33
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A mathematical model of vasoreactivity in rat mesenteric arterioles: I. Myoendothelial communication

, &
Pages 694-713 | Received 02 Feb 2009, Accepted 11 Jul 2009, Published online: 12 Nov 2009

REFERENCES

  • Aalkjaer C, Nilsson H. (2005). Vasomotion: cellular background for the oscillator and for the synchronization of smooth muscle cells. Br J Pharmacol 144:605–616.
  • Ayajiki K, Kindermann M, Hecker M, Fleming I, Busse R. (1996). Intracellular pH and tyrosine phosphorylation but not calcium determine shear stress-induced nitric oxide production in native endothelial cells. Circ Res 78:750–758.
  • Blatter LA, Taha Z, Mesaros S, Shacklock PS, Wier WG, Malinski T. (1995). Simultaneous measurements of Ca2+ and nitric oxide in bradykinin-stimulated vascular endothelial cells. Circ Res 76:922–924.
  • Blaustein MP. (1993). Physiological effects of endogenous ouabain: control of intracellular Ca2+ stores and cell responsiveness. Am J Physiol 264:C1367–C1387.
  • Blaustein MP, Zhang J, Chen L, Hamilton BP. (2006). How does salt retention raise blood pressure?. Am J Physiol Regul Integr Comp Physiol 290:R514–R523.
  • Bradley KK, Jaggar JH, Bonev AD, Heppner TJ, Flynn ER, . (1999). Kir2.1 encodes the inward rectifier potassium channel in rat arterial smooth muscle cells. J Physiol 515Pt 3:639–651.
  • Bratz IN, Falcon R, Partridge LD, Kanagy NL. (2002). Vascular smooth muscle cell membrane depolarization after NOS inhibition hypertension. Am J Physiol Heart Circ Physiol 282:H1648–H1655.
  • Brink PR, Ricotta J, Christ GJ. (2000). Biophysical characteristics of gap junctions in vascular wall cells: implications for vascular biology and disease. Braz J Med Biolog Res 33:415–422.
  • Christ GJ, Brink PR, Ramanan SV. (1994). Dynamic gap junctional communication: a delimiting model for tissue responses. Biophys J 67:1335–1344.
  • Christ GJ, Spray DC, el-Sabban M, Moore LK, Brink PR. (1996). Gap junctions in vascular tissues. Evaluating the role of intercellular communication in the modulation of vasomotor tone. Circ Res 79:631–646.
  • Coleman HA, Tare M, Parkington HC. (2004). Endothelial potassium channels, endothelium-dependent hyperpolarization, and the regulation of vascular tone in health and disease. Clin Exp Pharmacol Physiol 31:641–649.
  • Crane GJ, Gallagher N, Dora KA, Garland CJ. (2003). Small- and intermediate-conductance calcium-activated K+ channels provide different facets of endothelium-dependent hyperpolarization in rat mesenteric artery. J Physiol 553:183–189.
  • Crane GJ, Garland CJ. (2004). Thromboxane receptor stimulation associated with loss of SKCa activity and reduced EDHF responses in the rat isolated mesenteric artery. Br J Pharmacol 142:43–50.
  • Crane GJ, Walker SD, Dora KA, Garland CJ. (2003). Evidence for a differential cellular distribution of inward rectifier K channels in the rat isolated mesenteric artery. J Vasc Res 40:159–168.
  • Diep HK, Vigmond EJ, Segal SS, Welsh DG. (2005). Defining electrical communication in skeletal muscle resistance arteries: a computational approach. J Physiol 568:267–281.
  • Dong XH, Komiyama Y, Nishimura N, Masuda M, Takahashi H. (2004). Nanomolar level of ouabain increases intracellular calcium to produce nitric oxide in rat aortic endothelial cells. Clin Exp Pharmacol Physiol 31:276–283.
  • Dora KA, Doyle MP, Duling BR. (1997). Elevation of intracellular calcium in smooth muscle causes endothelial cell generation of NO in arterioles. Proc Natl Acad Sci U S A 94:6529–6534.
  • Dora KA, Duling BR. (1998). Use of fluorescent reporters in the quantitation of microvascular function. Microcirculation 5:95–100.
  • Dora KA, Gallagher NT, McNeish A, Garland CJ. (2008). Modulation of endothelial cell KCa3.1 channels during endothelium-derived hyperpolarizing factor signaling in mesenteric resistance arteries. Circ Res 102:1247–1255.
  • Dora KA, Hinton JM, Walker SD, Garland CJ. (2000). An indirect influence of phenylephrine on the release of endothelium-derived vasodilators in rat small mesenteric artery. Br J Pharmacol 129:381–387.
  • Doughty JM, Boyle JP, Langton PD. (2000). Potassium does not mimic EDHF in rat mesenteric arteries. Br J Pharmacol 130:1174–1182.
  • Edwards A, Pallone TL. (2007). Modification of cytosolic calcium signaling by subplasmalemmal microdomains. Am J Physiol Renal Physiol 292:F1827–F1845.
  • Feletou M, Vanhoutte PM. (2006). EDHF: The Complete Story. CRC Press, Taylor & Francis Group Boca Raton, Florida.–
  • Figueroa XF, Isakson BE, Duling BR. (2004). Connexins: gaps in our knowledge of vascular function. Physiology (Bethesda) 19:277–284.
  • Fleming I, Busse R. (1999). NO: the primary EDRF. J Mol Cell Cardiol 31:5–14.
  • Furchgott RF, Zawadzki JV. (1980). The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376.
  • Garland JG, McPherson GA. (1992). Evidence that nitric oxide does not mediate the hyperpolarization and relaxation to acetylcholine in the rat small mesenteric artery. Br J Pharmacol 105:429–435.
  • Goto K, Fujii K, Kansui Y, Abe I, Iida M. (2002). Critical role of gap junctions in endothelium-dependent hyperpolarization in rat mesenteric arteries. Clin Exp Pharmacol Physiol 29:595–602.
  • Hatake K, Wakabayashi I, Hishida S. (1995). Endothelium-dependent relaxation resistant to NG-nitro-L-arginine in rat aorta. Eur J Pharmacol 274:25–32.
  • Hill CE, Hickey H, Sandow SL. (2000). Role of gap junctions in acetylcholine-induced vasodilation of proximal and distal arteries of the rat mesentery. J Auton Nerv Syst 81:122–127.
  • Hwa JJ, Ghibaudi L, Williams P, Chatterjee M. (1994). Comparison of acetylcholine-dependent relaxation in large and small arteries of rat mesenteric vascular bed. Am J Physiol 266:H952–H958.
  • Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. (1987). Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A 84:9265–9269.
  • Isakson BE. (2008). Localized expression of an Ins(1,4,5)P3 receptor at the myoendothelial junction selectively regulates heterocellular Ca2+ communication. J Cell Sci 121:3664–3673.
  • Isakson BE, Best AK, