7,717
Views
71
CrossRef citations to date
0
Altmetric
Review Article

Colloidal drug delivery system: amplify the ocular delivery

, , , , &
Pages 700-716 | Received 06 Apr 2014, Accepted 07 May 2014, Published online: 03 Jun 2014

References

  • Abdelkader H, Ismail S, Kamal A, Alany RG. (2011). Design and evaluation of controlled-release niosomes and discomes for naltrexone hydrochloride ocular delivery. J Pharm Sci 100:1833–46
  • Aggarwal D, Garg A, Kaur IP. (2004). Development of a topical niosomal preparation of acetazolamide: preparation and evaluation. J Pharm Pharmacol 56:1509–17
  • Aggarwal D, Kaur IP. (2005). Improved pharmacodynamic of timolol maleate from mucoadhesive niosomal ophthalmic drug delivery system. Int J Pharm 290:155–9
  • Aggarwal D, Pal D, Mitra AK, Kaur IP. (2007). Study of the extent of ocular absorption of acetazolamide from a developed niosomal formulation, by microdialysis sampling of aqueous humor. Int J Pharm 338:21–6
  • Agnihotri SM, Vavia PR. (2009). Diclofenac loaded biopolymeric nanosuspension for ophthalmic application. Nanomedicine 5:90–5
  • Ahmed I, Patton TF. (1987). Disposition of timolol and inulin in the rabbit eye following corneal versus non-corneal absorption. Int J Pharm 38:9–21
  • Aksungur P, Demirbilek M, Denkbaş EB, et al. (2011). Development and characterization of cyclosporine A loaded NPs for ocular drug delivery: cellular toxicity, uptake, and kinetic studies. J Control Release 151:286–94
  • Ambati J, Canakis CS, Miller JW, et al. (2000). Diffusion of high molecular weight compounds through sclera. Invest Ophthalmol Vis Sci 41:1181–5
  • Ammar HO, Salama HA, Ghorab M, Mahmoud AA. (2009). NEs as a potential ophthalmic delivery system for dorzolamide hydrochloride. AAPS Pharm Sci Tech;10:808–19
  • Araujo J, Gonzalez E, Egea MA, et al. (2009). Nanomedicines for ocular NSAIDs: safety on drug delivery. Nanomedicine 5:394–401
  • Badawi AA, El-Laithy HM, El Qidra RK, et al. (2008). Chitosan based nanocarriers for indomethacin ocular delivery. Arch Pharm Res 31:1040–9
  • Bai S, Thomas C, Rawat A, Ahsan F. (2006). Recent progress in dendrimer-based nanocarriers. Crit Rev Ther Drug Carrier Syst 23:437–95
  • Balakrishnan P, Shanmugam S, Lee WS, Lee WM. (2009). Formulation and in vitro assessment of minoxidil niosomes for enhanced skin delivery. Int J Pharm 377:1–8
  • Bandyopadhyay P, Johnson M. (2007). Fatty alcohols or fatty acids as niosomal hybrid carrier: effect on vesicle size, encapsulation efficiency and in vitro dye release. Colloids Surf B Biointerfaces 58:68–71
  • Bangham D, Standish MM, Watkins JC. (1965). Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13:238–52
  • Başaran E, Demirel M, Sirmagül B, Yazan Y. (2011). Polymeric cyclosporine A NPs for ocular application. J Biomed Nanotechnol 7:714–23
  • Başaran E, Yenilmez E, Berkman MS, et al. (2013). Chitosan NPs for ocular delivery of cyclosporine A. J Microencapsul 31:49–57
  • Basaran E, Yenilmez E, Berkman MS, et al. (2014). Chitosan nanoparticles for ocular delivery of cyclosporine. A J Microencapsulation 31:49–57
  • Basha M, Abd El-Alim SH, Shamma RN, Awad GE. (2013). Design and optimization of surfactant based nanovesicles for ocular delivery of Clotrimazole. J Liposome Res 23:203–10
  • Baspinar Y, Bertelmann E, Pleyer U, et al. (2008). Corneal permeation studies of everolimus microemulsion. J Ocul Pharmacol Ther 24:399–402
  • Bochot A, Gulik FA, Couarraze G, Couvreur P. (1998). Liposomes dispersed within a thermosensitive gel: a new dosage form for ocular delivery of oligonucleotides. Pharm Res 15:1364–9
  • Bochot A, Lajavardi L, Camelo S, et al. (2011). Potential of liposomes for the intravitreal injection of therapeutic molecules. Ann Pharm Fr 69:100–7
