21
Views
6
CrossRef citations to date
0
Altmetric
Original Article

Redox Properties of Iron in the Binding Site(s) of F1ATPase from Mammalian Mitochondria and Thermophilic Bacterium PS3: A Comparative Study

, , , , &
Pages 229-239 | Received 04 Jul 1997, Published online: 07 Jul 2009

References

  • Fillingame R. H. Coupling H+transport and ATP synthesis in F0F1ATPsynthases: glimpes of interacting parts in a dynamic molecular machine. The Journal of Experimental Biology 1997; 200: 217–224
  • Abrahams J. P., Leslie A. G. W., Lutter R., Walker J. E. Structure at 2.8 A resolution of F1‐ATPase from bovine heart mitochondria. Nature 1994; 370: 621–628
  • Lippe G., Di Pancrazio F., Dabbeni‐Sala F., Bertoli E., Tanfani F. Influence of ADP, AMP‐PNP and of depletion of nucleotides on the structural properties of F1ATPase: a Fourier transform infrared spectroscopic study. FEBS. Letters 1995; 373: 141–145
  • Ohta S., Tsuboi M., Oshima T., Yoshida M., Kagawa Y. Nucleotide binding to isolated alpha and beta subunits of proton translocating adenosine triphosphatase studies with circular dichroism. Biochemical Journal 1980; 87: 1609–1617
  • Otha S., Nakanishi M., Tsuboi M., Yoshida M., Kagawa Y. Kinetics of hydrogen‐deuterium exchange in ATPase from a Thermophilic bacterium PS3. Biochmical and Biophysical Research Communications 1978; 80: 929–935
  • Villaverde J., Cladera J., Padros E., Rigaug J. L., Dunach M. Effect of nucleotides on the thermal stability and on the deuteration kinetics of the thermophilic F0F1 ATP synthase. European Journal of Biochemistry 1997; 244: 441–448
  • Kagawa Y., Yoshida M. Soluble ATPase (F,) from a Thermophilic bacterium: purification, dissociation into subunits, and reconstitution from individual subunits. Methods in Enzymology 1979; 55: 781–787
  • Hannum D. M., Barrette W. C., Jr., Hurst J. K. Subunit sites of oxidative inactivation of Escherichia coli F1‐ATPase by HOCl. Biochemical and Biophysical Research Communications 1995; 212: 868–874
  • Hyslop P. A., Hinshaw D. B., Halsey W. A., Schraufstetter I. U., Sauerheber R. D., Spragg R. G., Jackson J. H., Cochrane C. G. Mechanisms of oxidant‐mediated cell injury. The Journal of Biological Chemistry 1988; 263: 1665–1675
  • Das A. M., Harris D. A. Regulation of the mitochondrial ATP synthase in intact rat cardio‐myocytes. Biochemical Journal 1990; 266: 355–361
  • Zhang Y., Marcillat O., Giulivi C., Ernster L., Davies K. J. A. The oxidative inactivation of mitochondrial electron transport chain components and ATPase. The Journal of Biological Chemistry 1990; 265: 16330–16336
  • Lippe G., Comelli M., Mazzilis D., Dabbeni‐Sala F., Mavelli I. The inactivation of mitochondrial F1ATPase by H2O2 is mediated by iron ions not tightly bound in the protein. Biochemical and Biophysical Research Communications 1991; 181: 764–770
  • Lippe G., Londero D., Dabbeni‐Sala F., Mavelli I. H2O2‐induced damage to beef heart mitochondria F0F1 ATP synthase complex: differential sensitivity of the F1 and F0 moieties. Biochemistry and Molecular Biology International 1993; 30: 1061–1070
  • Comelli M., Lippe G., Mavelli I. Differentiation potentiates oxidant injury to mitochondria by hydrogen peroxide in Friend's erythroleukemia cells. FEBS Letters 1994; 352: 71–75
  • Comelli M., Londero D., Mavelli I. Severe impairment consequent to inactivation of mitochondrial ATP synthase as an early event in cell death. a mechanism for the selective sensitivity to H2O2 of differentiating erythroleukemia cells. Free Radical Biology & Medicine
  • Ponka P. Tissue‐specific regulation of iron metabolism and heme synthesis: distinct control mechanisms in erythroid cells. Blood 1997; 89: 1–25
  • Tangeras A., Flatmark T., Backstrom D., Ehrenberg A. Mitochondrial iron not bound in heme and iron‐sulfur centers. Biochimica et Biophysica Acta 1980; 589: 162–175
