113
Views
83
CrossRef citations to date
0
Altmetric
Original Article

Commentary: The Role of Iron-Sulfur Clusters in in vivo Hydroxyl Radical Production

Pages 369-384 | Received 15 Apr 1996, Published online: 07 Jul 2009

References

  • Liochev S. I., Fridovich I. The role of O2 in the production of HO: in vitro and in vivo. Free Radical Biology and Medicine 1994; 16: 29–33
  • McCord J. M., Fridovich I. Superoxide dis-mutase. An enzymic function for erythrocuprein (hemocuprein). Journal of Biological Chemistry 1969; 244: 6049–6055
  • McCord J. M., Keele B. B., Jr., Fridovich I. An enzyme based theory of obligate anaerobiosis: the physiological function of superoxide dismutase. Proceedings of the National Academy of Sciences, U.S.A. 1971; 68: 1024–1027
  • Fee J. A. Is superoxide toxic and are superoxide dismutases essential for aerobic life? (and the following discussion). Oxygen and Oxy-radicals in Chemistry and Biology, M. A. J. Rodgers, E. L. Powers. Academic Press, New York 1981; 205–239
  • Fee J. A. On the question of superoxide toxicity and the biological function of superoxide dismutase. (and the following discussion). Oxidases and Related Redox Systems, T. E. King, H. S. Mason, M. Morrison. Pergamon Press, Oxford, New York 1982; 101–149
  • Weser U., Paschen W. Singlet oxygen and superoxide dismutase (cuprein). Biochemical and Biophysical Research Communications 1975; 66: 769–777
  • Hodgson E. K., Fridovich I. The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: chemiluminescence and peroxidation. Biochemistry 1975; 14: 5299–5303
  • Ischiropoulos H., Zhu L., Chen J., Tsai M., Martin J. C., Smith C. D., Beckman J. S. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Archives of Biochemistry and Biophysics 1992; 298: 431–437
  • Crow J. P., Sampson J., Beckman J. S. A gained function for SOD mutants in amyotropic lateral sclerosis (ALS): formation of zinc-deficient SOD enhances nitration of neurofilaments by peroxynitrite. Oxygen 95, The Annual Meeting of the Oxygen Society. Program and Abstracts: A-29 abstr. 1995
  • Wiedau-Pazos M., Goto J. J., Rabizadeh S., Gralla E. B., Roe J. A., Lee M. K., Valentine J. S., Bredesen D. E. Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science 1996; 271: 515–518
  • Fee J. A. Is superoxide toxic?. Biological and Clinical Aspects of Superoxide and Superoxide Dismutase. Developments in Biochemistry, vol. 11B, W. H. Bannister, J. V. Bannister. Elsevier/North-Holland, New York 1980; 41–48
  • Fee J. A. Regulation of sod genes in Escherichia coli: relevance to superoxide dismutase function. Molecular Microbiology 1991; 5: 2599–2610
  • Marklund S., Marklund G. Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry 1974; 47: 469–474
  • Cohen G., Heikkila R. The generation of hydrogen peroxide, superoxide radical and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents. Journal of Biological Chemistry 1974; 8: 2447–2452
  • Winterbourn C. C., Metodiewa D. The reaction of superoxide with reduced glutathione. Archives of Biochemistry and Biophysics 1994; 314: 284–90
  • Bielski B. H. J., Chan P. C. Enzyme catalyzed free radical chain reactions with nitcotinamide nucleotides. I. Lactate dehydrogenase-catalyzed chain oxidation of bound NADH by superoxide radicals. Archives of Biochemistry and Biophysics 1973; 159: 873–879
  • Liochev S. I., Fridovich I. Vanadate-stimu-lated oxidation of NAD(P)H in the presence of biological membranes and other sources of O2. Archives of Biochemistry and Biophysics 1990; 279: 1–7
  • Kono Y., Fridovich I. Superoxide radical inhibits catalase. Journal of Biological Chemistry 1982; 257: 5751–5754
  • Blum J., Fridovich I. Inactivation of glutathione peroxidase by superoxide radical. Archives of Biochemistry and Biophysics 1985; 240: 500–508
  • Fridovich I. Superoxide radical and superoxide dismutases. Annual Review of Biochemistry 1993; 64: 97–112
  • Huie R. E., Padmaja S. The reaction of NO with superoxide. Free Radical Research Communications 1993; 18: 195–199
  • Radi R., Beckman J. S., Bush K. M., Freeman B. A. Peroxynitrite oxidation of sulfhydrils. The cytotoxic potential of superoxide and nitric oxide. Journal of Biological Chemistry 1991; 266: 4244–4250
  • Hausladen A., Fridovich I. Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. Journal of Biological Chemistry 1994; 269: 29405–29408
  • Castro L., Rodriguez M., Radi R. Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. Journal of Biological Chemistry 1994; 269: 29409–29415
  • Radi R., Beckman J. S., Bush K. M., Freeman B. A. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Archives of Biochemistry and Biophysics 1991; 288: 481–487
  • Wiseman H., Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochemical Journal 1996; 313: 17–29
  • Zhu L., Gunn C., Beckman J. S. Bactericidal activity of peroxynitrite. Archives of Biochemistry and Biophysics 1992; 298: 452–457
  • Imlay J. A., Fridovich I. Assay of metabolic superoxide production in Escherichia coli. Journal of Biological Chemistry 1991; 266: 6957–6965
  • Dionisi O., Galeotti T., Terranova T., Azzi A. Superoxide radicals and hydrogen peroxide formation in mitochondria from normal and neoplastic tissues. Biochimica el Biophysica Acta 1975; 403: 292–300
  • Gaudu P., Touati D., Niviere V., Fonetcave M. The NAD(P)H:flavin oxidoreductase from Escherichia coli as a source of superoxide radicals. Journal of Biological Chemistry 1993; 269: 8182–8188
  • Massey V., Strickland S., Mayhew S. G., Howell L. G., Engel P. C., Matthews R. G., Shuman M., Sullivan P. A. The production of superoxide anion radicals in the reaction of reduced flavins and flavoproteins with molecular oxygen. Biochemical and Biophysical Research Communications 1969; 36: 891–897
  • Imlay J. A. A metabolic enzyme that rapidly produces superoxide, fumarate reductase of Escherichia coli. Journal of Biological Chemistry 1995; 270: 19767–19777
  • McCord J. M., Russell W. J. Superoxide inactivates creatine phosphokinase during reperfusion of ischemic heart. Oxy-Radicals in Molecular Biology and Pathology, P. A. Cerutti, I. Fridovich, J. M. McCord. Allan R. Liss, New York 1988; 27–35
  • Suzuki Y. J., Ford G. D. Mathematical model supporting the superoxide theory of oxygen toxicity. Free Radical Biology and Medicine 1994; 16: 63–72
  • McCord J. M., Fridovich I. Superoxide dismutase: The first twenty years. Free Radical Biology and Medicine 1988; 5: 363–369
  • Fridovich I. Biological effects of the superoxide radical. Archives of Biochemistry and Biophysics 1986; 247: 1–11
  • Carlioz A., Touati D. Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dis-mutase necessary for aerobic life?. EMBO Journal 1986; 5: 623–630
  • Imlay J. A., Fridovich I. Supression of oxidative envelope damage by pseudoreversion of a superoxide dismutase-deficient mutant of Escherichia coli. Journal of Bacteriology 1992; 174: 953–961
  • Philips J. P., Campbell S. D., Michaud D., Charbonneau M., Hilliker A. J. Null mutation of copper/zinc superoxide dismutase in Drosophila confers hypersensitivity to paraquat and reduced longevity. Proceedings of the National Academy, U.S.A. 1989; 86: 2761–2765
  • Li Y., Huang T.-T., Carlson E. J., Melov S., Ursell P. C., Olson J. L., Noble L. J., Yoshimura M. P., Berger C., Chan P. H., Wallace D. C., Epstein C. J. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nature Genetics 1995; 11: 376–381
  • Eisenstark A., Miller C., Jones J., Leven S. Escherichia coli genes involved in cell survival during dormancy: role of oxidative stress. Biochemical and Biophysical Research Communications 1992; 188: 1054–1059
  • Prieto-Alamo M.-J., Abril N., Pueyo C. Mutagenesis in Escherichia coli K-12 mutants defective in superoxide dismutase or catalase. Carcinogenesis 1993; 14: 237–244
  • Benov L., Fridovich I. A superoxide dismutase mimic protects sodA sodB Escherichia coli against aerobic heating and stationary-phase death. Archives of Biochemistry and Biophysics 1995; 322: 291–294
  • Farr S. B., D'Ari R., Touati D. Oxygen-dependent mutagenesis in Echerichia coli lacking superoxide dismutase. Proceedings of the National Academy of Sciences, U.S.A. 1986; 83: 8268–8272
  • Minakami H., Fridovich I. Relationship between growth of Escherichia coli and susceptibility to the lethal effect of paraquat. FASEB Journal 1990; 4: 3239–3244
  • Kitzler J., Fridovich I. The effects of paraquat on Escherichia coli: distinction between bacteriostasis and lethality. Journal of Free Radicals in Biology and Medicine 1986; 2: 245–248
  • Brown O. R., Yein F. Dihydroxyacid dehydratase: the site of hyperbaric oxygen poisoning in branch-chain amino acid biosynthesis. Biochemical and Biophysical Research Communications 1978; 85: 1219–1224
  • Brown O. R., Seither R. L. Oxygen and redox-active drugs: shared toxicity sites. Fundamental and Applied Toxicology 1983; 3: 209–214
  • Gardner P. R., Fridovich I. Quinolinate synthetase: the oxygen-sensitive site of de novo NAD(P)+ biosynthesis. Archives of Biochemistry and Biophysics 1991; 284: 106–111
  • Kuo C. F., Mashino T., Fridovich I. α, β-Dihydroxy isovalerate dehydratase: a superoxide-sensitive enzyme. Journal of Biological Chemistry 1987; 262: 4724–4727
  • Flint D. H., Emptage M. H. Dihydroxy acid dehydratase: isolation characterization as iron-sulfur protein and sensitivity to inactivation by oxygen radicals. Biosynthesis of Branched Chain Amino Acids, Z. Barak, D. Chipman, J. V. Schloss. Balaban, Rehovoth and Philadelphia 1990; 285–314
  • Flint D. H., Emptage M. H., Finnegan M. G., Fu W., Johnson M. K. The role and properties of the iron-sulfur cluster in Escherichia coli dihydroxy-acid dehydratase. Journal of Biological Chemistry 1993; 268: 14732–14742
  • Gardner P. R., Fridovich I. Superoxide sensitivity of the Escherichia coli 6-phosphogluconate dehydratase. Journal of Biological Chemistry 1991; 266: 1478–1483
  • Gardner P. R., Fridovich I. Superoxide sensitivity of the Escherichia coli aconitase. Journal of Biological Chemistry 1991; 266: 19328–19333
  • Gardner P. R., Fridovich I. Inactivation-reactivation of aconitase in Escherichia coli. A sensitive measure of superoxide radical. Journal of Biological Chemistry 1992; 267: 8757–8763
  • Liochev S. I., Fridovich I. Fumarase C, the stable fumarase of Escherichia coli, is controlled by the soxRS regulon. Proceedings of the National Academy of Sciences, U.S.A. 1992; 89: 5892–5896
  • Liochev S. I., Fridovich I. I. Modulation of the fumarases of Escherichia coli in response to oxidative stress. Archives of Biochemistry and Biophysics 1993; 301: 379–384
  • Flint D. H. Initial kinetic and mechanistic characterization of Escherichia coli fumarase A. Archives of Biochemistry and Biophysics 1994; 311: 509–516
  • Flint D. H., Tuminello J. F., Emptage M. H. The inactivation of Fe-S cluster containing hydrolyases by superoxide. Journal of Biological Chemistry 1993; 268: 22369–22376
  • Flint D. H., Emptage M. H., Guest J. R. Fumarase A from Escherichia coli purification and characterization as an iron cluster containing enzyme. Biochemistry 1992; 31: 10331–10337
  • Brown O. R., Smyk-Randall E., Draczynska-Lusiak B., Fee J. A. Dihydroxy-acid dehydratase, a [4Fe-4S] cluster-containing enzyme in Escherichia coli: Effect of intracellular superoxide dismutase on its inactivation by oxidant stress. Archives of Biochemistry and Biophysics 1995; 319: 10–22
  • Haber F., Weiss J. The catalytic decomposition of hydrogen peroxide by iron salts. Proceedings of the Royal Society of London [A] 1934; 147: 332–335
  • Barb W. G., Baxendale J. H., George P., Hargrave K. R. Reactions of ferrous and ferric ions with hydrogen peroxide. Part I. The ferrous ion reaction. Transactions of the Faraday Society 1957; 47: 462–500
  • Rush J. D., Bielski H. J. Pulse radiolytic studies of the reactions of HO2/O2- with Fe(II)/Fe(III) ions. The reactivity of HO2/O2- with ferric ions and its implication on the occurrence of the Haber-Weiss reaction. Journal of Physical Chemistry 1985; 89: 5062–5066
  • Brooks H. B., Sicilio F. Electron spin resonance kinetic studies of the oxidation of vanadium(IV) by hydrogen peroxide. Inorganic Chemistry 1971; 10: 2530–2534
  • Liochev S. I., Fridovich I. The roles of O2-, HO, and secondarily derived radicals in oxidation reactionxs catalyzed by vanadium salts. Archives of Biochemistry and Biophysics 1991; 291: 379–382
  • Beauchamp C. O., Fridovich I. A mechanism for the production of ethylene from methional: the generation of hydroxyl radical by xanthine oxidase. Journal of Biological Chemistry 1970; 245: 4641–4646
  • Halliwell B. Superoxide-dependent formation of hydroxyl radicals in the presence of iron chelates: is it a mechanism for hydroxyl radical production in biochemical systems?. FEBS Letters 1978; 92: 321–326
  • McCord J. M., Day E. D., Jr. Superoxide-dependent production of hydroxyl radical catalyzed by iron-EDTA complex. FEBS Letters 1978; 86: 139–142
  • Czapski G., Goldstein S., Meyerstein D. What is unique about superoxide toxicity as compared to other biological reductants: a hypothesis. Free Radicals Research Communications 1988; 4: 231–236
  • Winterboum C. C. Superoxide as an intracellular sink. Free Radical Biology and Medicine 1993; 14: 85–90
  • Winterboum C. C. Superoxide-dependent production of hydroxyl radicals in the presence of iron salts. Biochemical Journal 1982; 205: 463
  • Halliwell B. Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts is a feasible source of hydroxyl radicals in vivo. Biochemical Journal 1982; 205: 461–462
  • Repine J. E., Fox R. B., Berger E. M. Hydrogen peroxide kills Staphylococcus aureus by reacting with staphylococcal iron to form hydroxyl radical. Journal of Biological Chemistry 1981; 256: 7094–7096
  • Touati D., Jacques M., Tardat B., Bouchard L., Despied S. Lethal oxidative damage and mutagenesis are generated by iron in fur, mutants of Escherichia coli: protective role of superoxide dismutase. Journal of Bacteriology 1995; 177: 2305–2314
  • Keyer K., Strohmeier-Gort A., Imlay J. A. Superoxide and the production of oxidative DNA damage. Journal of Bacteriology 1995; 177: 6782–6790
  • Böhnke R., Matzanke B. F. The mobile ferrous iron pool in Escherichia coli is bound to a phospho-rylated sugar derivative. BioMetals 1995; 8: 223–230
  • Monteiro H. P., Winterboum C. C. The superoxide-dependent transfer of iron from ferritin to transferrin and lactoferrin. Biochemical Journal 1988; 256: 923–928
  • Biemond P., Swaak A. J. G., Beindorff M., Koster J. F. Superoxide-dependent and -independent mechanisms of iron mobilization from ferritin by xanthine oxidase. Implications for oxygen-free-radical induced tissue destruction during ischemia and inflammation. Biochemical Journal 1986; 239: 169–173
  • Thomas C. E., Morehouse L. A., Aust S. D. Ferritin and superoxide-dependent lipid peroxidation. Journal of Biological Chemistry 1985; 260: 3275–3280
  • Reif D. W. Ferritin as a source of iron for oxidative damage. Free Radical Biology and Medicine 1992; 12: 417–427
  • Gardner P., Fridovich I. Effect of glutathione on aconitase in Escherichia coli. Archives of Biochemistry and Biophysics 1993; 301: 98–102
  • Flint D. H., Smyk-Randall E., Tuminello J. F., Draczynska-Lusiak B., Brown O. R. The inacti-vation of dihyrdoxy-acid dehydratase in Escherichia coli treated with hyperbaric oxygen occurs because of the destruction of its Fe-S cluster, but the enzyme remains in the cell in a form that can be reactivated. Journal of Biological Chemistry 1993; 268: 25547–25552
  • Kennedy M. C., Emptage M. H., Dreyer J. L., Beinert H. The role of iron in the activation-inactivation of aconitase. Journal of Biological Chemistry 1983; 258: 11098–11105
  • Klausner R. D., Rouault T. A double life: cytosolic aconitase as a regulatory RNA-binding protein. Molecular Biology of the Cell 1993; 4: 1–5
  • Beinert H., Kennedy M. C. Aconitase, a two-faced protein: enzyme and iron regulatory factor. FASEB Journal 1993; 7: 1442–1449
  • Samaniego F., Chin J., Iwai K., Rouault T. A., Klausner R. D. Molecular characterization of a second iron-responsive element binding protein, iron regulatoray protein. 2. Structure, function, and post-translational regulation. Journal of Biological Chemistry 1994; 269: 30904–30910
  • Siwecki G., Brown O. R. Overproduction of superoxide dismutase does not protect Escherichia coli from stringency-induced growth inhibition by 1 mM paraquat. Biochemistry International 1990; 20: 191–200
  • Liochev S. I., Fridovich I. Effects of overproduction of superoxide dismutases in Escherichia coli on inhibition of growth and on induction of glucoses-phosphate dehydrogenase by paraquat. Archives of Biochemistry and Biophysics 1992; 294: 138–143
  • Polissi A., Harayama S. In vivo reactivation of catechol 2,3-dioxygenase mediated by a chloroplast-type ferredoxin: a bacterial strategy to expand the substrate specificity of aromatic degradative pathways. EMBO Journal 1993; 12: 3339–3347
  • Bianchi V., Eliasson R., Fontecave M., Mulliez E., Hoover D. M., Matthews R. G., Reichard P. Flavodoxin is required for the activation of the anaerobic ribonucleotie reductase. Biochemical and Biophysical Research Communications 1993; 197: 792–797
  • Mulliez E., Fontecave M., Gaillard J., Reichard P. An iron-sulfur center and a free radical in the active anaerobic ribonucleotide reductase of Escherichia coli. Journal of Biological Chemistry 1993; 268: 2296–2299
  • Ifuku O., Koga N., Haze S., Kishimoto J., Wachi Y. Flavodoxin is required for conversion of dethiobiotin to biotin in Escherichia coli. European Journal of Biochemistry 1994; 224: 173–178