  • Bourges JL, Bloquel C, Thomas A, et al. (2006). Intraocular implants for extended drug delivery: therapeutic applications. Adv Drug Deliv Rev 58:1182–202
  • Bourlais CL, Acar L, Zia H, et al. (1998). Ophthalmic drug delivery systems-recent advances. Prog Retin Eye Res 17:33–58
  • Bu HZ, Gukasyan HJ, Goulet L, et al. (2007). Ocular disposition, pharmacokinetics, efficacy and safety of nanoparticle- formulated ophthalmic drugs. Curr Drug Metab 8:91–107
  • Calvo P, Alonso MJ, Vila-Jato JL, Robinson JR. (1996). Improved ocular bioavailability of indomethacin by novel ocular drug carriers. J Pharm Pharmacol 48:1147–52
  • Campos A, Sanchez D, Alonso MJ. (2001). Chitosan NPs: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int J Pharm 224:159–68
  • Chetoni P, Rossi S, Burgalassi S, et al. (2004). Comparison of liposome-encapsulated acyclovir with acyclovir ointment: ocular pharmacokinetics in rabbits. J Ocul Pharmacol Ther 20:169–77
  • Constable PA, Lawrenson JG, Dolman DE, et al. (2006). P-Glycoprotein expression in human retinal pigment epithelium cell lines. Exp Eye Res 83:24–30
  • Craig J. (2002). Structure and function of the preocular tear film. In: Korb DR, Craig J, Doughty M, et al., eds. The tear film. Oxford, UK: Butterworth-Heinemann, 18–50
  • Cruysberg LP, Nuijts RM, Geroski DH, et al. (2002). In vitro human scleral permeability of fluorescein, dexamethasone-fluorescein, methotrexate-fluorescein and rhodamine 6G and the use of a coated coil as a new drug delivery system. J Ocul Pharmacol Ther 18:559–69
  • Curtin BJ. (1969). Physiopathologic aspects of scleral stress-strain. Trans Am Ophthalmol Soc 67:417–61
  • Dai Y, Zhou R, Liu L, et al. (2013). Liposomes containing bile salts as novel ocular delivery systems for tacrolimus (FK506): in vitro characterization and improved corneal permeation. Int J Nanomedicine 8:1921–33
  • Danion A, Arsenault I, Vermette P. (2007). Antibacterial activity of contact lenses bearing surface-immobilized layers of intact liposomes loaded with levofloxacin. J Pharm Sci 96:2350–63
  • De la Fuente M, Ravina M, Paolicelli P, et al. (2010). Chitosan-based nanostructures: a delivery platform for ocular therapeutics. Adv Drug Del Rev 62:100–17
  • Dey S, Gunda S, Mitra AK. (2004). Pharmacokinetics of erythromycin in rabbit corneas after single-dose infusion: role of P-glycoprotein as a barrier to in vivo ocular drug absorption. J Pharmacol Exp Ther 311:246–55
  • Dey S, Patel J, Anand BS, et al. (2003). Molecular evidence and functional expression of P-glycoprotein (MDR1) in human and rabbit cornea and corneal epithelial cell lines. Invest Ophthalmol Vis Sci 44:2909–18
  • Diebold Y, Jarran M, Saiez V, et al. (2007). Ocular drug delivery by liposome-chitosan nanoparticle complexes (LCS-NP). Biomaterials 28:1553–64
  • Ding X, Alani WG, Robinson JR. (2005). Extended-release and targeted drug delivery systems. In: Troy DB, ed. Remington: the science and practice of pharmacy. Philadelphia, PA: Lippincott Williams and Wilkins
  • Djekic L, Ibric S, Primorac M. (2008). The application of artificial neural networks in the prediction of microemulsion phase boundaries in PEG-8 caprylic/capric glycerides based systems. Int J Pharm 361:41–6
  • Du Toit LC, Govender T, Carmichael T, et al. (2013). Design of an anti-inflammatory composite nanosystem and evaluation of its potential for ocular drug delivery. J Pharm Sci 102:2780–805
  • Durrani AM, Davies NM, Thomas M, Kellaway IW. (1992). Pilocarpine bioavailability from a mucoadhesive liposomal ophthalmic drug delivery system. Int J Pharm 88:409–15
  • Fessi H, Puisieux F, Devissaguet JP, et al. (1989). Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 55:R1–4
  • Fialho SL & da Silva-Cunha A. (2004). New vehicle based on a microemulsion for topical ocular administration of dexamethasone. Clin Exp Ophthalmol 32:626–32
  • Fischbarg J, da Silva-Cunha. (2006). The corneal endothelium. In: Fischbarg J, ed. The biology of eye. New York, NY: Academic Press, 113–25
  • Fujisawa T, Miyai H, Hironaka K, et al. (2012). Liposomal diclofenac eye drop formulations targeting the retina: formulation stability improvement using surface modification of liposomes. Int J Pharm 436:564–7
  • Gajbhiye V, Palanirajan VK, Tekade RK, Jain NK. (2009). Dendrimers as therapeutic agents: a systematic review. J Pharm Pharmacol 61:989–1003
  • Gardner TW, Antonetti DA, Barber AJ, et al. (1999). The molecular structure and function of the inner blood-retinal barrier. Penn State Retina Research Group. Doc Ophthalmol 97:229–37
  • Garty N, Lusky M, Zalish M, et al. (1994). Pilocarpine in submicron emulsion formulation for treatment of ocular hypertension: a phase II clinical trial. Invest Ophthalmol Vis Sci 35:2175–85
  • Gasco MR, Gallarate M, Trotta M, et al. (1989). Microemulsions as topical delivery vehicles: ocular administration of timolol. J Pharm Biomed Anal 7:433–9
  • Gaudana R, Ananthula HK, Parenky A, Mitra AK. (2010). Ocular drug delivery. AAPS J 12:348–60
  • Gausas RE, Gonnering RS, Lemke BN, et al. (1999). Identification of human orbital lymphatics. Ophthal Plast Reconstr Surg 15:252–9
  • Ghate D, Edelhauser HF. (2006). Ocular drug delivery. Expert Opin Drug Deliv 3:275–87
  • Gondaliya D, Pundarikakshudu K. (2003). Studies in formulation and pharmacotechnical evaluation of controlled release transdermal delivery system of bupropion. AAPS Pharm SciTech 4:E3–7
  • Guinedi AS, Mortada ND, Mansour S, Hathout RM. (2005). Preparation and evaluation of reverse-phase evaporation and multilamellar niosomes as ophthalmic carriers of acetazolamide. Int J Pharm 306:71–82
  • Gupta H, Aqil M, Khar RK, et al. (2011). Biodegradable levofloxacine NPs for sustained ocular drug delivery. J Drug Target 19:409–17
  • Gupta H, Aqil M, Khar RK, et al. (2013). NPs laden in situ gel for sustained ocular drug delivery. J Pharm Bioallied Sci 5:162–55
  • Gupta H, Aqil M, Khar RK, et al. (2010). Sparfloxacin-loaded PLGA NPs for sustained ocular drug delivery. Nanomed Nanotech Boil Med 6:324–33
  • Gupta RB, Kompella UB. (2006). Nanoparticle technology for drug delivery. New York: Taylor & Francis Group, 1–379
  • Gupta S, Moulik SP (2008). Biocompatible microemulsions and their prospective uses in drug delivery. J Pharm Sci 97:22–45
  • Habib FS, Fouad EA, Abdel-Rhaman MS, Fathalla D. (2010). Liposomes as an ocular delivery system of fluconazole: in-vitro studies. Acta Ophthalmol 88:901–4
  • Hathout RM, Mansour S, Mortada ND. (2007). Liposomes as an ocular delivery system for acetazolamide: in vitro and in vivo studies. AAPS PharmSciTech 8:1–12
  • Her Y, Lim JW, Han SH. (2013). Dry eye and tear film functions in patients with psoriasis. Jpn J Ophthalmol 57:341–6
  • Herrero-Vanrell R, Refojo MF. (2001). Biodegradable microspheres for vitreoretinal drug delivery. Adv Drug Deliv 52:5–16
  • Heussler ML, Sirbat D, Hoffman M, Maincent P. (1993). Poly (ε-caprolactone) nanocapsules in carteolol ophthalmic delivery. Pharm Res 10:386–90
  • Hiratani H, Fujiwara A, Tamiya Y, et al. (2005). Ocular release of timolol from molecularly imprinted soft contact lenses. Biomaterials 26:1293–8
  • Hitzenberger CK, Baumgartner A, Drexler W, et al. (1994). Interferometric measurement of corneal thickness with micrometer precision. Am J ophthalmol 118:468–76
  • Honda M, Asai T, Oku N, et al. (2013). Liposomes and nanotechnology in drug development: focus on ocular targets. Int J Nanomed 8:495–503
  • Irache JM, Merodio M, Arnedo A. (2005). Albumin NPs for the intravitreal delivery of anticytomegaloviral drugs. Mini Rev Med Chem 5:293–305
  • Jain NK, Gupta U. (2008). Application of dendrimer-drug complexation in the enhancement of drug solubility and bioavailability, Expert Opin Drug Discov 4:1035–51
  • Jain K, Kumar RS, Sood S, Dhyanandhan G. (2013). Betaxolol hydrochloride loaded chitosan NPs for ocular delivery and their anti-glaucoma efficacy. Curr Drug Deliv 10:193–9
  • Janoria KG, Gunda S, Boddu SH, Mitra AK. (2007). Novel approaches to retinal drug delivery. Expert Opin Drug Deliv 4:371–88
  • Javadzadeh Y, Ahadi F, Davaran S, et al. (2010). Preparation and physicochemical characterization of naproxen-PLGA NPs. Colloids Surf B Biointerfaces 81:498–502
  • Jesorka A, Orwar O. (2008). Liposomes: technologies and analytical applications. Ann Rev Anal Chem 1:801–32
  • Jtirvinena k, Jarvinen T, Urtti A. Ocular absorption following topical delivery. 1995. Adv Drug Deli Rev 16:3–19
  • Jwala J, Boddu SH, Shah S, et al. (2011). Ocular sustained release NPs containing stereoisomeric dipeptide prodrugs of acyclovir. J Ocul Pharmacol Ther 27:163–72
  • Kaiser JM, Imai H, Haakenson JK, Kester M. (2013). Nanoliposomal minocycline for ocular drug delivery. Nanomed Nanotech Biol Med 9:130–40
  • Kambhampati SP, Kannan RM. (2013). Dendrimer NPs for ocular drug delivery. J Ocul Pharmacol Ther 29:151–65
  • Karim KM, Mandal AS, Biswas N, et al. (2010). Niosome: a future of targeted drug delivery systems. J Adv Pharm Tech Res 1:374–80
  • Kaur IP, Aggarwal D, Singh H, Kakkar S. (2010). Improved ocular absorption kinetics of timolol maleate loaded into a bioadhesive niosomal delivery system. Graefes Arch Clin Exp Ophthalmol 248:1467–72
  • Kaur H, Ahuja M, Kumar S, Dilbaghi N. (2012a). Carboxymethyl tamarind kernel polysaccharide NPs for ophthalmic drug delivery. Int J Biol Macromol 50:833–9
  • Kaur IP, Garg A, Singla AK, Aggarwal D. (2004). Vesicular systems in ocular drug delivery: an overview. Int J Pharm 269:1–14
  • Kaur IP, Kanwar M. (2002). Ocular preparations: the formulation approach. Drug Dev Ind Pharm 28:473–93
  • Kaur IP, Rana C, Singh M, et al. (2012b). Development and evaluation of novel surfactant based elastic vesicular system for ocular delivery of fluconazole. J Ocul Pharmacol Ther 28:484–96
  • Kawashima Y, Niwa T, Handa T, et al. (1989). Preparation of controlled release microspheres of ibuprofen with acrylic polymers by a novel quasi-emulsion solvent diffusion method. J Pharm Sci 78:68–72
  • Kawazu K, Yamada K, Nakamura M, Ota A. (1999). Characterization of cyclosporin A transport in cultured rabbit corneal epithelial cells: P-glycoprotein transport activity and binding to cyclophilin. Invest Ophthalmol Vis Sci 40:1738–44
  • Kayser O, Lemke, A, Hernandez-Trejo N. (2005). The impact of nanobiotechnology on the development of new drug delivery systems. Curr Pharm Biotechnol 6:3–5
  • Kesavan K, Kant S, Singh PN, Pandit JK. (2013). Mucoadhesive chitosan-coated cationic microemulsion of dexamethasone for ocular delivery: in vitro and in vivo evaluation. Curr Eye Res 38:342–52
  • Khan A, Sharma PK, Visht S, Malviya R. (2011). Niosomes as colloidal drug delivery system: a review. J Chronother Drug Del 2:15–21
  • Kim HJ, Zhang K, Moore L, Ho D. (2014). Diamond nanogel-embedded contact lenses mediate lysozyme-dependent therapeutic release. ACS Nano 8:2998–3005
  • King-Smith PE, Fink BA, Fogt N, et al. (2000). The thickness of the human precorneal tear film: evidence from reflection spectra. Invest Ophthalmol Vis Sci 41:3348–59