  • Van Jaarsveld H., Kuyl J. M., De Wet E. H., Alberts D. W., Van Der Westhuizen F. D. Effect of various mixtures of diethylether, halothane, nitrous oxide and oxygen on low molecular weight iron content and mitochondrial function of the rat myocardium. Free Radical Research Communications 1991; 15: 151–157
  • Senior A. E., Richardson L. V., Baker K., Wise J. G. Tight divalent cation‐binding sites of soluble adenosine thriphosphatase (F1) from beef heart mitochondria and Escherichia coli. The Journal of Biological Chemistry 1980; 255: 7211–7217
  • Pantopoulos K., Hentze M. W. Rapid responses to oxidative stress mediated by iron regulatory protein. The EMBO Journal 1995; 14: 2917–2924
  • Lippe G., Polizio F., Di Pancrazio F., Dabbeni‐Sala F., Bortolotti N., Desideri A., Mavelli I. Characterization of the binding of Fe(III) to F1ATPase from bovine heart mitochondria. FEBS. Letters 1996; 379: 231–235
  • Lippe G., Di Pancrazio F., Polizio F., Bortolotti N., Mavelli I. Saturating ATE' opens one of the two Fe(III)‐binding sites in F1ATPase and makes cooperative the Fe(III) binding. The Italian Journal of Biochemistry 1996; 45: 208–209
  • Ohta S., Yohda M., Ishizuka M., Hirata H., Hamamoto T., Otayuara‐Hamamoto Y., Matsuda K., Kagawa Y. Sequence and over‐expression of subunits of adenosine triphosphate synthase in Thermophilic bacterium PS3. Biochimica et Biophysica Acta 1988; 933: 141–145
  • Horstman L. L., Racker E. Partial resolution of the enzymes catalyzing oxidative phosphorilation. The Journal of Biological Chemistry 1970; 245: 1336–1344
  • Ellman G. L. Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics 1959; 82: 70–77
  • Levine R. L., Garland D., Oliver C. N., Amici A., Climent I., Lenz A. G., Ahn B. W., Shaltiel S., Stadtman E. R. Determination of carbonyl content in oxidatively modified proteins. Methods in Enzymology 1990; 186: 471–476
  • Belisario M. A., Di Domenico C., Pelagalli A., Morte Della R., Staiano N. Metal‐ion catalyzed oxidation affects fibrinogen activity on platelet aggregation and adhesion. Biochimie 1997, in press
  • Paik S. R., Jault J. M., Allison W. S. Inhibition and inactivation of the F1 adenosinetriphos‐phatase from Bacillus PS3 by dequalinium and activation of the enzyme by lauryl dimethylamine oxide. Biochemistry 1994; 33: 126–133
  • Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680–685
  • Silver J., Lukas B. Studies on the reactions of ferric iron with glutathione and some related thiols. Part IV. A study of the reaction of glutathione with protopor‐phyrin IX iron(III). Inorganica Chimica Acta 1985; 106: 7–12
  • Belogrudov G. I. Mitochondrial ATP synthase: Fez+‐catalyzed fragmentation of the soluble F1‐ATPase. Archives of Biochemistry and Biophysics 1996; 335: 131–138
  • Walker J. E., Fearnly I. M., Gay N. J., Gibson B. W., Northrop F. D., Powell S. J., Runswick M. J., Saraste M., Tybulewicz V. L. J. Primary structure and subunit stoichiometry of F1‐ATPase from bovine mitochondria. Journal of Molecular Biology 1985; 184: 677–701
  • Amici A., Levine R. L., Tsai L., Stadtman E. R. Conversion of amino acid residues in proteins and amino acid homopolymers to carbonyl derivatives by metal‐catalyzed oxidation reactions. The Journal of Biological Chemistry 1989; 264: 3341–3346
  • Frausto da Silva J. J. R., Williams R. J. P. Non‐heam iron: redox reactions and controls. The biological chemistry of the elements. Clarendon Press, Oxford 1991; 319–342
  • Yoshida M., Allison W. S. Characterization of the catalytic and noncatalyhc ADP binding sites of the F1‐ATPase from the Thermophilic bacterium, PS3. The Journal of Biological Chemistry 1986; 261: 5714–5721
  • Miwa K., Yoshida M. The α3β3 complex, the catalytic core of F1‐ATPase. Proceedings of the National Academy of Sciences USA 1989; 86: 6484–6487

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.