  • Sanyal I., Cohen G., Flint D. H. Biotin synthase: purification, characterization as a [2Fe-2S] cluster protein, and in vitro activity of the Escherichia coli bioB gene product. Biochemistry 1994; 33: 3625–3631
  • Liochev S. I., Fridovich I. Paraquat diaphorases in Escherichia coli. Free Radical Biology and Medicine 1994; 16: 555–559
  • Liochev S. I., Hausladen A., Beyer W. F., Fridovich I. NADPH: ferredoxin oxidoreductase acts as a paraquat diaphorase and is a member of the soxRS regulon. Proceedings of the National Academy of Sciences, U.S.A. 1994; 91: 1328–1331
  • Siegel L. M., Davis P. S., Kamin H. Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. III. The Escherichia coli hemoflavoprotein: catalytic parameters and the sequence of electron flow. Journal of Biological Chemistry 1974; 249: 1572–1586
  • Gaudu P., Fontecave M. The NADPH:sulfite reductase of Escherichia coli is a paraquat reductase. European Journal of Biochemistry 1994; 226: 459–463
  • Blaschkowski H. P., Neuer G., Ludwig-Festl M., Knappe J. Routes of flavodoxin and ferredoxin reduction in Escherichia coli. European Journal of Biochemistry 1982; 123: 563–569
  • Barman B. G., Tollin G. Flavin-protein interactions in flavoenzymes. Thermodynamics and kinetics of reduction of Azotobacter flavodoxin. Biochemistry 1972; 11: 4755–4759
  • Mayhew S. G., Ludwig M. L. Flavodoxins and electron-transferring flavoproteins. The Enzymes. Vol. XII, P. D. Boyer. Academic Press, New York 1975; 57–118
  • Bianchi V., Haggard-Ljungquist E., Pontis E., Reichard P. Interruption of the ferredoxin (flavodoxin) NADP+ oxidoreductase gene of Escherichia coli does not affect anaerobic growth but increases sensitivity to paraquat. Journal of Bacteriology 1995; 177: 4528–4531
  • Krapp A. R., Carrillo N. Functional complementation of the mvrA mutation of Escherichia coli by plant ferredoxin-NADP+ oxidoreductase. Archives of Biochemistry and Biophysics 1995; 317: 215–221
  • Fontecave M., Coves J., Pierre J. L. Ferric reductases or flavin reductases?. BioMetals 1994; 7: 3–8
  • Fu W., Jack R. F., Morgan T. V., Dean D. R., Johnson M. K. nifU gene product from Azotobacter vinelandii is a homodimer that contains two identical [2Fe-2S] clusters. Biochemistry 1994; 33: 13455–13463
  • Felix K., Lengfelder E., Hartman H. J., Weser U. A pulse radiolytic study on the reaction of hydroxyl and superoxide radicals with yeast Cu(I)-thionein. Biochimica el Biophysica Acta 1993; 1203: 104–108
  • Halliwell B., Gurteridge J. M. Role of free radicals and catalytic metal ions in human disease: an overview. Methods in Enzymology 1990; 186: 1–85
  • Martins E. A. L., Robalinho R. L., Meneghini R. Oxidative stress induces activation of a cytosolic protein responsible for control of iron uptake. Archives of Biochemistry and Biophysics 1995; 316: 128–134
  • Gardner P. R., Rained I., Epstein L. B., White C. W. Superoxide radical and iron modulate aconitase activity in mammalian cells. Journal of Biological Chemistry 1995; 270: 13399–13405
  • Storz G., Toledano M. B. Regulation of bacterial gene expression in response to oxidative stress. Methods in Enzymology 1994; 236: 196–207
  • Demple B. Regulation of bacterial oxidative stress genes. Annual Review of Genetics 1991; 25: 315–337
  • Wu J., Weiss B. Two-stage induction of the soxRS (superoxide response) regulon of Escherichia coli. Journal of Bacteriology 1992; 174: 3915–3920
  • Greenberg J. T., Monach P., Chou J. H., Josephy P. D., Demple B. Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proceedings of the National Academy of Sciences, U.S.A. 1990; 87: 6181–6185