  • Klaassen I, Van Noorden CJ, Schlingemann RO. (2013) Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Prog Retin Eye Res 34:19–48
  • Klibanov AL, Maruyama K, Torchilin VP, Huang L. (1990). Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 268:235–7
  • Kompella UB, Sundaram S, Raghava S, Escobar ER. (2006). Luteinizing hormone-releasing hormone agonist and transferrin functionalizations enhance nanoparticle delivery in a novel bovine ex vivo eye model. Mol Vis 12:1185–98
  • Kristinsson JK, Fridriksdo H, Thorisdottir S, Sigurdardottir AM, et al. (1996). Dexamethasone-cyclodextrin polymer co-complexes in aqueous eye drops. Invest Ophthalmol Vis Sci 37:1199–203
  • Kumbhar D, Wavikar P, Vavia P. (2013). Niosomal gel of lornoxicam for topical delivery: in vitro assessment and pharmacodynamic activity. AAPS PharmSciTech 14:1072–82
  • Labhasetwar V. (2005). Nanotechnology for drug and gene therapy: the importance of understanding molecular mechanisms of delivery. Curr Opin Biotechnol 16:674–80
  • Lang JC. (1995). Ocular drug delivery conventional ocular formulations. Adv Drug Deliv Rev 16:39–43
  • Lavik E, Kuehn MH, Kwon YH. (2011). Novel drug delivery systems for glaucoma. Eye 25:578–86
  • Law SL, Huang KJ, Chiang CH. (2000). Acyclovir-containing liposomes for potential ocular delivery. Corneal penetration and absorption. J Control Release 63:135–40
  • Lee SJ, He W, Robinson SB, et al. (2010). Evaluation of clearance mechanisms with trans-scleral drug delivery. Invest Ophthalmol Vis Sci 51:5205–12
  • Loftsson T, Masson M. (2001). Cyclodextrins in topical drug formulations: theory and practice. Int J Pharm 212:29–40
  • Losa C, Marchal-Heussler L, Orallo F, et al. (1993). Design of new formulations for topical ocular administration: polymeric nanocapsules containing metipranolol. Pharm Res 10:80–7
  • Ludwig A. (2005). The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev 57:1595–639
  • Lv FF, Zheng LQ, Tung CH. (2005). Phase behavior of the microemulsions and the stability of the chloramphenicol in the microemulsion-based ocular drug delivery system. Int J Pharm 301:237–46
  • Ma SW, Gan Y, Gan L, et al. (2008). Preparation and in vitro corneal retention behavior of novel cationic microemulsion/in situ gel system. Yao Xue Xue Bao 43:749–55
  • Mahale NB, Thakkar PD, Mali RG, et al. (2012). Niosomes: novel sustained release nonionic stable vesicular systems--an overview. Adv Colloid Interface Sci 184:46–54
  • Mainardes RM, Urban MC, Cinto PO, et al. (2005). Colloidal carriers for ophthalmic drug delivery. Curr Drug Targets 6:363–71
  • Marfurt CF, Kingsley RE, Echtenkamp SE. (1989). Sensory and sympathetic innervation of the mammalian cornea. A retrograde tracing study. Invest Ophthalmol Vis Sci 30:461–72
  • Maurice DM, Mishima S. (1984). Pharmacology of the eye. Handbook of experimental pharmacology, Vol. 69. New York: Springer, 19–116
  • Maurice DM, Polgar J. (1977). Diffusion across the sclera. Exp Eye Res 25:577–82
  • Mehanna MM, Elmaradny HA, Samaha MW. (2009). Ciprofloxacin liposomes as vesicular reservoirs for ocular delivery: formulation, optimization, and in vitro characterization. Drug Dev Ind Pharm 35:583–93
  • Meisner D, Mezei M. (1995). Liposome ocular delivery systems. Adv Drug Deliv Rev 16:75–93
  • Merodio M, Irache JM, Valamanesh F, Mirshahi M. (2002). Ocular disposition and tolerance of ganciclovir-loaded albumin NPs after intravitreal injection in rats. Biomaterials 23:1587–94
  • Meseguer G, Gurny R, Buri P. 1994. In vivo evaluation of dosage forms: application of gamma scintigraphy to non-enteral routes of administration. J Drug Targeting 2:269–88
