IA 1963
  • Eriksson U. J., Dahlstrom E., Larsson K. S., Hellerstrom C. Increased incidence of congenital malformations in the offspring of diabetic rats and their prevention by maternal insulin therapy. Diabetes 1982; 31: 1–6
  • Oberley L. W., Clair D.K. St., Autor A. P., Oberley T. D. Increase in manganese superoxide dismutase activity in the mouse heart after X-irradiation. Archives of Biochemistry and Biophysics 1987; 254: 69–80
  • Yang X., Borg L. A.H., Eriksson UJ. Altered mitochondrial morphology of rat embryos in diabetic pregnancy. Anatomical Record 1995; 241: 255–267
  • Epstein J.C, Avraham K. V., Lovett M., Smith S., Elroy-Stein O., Rotman G., Bry C., Groner Y. Transgenic mice with increased Cu/Zn-superoxide activity: Animal model of dosage effects in Downs syndrome. Proceedings of the National Academy of Sciences 1987; 84: 8044–8048
  • Eriksson U. J., Borg L. A.H., Sjoberg A., Wentzel P., Hagy Z., Groner Y. Embryos transgenic for superoxide dismutase (SOD) show resistance to a teratogenic diabetic environment in v&a. Diabetologia 1993; 36((Suppl 1))A41
  • Hagay Z. J., Weiss Y., Zusman I., Peled-Kamar M., Eriksson U. J., Groner Y. Prevention of hyper-glycemia-associated embryopathy by embryonic over-expression of the free radical scavenger copper zinc superoxide dismutase gene. American Journal of Obstetrics and Gynecology 1995; 173: 1036–1041
  • Weisiger R. A., Fridovich I. Superoxide dismutase. Organelle specificity. Journal of Biological Chemistry 1973; 248: 3582–3592
  • Shull S., Heintz N. H., Periasamy M., Manohar M., Janssen Y. M.W., Marsh J. P., Mossman B. T. Differential regulation of antioxidant enzymes in response to oxidants. Journal of Biological Chemistry 1991; 266: 24398–24403
  • Harris C. A. Manganese superoxide dismutase is induced by IFN-γ in multiple cell types. Synergistic induction by IFN-γ and tumor necrosis factor or IL-I. Journal of Immunology 1991; 147: 149–154
  • Visner G. A., Chesrown S. E., Monnier J., Ryan US., Nick H. S. Regulation of manganese superoxide dismutase: IL-1 and TNF induction in pulmonary artery and microvascular endothelial cells. Biochemical and Biophysical Research Communications 1992; 188: 453–462
  • Fujii J., Taniguchi N. Phorbol ester induces manganese-superoxide dismutase in tumor necrosis factor-resistant cells. Journal of Biological Chemistry 1991; 266: 23142–23146
  • Delabar J.-M., Nicole A., Duriol L., Jacob Y., Meunier-Rotival M., Galibert F., Sinet P.-M., Jérôme H. Cloning and sequencing of a rat CuZn superoxide dismutase cDNA. European Journal of Biochemistry 1987; 166: 181–187
  • de Haan J.B., Tymms M. J., Cristiano F., Kola I. Expression of Copper/Zinc superoxide dismutase and glutathione peroxidase in organs of developing mouse embryos, fetuses and neonates. Pediatric Research 1994; 35: 188–196
  • Hoffman J. B., Stevens M., Autor A. P. Adaptation to hyperoxia in the neonatal rat: Kinetic parameters of the oxygen-mediated induction of lung superoxide dismutases, catalase and glutathione peroxidase. Toxicology 1980; 16: 215–225
  • Asayama K., Uchida N., Nakane T., Hayashibe H., Dobashi K., Amemiya S., Kato K., Nakazawa S. Anti-oxidants in serum of children with insulin-dependent diabetes mellitus. Free Radical Biology and Medicine 1993; 15: 597–602
  • Gallaher D. D., Csalany A. S., Shoeman D. W., Olson J. M. Diabetes increases excretion of urinary malondialdehyde conjugates in rats. Lipids 1993; 28: 663–666
  • Wohaieb S. A., Godin D. V. Alterations in free radical tissue-defence mechanisms in streptozocin-induced diabetes in rat. Effects of insulin treatment. Diabetes 1987; 36: 1014–1018
  • Dobashi K., Asayama K., Hayashibe H., Uchida N., Kobayashi M., Kawaoi A., Kato K. Effects of diabetes mellitus induced by streptozotocin on renal superoxide dismutases in the rat. Virchows Archiv B Cell Pathology 1991; 60: 67–72
  • Arai K., Iizuka S., Tada Y., Oikawa K., Taniguchi N. Increase in the glycosylated form of erythrocyte CuZn-superoxide dismutase in diabetes and close association of the nonenzymatic glycosylation with the enzyme. Biochimica et Biophysica Acta 1987; 924: 292–296
  • Aoki Y., Yazaki K., Shirotori K., Yanagisawa Y., Oguchi H., Kiyosawa K., Furuta S. Stiffening of connective tissue in elderly diabetic patients: Relevance to diabetic nephropathy and oxidative stress. Diabetologia 1993; 36: 79–83
  • Bravenboer B., Kappelle A. C., Hamers F. P.T., van Buren T., Erkelens D. W., Gispen W. H. Potential use of glutathione for the prevention and treatment of diabetic neuropathy in the streptozotocin-induced diabetic rat. Diabetologia 1992; 35: 813–817
  • Cotter N. E., Cameron N. A., Archibald V., Dines K. C., Maxfield E. K. Anti-oxidant and pro-oxidant effects on nerve conduction velocity, endoneurial blood flow and oxygen tension in non-diabetic and streptozotocin-dia-betic rats. Diabetologia 1994; 37: 449–459
  • Eriksson U. J. Antioxidants protect rat embryos from diabetes-induced dysmorphogenesis. 25th International Diabetes Federation Congress Abstracts 1994; 410
  • El-Hage S., Sigh S. M. Temporal expression of genes encoding free radical-metabolizing enzymes is associated with higher mRNA levels during in utero development in mice. Developmental Genetics 1990; 11: 149–159
  • Gerdin E., Tydén O., Eriksson U. J. The development of antioxidant enzyme defence in the perinatal rat lung: Activities of superoxide dismutase, glutathione per-oxidase and catalase. Pediatric Research 1985; 19: 687–691
  • Simán C.M., Borg L. A.H., Eriksson U. J. Disturbed development, low vitamin E concentration, and increased lipid peroxidation in embryos of diabetic rats. Diabetologia 1994; 37((Suppl 1))A171

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.