6,285
Views
93
CrossRef citations to date
0
Altmetric
Research Article

Synthesis and surface modification of mesoporous silica nanoparticles and its application as carriers for sustained drug delivery

, , , &
Pages 164-172 | Received 05 Jun 2013, Accepted 24 Aug 2013, Published online: 14 Oct 2013

References

  • Alexa IF, Ignat M, Popovici RF, et al. (2012). In vitro controlled release of antihypertensive drugs intercalated into unmodified SBA-15 and MgO modified SBA-15 matrices. Int J Pharm 436:111–19
  • Corriu RJP, Mehdi A, Reye C, Thieuleux C. (2002). Mesoporous hybrid materials containing functional organic groups inside both the framework and the channel pores. Chem Commun 13:1382–3
  • Deere J, Magner E, Wall JG, Hodnett BK. (2003). Adsorption and activity of proteins onto mesoporous silica. Catal Lett 85:19–23
  • Doadrio AL, Sousa EM, Doadrio JC, et al. (2004). Mesoporous SBA-15 HPLC evaluation for controlled gentamicin drug delivery. J Control Release 97:125–32
  • Gonzalez B, Colilla M, Lopez de Laorden C, Vallet-Regi M. (2009). A novel synthetic strategy for covalently bonding dendrimers to ordered mesoporoussilica: potential drug delivery applications. Mater Chem 19:9012–24
  • Huh S, Chen H-T, Wiench JW, et al. (2005). Cooperative catalysis by general acid and base bifunctionalized mesoporous silica nanospheres. Angew Chem Int Ed Engl 44:1826–30
  • Huh S, Wiench JW, Yoo J-C, et al. (2003). Organic functionalization and morphology control of mesoporoussilicas via a co-condensation synthesis method. Chem Mater 15:4247–56
  • Kang T, Park Y, Yi J. (2004). Highly selective adsorption of Pt2+ and Pd2+ using thiol-functionalized mesoporous silica. Ind Eng Chem Res 43:1478–84
  • Kim H, Jung JC, Kim P, et al. (2006). Preparation of H3PMo12O40 catalyst immobilized on surface modified mesostructured cellular foam (SM-MCF) silica and its application to the ethanol conversion reaction. Mol Catal A: Chem 259:150–5
  • Lei J, Fan J, Yu CZ, et al. (2004). Immobilization of enzymes in mesoporous materials: controlling the entrance to nanospace. Microporous Mesoporous Mater 73:121–8
  • Limnell T, Riikonen J, Salonen J, et al. (2007). Surface chemistry and pore size affect carrier properties of mesoporous silicon microparticles. Int J Pharm 343:141–7
  • Liu AM, Hidajat K, Kawi S, Zhao DY. (2000). A new class of hybrid mesoporous materials with functionalized organic monolayers for selective adsorption of heavy metal ions. Chem Commun 13:1145–6
  • Lu J, Liong M, Zink JI, Tamanoi F. (2007). Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 3:1341–6
  • Lu Q, Gao F, Komarneni S, Mallouk TE. (2004). Ordered SBA-15 nano rod arrays inside a porous alumina membrane. Am Chem Soc 126:8650–1
  • Qu FY, Zhu GS, Huang SY, et al. (2006). Effective controlled release of captopril by silylation of mesoporous MCM-41. Chem Phys Chem 7:400–6
  • Radu DR, Lai C-Y, Huang J, et al. (2005). Fine-tuning the degree of organic functionalization of mesoporous silica nanosphere materials via an interfacially designed co-condensation method. Chem Commun 10:1264–6
  • Radu DR, Lai CY, Jeftinija K, et al. (2004a). Capped mesoporous silica nanosphere-based gene transfection reagent. Am Chem Soc 126:13216–17
  • Radu DR, Lai C-Y, Wiench JW, et al. (2004b). Gate keeping layer effect: a poly(lactic acid)-coated mesoporous silica nanosphere-based fluorescence probe for detection of amino-containing neurotransmitters. Am Chem Soc 126:1640–1
  • Rainsford KD. (1999). Ibuprofen: a critical bibliographic review. London: Taylor & Francis
  • Slowing II, Trewyn BG, Lin VSY. (2007). Nanoparticles for intracellular delivery of membrane-impermeable proteins. Am Chem Soc 129:8845–6