  • Tsaneva I. R., Weiss B. soxR, a locus governing a superoxide response regulon in Escherichia coli K12. Journal of Bacteriology 1990; 172: 41197–41205
  • Gruer M. J., Guest J. R. Two genetically-distinct and differentially-regulated aconitases (AcnA and AcnB) in Escherichia coli. Microbiology 1994; 140: 2531–2541
  • Gidrol X., Farr S. Interaction of a redox-sen-sitive DNA-binding factor with the 5- flanking region of the micF gene in Escherichia coli. Molecular Microbiology 1993; 10: 877–884
  • Gonzalez-Flecha B., Demple B. Intracellular generation of superoxide as a by-product of Vibrio harveyi luciferase expressed in Escherichia coli. Journal of Bacteriology 1994; 176: 2293–2299
  • Gardner P. R., Fridovich I. NADPH inhibits transcription of the Escherichia coli manganese superoxide dismutase gene (sodA) in vitro. Journal of Biological Chemistry 1993; 268: 12958–12963
  • Nunoshiba T., DeRojas-Walker T., Wishnok J. S., Tannenbaum S. R., Demple B. Activation by nitric oxide of an oxidative stress response that defends Escherichia coli against activated macrophages. Proceedings of the National Academy of Sciences, U.S.A. 1993; 90: 9993–9997
  • Privalle C. T., Kong S. E., Fridovich I. Induction of manganese-containing superoxide dismutase in anaerobic Escherichia coli by diamide and 1,10-phenanthroline: sites of transcriptional regulation. Proceedings of the National Academy of Sciences, U.S.A. 1993; 90: 2310–2314
  • Wu J., Dunham W. R., Weiss B. Overproduction and physical characterization of SoxR, a [2Fe-2S] protein that governs an oxidative response regulon in Escherichia coli. Journal of Biological Chemistry 1995; 270: 10323–10327
  • Hidalgo E., Bollinger J. M., Jr, Bradley T. M., Walsh C. T., Demple B. Binuclear [2Fe-2S] clusters in the Escherichia coli soxR protein and role of the metal centers in transcription. Journal of Biological Chemistry 1995; 270: 20908–20914
  • Hidalgo E., Demple B. An iron-sulfur center essential for transcriptional activation by the redox sensing SoxR protein. EMBO Journal 1994; 13: 138–146
  • Beinert H., Kiley P. Redox control of gene expression involving iron-sulfur proteins. Change of oxidation-state or assembly/disassembly of Fe-S clusters?. FEBS Letters 1996; 382: 218–219
  • Allen J. F. Reply to commentary by Helmut Beinert and Patricia Kiley. FEBS Letters 1996; 382: 220–221
  • Carmine T. C., Evans P., Bruchelt G., Evans R., Handgretinger R., Niethammer D., Halliwell B. Presence of iron catalytic for free radical reactions in patients undergoing chemotherapy: implication for therapeutic management. Cancer Letters 1995; 94: 219–226
  • Rowley D. A., Halliwell B. Superoxide-dependent formation of hydroxyl radicals in the presence of thiol compounds. FEBS Letters 1982; 138: 33–36
  • Rowley D. A., Halliwell B. Superoxide-dependent formation of hydroxyl radicals from NADH and NADPH in the presence of iron salts. FEBS Letters 1982; 142: 39–41
  • Koppenol W. H. The chemistry and biochemistry of oxidants derived from nitric oxide. Nitric Oxide and Radicals in the Pulmonary Vasculature, E. K. Weir, S. L. Archer, J. T. Reeves. Futura Publishing Co., New York 1996; 355–362
  • Ischiropoulos H., Zhu L., Beckman J. S. Peroxynitrite formation from macrophage-derived nitric oxide. Archives of Biochemistry and Biophysics 1992; 298: 446–451
  • Katusic Z. S. Superoxide anion and endothelial regulation of arterial tone. Free Radical Biology and Medicine 1996; 20: 443–448

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.