  • Miao H, Wu BD, Tao Y, Li XX. (2013). Diffusion of macromolecules through sclera. Acta Ophthalmol 91:e1–6
  • Mintzer MA, Grinstaff MW. (2011). Biomedical applications of dendrimers: a tutorial. Chem Soc Rev 40:173–90
  • Mohammed N, Rejinold NS, Mangalathillam S, et al. (2013). Fluconazole loaded chitin nanogels as a topical ocular drug delivery agent for corneal fungal infections. J Biomed Nanotechnol 9:1521–31
  • Monem AS, Ali FM, Ismail MW. (2000). Prolonged effect of liposomes encapsulating pilocarpine HCl in normal and glaucomatous rabbits. Int J Pharm 198:29–38
  • Montes-Mico R, Cervino A, Ferrer-Blasco T, et al. (2010). The tear film and the optical quality of the eye. Ocul Surf 8:185–92
  • Mujoriya RZ, Bodla RB. (2011). Niosomes – challenge in preparation for pharmaceutical scientist. Int J App Pharm 3:11–5
  • Muller LJ, Marfurt CF, Kruse F, Tervo TM. (2003). Corneal nerves: structure, contents and function. Exp Eye Res 76:521–42
  • Musumeci T, Bucolo C, Carbone C, et al. (2013). Polymeric NPs augment the ocular hypotensive effect of melatonin in Rabbits. Int J Pharm 440:135–40
  • Myles ME, Neumann DM, Hill JM. (2005). Recent progress in ocular drug delivery for posterior segment disease: emphasis on transscleral iontophoresis. Adv Drug Del Rev 57:2063–79
  • Nagarsenker MS, Londhe VL, Nadkarni GD. (1999). Preparation and evaluation of liposomal formulations of tropicamide for ocular delivery. Int J Pharm 190:63–71
  • Nagarwal RC, Kumar R, Pandit JK. (2012). Chitosan coated sodium alginate-chitosan NPs loaded with 5-FU for ocular delivery: in vitro characterization and in vivo study in rabbit eye. Eur J Pharm Sci 47:678–85
  • Nagarwal RC, Singh PN, Kant S, et al. (2011). Chitosan NPs of 5-fluorouracil for ophthalmic delivery: characterization, in-vitro and in-vivo study. Chem Pharm Bull 59:272–8
  • Newell FW. (1982). Ophthalmology: principles and concepts. St Louis: CV Mosby
  • Newkome GR, Shreiner CD. (2008). Poly(amidoamine), polypropylenimine, and related dendrimers and dendrons possessing different 1 → 2 branching motifs: an overview of the divergent procedures. Polymer 49:1–173
  • Norley SG, Huang L, Rouse BT. (1986). Targeting of drug loaded immunoliposomes to herpes simplex virus infected corneal cells: an effective means of inhibiting virus replication in vitro. J Immunol 36:681–5
  • Papadimitriou S, Bikiaris D, Avgoustakis K, et al. (2008). Chitosan NPs loaded with dorzolamide and pramipexole. Carbohyd Polym 73:44–54
  • Pathak MK, Chhabra G, Pathak K. (2013). Design and development of a novel pH triggered nanoemulsified in-situ ophthalmic gel of fluconazole: ex-vivo transcorneal permeation, corneal toxicity and irritation testing. Drug Dev Ind Pharm 39:780–90
  • Pescina S, Santi P, Ferrari G, Nicoli S. (2011). Trans-scleral delivery of macromolecules. Ther Deliv 2:1331–49
  • Pignatello R, Bucolo C, Spedalieri G, et al. (2002) Flurbiprofen-loaded acrylate polymer nanosuspensions for ophthalmic application. Biomaterials 23:3247–55
  • Qi HP, Gao XC, Zhang LQ, et al. (2013). In vitro evaluation of enhancing effect of borneol on transcorneal permeation of compounds with different hydrophilicities and molecular sizes. Eur J Pharmacol 705:20–5
  • Raviola G. (1983). Conjunctival and episcleral blood vessels are permeable to blood-borne horseradish peroxidase. Invest Ophthalmol Vis Sci 24:725–36
  • Robinson JC. (1993). Ocular anatomy and physiology relevant to ocular drug delivery. In: Mitra AK, ed. Ophthalmic drug delivery systems. New York: Marcel Dekker, 29–57
  • Rojanasakul Y, Wang LY, Bhat M, et al. (1992). The transport barrier of epithelia: a comparative study on membrane permeability and charge selectivity in the rabbit. Pharm Res 199:1029–34
  • Sabzevari A, Adibkia K, Hashemi H, et al. (2013). Improved anti-inflammatory effects in rabbit eye model using biodegradable poly beta-amino ester NPs of triamcinolone acetonide. Invest Ophthalmol Vis Sci 54:5520–6
  • Sahoo SK, Dilnawaz F, Krishnakumar S. (2008). Nanotechnology in ocular drug delivery. Drug Discov Today 13:144–51
  • Sahoo, SK, Labhasetwar, V. (2003). Nanotech approaches to drug delivery and imaging. Drug Discov Today 8:1112–20
  • Samad A, Alam MI, Saxena K. (2009). Dendrimers: a class of polymers in the nanotechnology for the delivery of active pharmaceuticals. Curr Pharm Des 15:2958–69
  • Sasaki H, Karasawa K, Hironaka K, et al. (2013). Retinal drug delivery using eyedrop preparations of poly-L-lysine-modifiedliposomes. Eur J Biopharm 83:364–9
  • Sasamoto Y, Hirose S, Ohno S, et al. (1991) Topical application of cyclosporin ophthalmic solution containing alpha-cyclodextrin in experimental uveitis. Ophthalmologica 203:118–25
  • Shahiwala A, Misra A. (2002). Studies in topical application of niosomally entrapped nimesulide. J Pharm Pharm Sci 5:220–5
  • Short BG. (2008). Safety evaluation of ocular drug delivery formulations: techniques and practical considerations. Toxicol Pathol 36:49–62
  • Singh D. (2003). Conjunctival lymphatic system. J Cataract Refract Surg 29:632–3
  • Singh V, Ahmad R, Heming T. (2011). The challenges of ophthalmic drug delivery: a review. Int J Drug Discovery 3:56–62
  • Singh J, Chhabra G, Pathak K. (2013). Development of acetazolamide-loaded, pH-triggered polymeric nanoparticulate in situ gel for sustained ocular delivery: in vitro ex vivo evaluation and pharmacodynamic study. Drug Dev Ind Pharm [Epub ahead of print]
  • Soukharev RA, Wojciechowska J. (2005). Microemulsions as potential ocular drug delivery systems: phase diagrams and physical depending on ingredients. Acta Pol Pharm 62:465–71
  • Stahl U, Willcox M, Stapleton F. (2012). Osmolality and tear film dynamics. Clin Exp Optom 95:3–11
  • Sugar HS, Riazi A, Schaffner R. (1957). The bulbar conjunctival lymphatics and their clinical significance. Trans Am Acad Ophthalmol Otolaryngol 61:212–23
  • Sultana Y, Maurya DP, Iqbal Z, Aqil M. (2011). Nanotechnology in ocular delivery: current and future directions. Drugs Today 47:441–55
  • Szczesna IDH, Iskander DR. (2012). Future directions in non-invasive measurements of tear film surface kinetics. Optom Vis Sci 89:749–59
  • Szczesna DH, Jaronski J, Kasprzak HT, Stenevi U. (2006). Interferometric measurements of dynamic changes of tear film. J Biomed Opt 11:34028
  • Szczesna DH, Kasprzak HT, Jaronski J, et al. (2007). An interferometric method for the dynamic evaluation of the tear film. Acta Ophthalmol Scand 85:202–8
  • Szulc J, Woyczikowski B, De Laval W. (1988) Effect of pilocarpine hydrochloride liposomes on the intraocular pressure of the rabbit eye pupil. Farm Pol 44:462–5
  • Tayel SA, El-Nabarawi MA, Tadros MI, Abd-Elsalam WH. (2013b). Positively charged polymeric nanoparticle reservoirs of terbinafine hydrochloride: preclinical implications for controlled drug delivery in the aqueous humor of rabbits. AAPS PharmSciTech 14:782–93
  • Tayel SA, El-Nabarawi MA, Tadros MI, Abd-Elsalam WH. (2013a). Promising ion-sensitive in situ ocular NEs gels of terbinafine hydrochloride: design, in vitro characterization and in vivo estimation of the ocular irritation and drug pharmacokinetics in the aqueous humor of rabbits. Int J Pharm 443:293–305
  • Thomas FF. (2013). A contemporary concept of the blood aqueous barrier. Prog Retin Eye Res 32:181–95
  • Thrimawithana TR, Young S, Bunt CR, et al. (2011). Drug delivery to the posterior segment of the eye. Drug Discov Today 16:270–7