  • Slowing II, Vivero-Escoto JL, Wu CW, Lin VSY. (2008). Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Delivery Rev 60:1278–88
  • Song S-W, Hidajat K, Kawi S. (2005). Functionalized SBA-15 materials as carriers for controlled drug delivery: influence of surface properties on matrix-drug interactions. Langmuir 21:9568–75
  • Szegedi A, Popova M, Goshev I, Mihály J. (2011). Effect of amine functionalization of spherical MCM-41 and SBA-15 on controlled drug release. Sol State Chem 184:1201–7
  • Tang Q, Xu Y, Wu D, et al. (2006). Studies on a new carrier of trimethylsilyl-modified mesoporous material for controlled drug delivery. J Control Release 114:41–6
  • Torney F, Trewyn BG, Lin VSY, Wang K. (2007). Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300
  • Urata C, Yamada H, Wakabayashi R, et al. (2011). Aqueous colloidal mesoporous nanoparticles with ethenylene-bridged silsesquioxane frameworks. Am Chem Soc 133:8102–5
  • Vallet-Regi M, Balas F, Arcos D. (2007). Mesoporous materials for drug delivery. Angew Chem Int Ed Engl 46:7548–58
  • Vallet-Regi M, Ramila A, Del Real RP, Pérez-Pariente J. (2001). A new property of MCM-41: drug delivery system. Chem Mater 13:308–11
  • Vinu A, Murugesan V, Hartmann M. (2004). Adsorption of lysozyme over mesoporous molecular sieves MCM-41 and SBA-15: influence of pH and aluminum incorporation. J Phys Chem B 108:7323–30
  • Wang H, Gao X, Wang Y, et al. (2012). Effect of amine functionalization of SBA-15 on controlled baicalin drug release. Ceram Int 38:6931–5
  • Wang SB. (2009). Ordered mesoporous materials for drug delivery. Microporous Mesoporous Mater 117:1–9
  • Wu KCW, Yamauchi Y. (2012). Controlling physical features of mesoporous silica nanoparticles (MSNs) for emerging applications. Mater Chem 22:1251–6
  • Xu W, Gao Q, Xu Y, et al. (2008). Controlled drug release from bifunctionalized mesoporous silica. J Solid State Chem 181:2837–44
  • Xu W, Gao Q, Xu Y, et al. (2009). Controllable release of Ibuprofen from size-adjustable and surface hydrophobic mesoporous silica spheres. Powder Technol 191:13–20
  • Xu Y, Wang C, Zhou G, et al. (2012). Improving the controlled release of water-insoluble emodin from amino-functionalized mesoporous silica. Appl Surf Sci 258:6366–72
  • Xu Zh, Ji Y, Guan M, et al. (2010). Preparation and characterization of L-Leucine-modified amphiproticbifunctionalmesoporous SBA-15 molecular sieve as a drug carrier for ribavirin. Appl Surf Sci 256:3160–5
  • Xue JM, Shi M. (2004). PLGA/mesoporous silica hybrid structure for controlled drug release. J Control Release 98:209–17
  • Yang PP, Quan ZW, Lu LL, et al. (2008). Luminescence functionalization of mesoporous silica with different morphologies and applications as drug delivery systems. Biomaterials 29:692–702
  • Yang Q, Wang S, Fan P, et al. (2005). pH-responsive carrier system based on carboxylic acid modified mesoporous silica and polyelectrolyte for drug delivery. Chem Mater 17:5999–6003
  • Yang Y, Jia Y, Gao L, et al. (2011). Fabrication of autofluorescent protein coated mesoporous silica nanoparticles for biological application. Chem Commun 47:12167–9
  • Yang Y-J, Tao X, Hou Q, Chen JF. (2009). Fluorescent mesoporous silica nanotubes incorporating CdS quantum dots for controlled release of Ibuprofen. Acta Biomater 5:3488–96
  • Yu H, Zhai Q-Zh. (2009). Mesoporous SBA-15 molecular sieve as a carrier for controlled release of nimodipine. Micropor Mesopor Mater 123:298–305
  • Zhao D, Feng J, Huo Q, et al. (1998). Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–52

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.