  • Torchilin VP. (2004). Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci 61:2549–59
  • Urtti A. (2006). Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev 58:1131–5
  • Vandervoort J, Ludwig A. (2004). Preparation and evaluation of drug-loaded gelatin NPs for topical ophthalmic use. Eur J Pharm Biopharm 57:251–61
  • Van-Rooijen N, Van-Nieuwmegen R. (1980). Liposomes in immunology: multilamellar phosphatidylcholine liposomes as a simple, biodegradable and harmless adjuvant without any immunogenic activity of its own. Immunol Commun 9:243–56
  • Vandervoort J, Ludwig A. 2007. Ocular drug delivery: nanomedicine applications. Nanomedicine (Lond). 2:11–21
  • Vega E, Gamisans F, Garcia ML, et al. (2008). PLGA nanospheres for ocular delivery of flurbiprofen: drug release and interactions. J Pharm Sci 97:5306–17
  • Vega E, Egea MA, Valls O, et al. (2006). Flurbiprofen loaded biodegradable NPs for ophtalmic administration. J Pharm Sci 95:2393–405
  • Vyas SP, Mysore N, Jaittley V, Venkatesan N. (1998). Discoidal niosome based controlled ocular delivery of timolol maleate. Pharmazie 53:466–9
  • Wadhwa S, Paliwal R, Paliwal SR, Vyas SP. (2009). Nanocarriers in ocular drug delivery: an update review. Curr Pharm Des 15:2724–50
  • Wadhwa S, Paliwal R, Paliwal SR, Vyas SP. (2010). Hyaluronic acid modified chitosan nanoparticles for effective management of glaucoma: development, characterization, and evaluation. J Drug Target 18:292–302
  • Wen H, Hao J, Li SK. (2013). Characterization of human sclera barrier properties for transscleral delivery of bevacizumab and ranibizumab. J Pharm Sci 102:892–903
  • Wenger Y, Schneider RJ, Reddy GR, et al. (2011). Tissue distribution and pharmacokinetics of stable polyacrylamide NPs following intravenous injection in the rat. Toxicol Appl Pharmacol 251:181–90
  • Wolff E. (1946). The mucocutaneous junction of the lid margin and the distribution of the tear fluid. Trans Ophthalmol Soc 66:291–308
  • Wolff E. (1954). The anatomy of the eye and orbit, 4th edn. London: H.K. Lewis and Co, 49
  • Worakul N, Robinson JR. (1997). Ocular pharmacokinetics/pharmacodynamics. Eur J Pharm Biopharm 44:71–83
  • Yang H, Kao WJ. (2006). Dendrimers for pharmaceutical and biomedical applications. J Biomater Sci Polym 17:3–19
  • Yang JJ, Kim KJ, Lee VH. (2000). Role of P-glycoprotein in restricting propranolol transport in cultured rabbit conjunctival epithelial cell layers. Pharm Res 17:533–8
  • Yang H, Tyagi P, Kadam RS, et al. (2012). Hybrid dendrimer hydrogel/PLGA nanoparticle platform sustains drug delivery for one week and antiglaucoma effects for four days following one-time topical administration ACS Nano 6:7595–606
  • Yasukawa T, Ogura Y, Tabata Y, et al. (2004) Drug delivery systems for vitreoretinal diseases. Prog Retin Eye Res 23:253–81
  • Yih TC, Al-Fandi M. (2006). Engineered NPs as precise drug delivery systems. J Cell Biochem 97:1184–90
  • Zaid ASS, El-Ghamry HA, Hammad M, et al. (2003). Liposomes as ocular drug delivery system for atenolol. Egypt J Pharm Sci 44:227–45
  • Zhu X, Su M, Tang S, et al. (2012). Synthesis of thiolated chitosan and preparation NPs with sodium alginate for ocular drug delivery. Mol Vis 18:1973–82
  • Zimmer AK, Kreuter J, Robinson JR. (1991). Studies on the transport pathway of PBCA NPs in ocular tissues. J Microencapsulation 8:497–504
  • Zimmer AK, Zerbe H, Kreuter J. (1994). Evaluation of pilocarpine-loaded albumin particles as drug delivery systems for controlled delivery in the eye I. In vitro and in vivo characterisation. J Control Release 32:57–70

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.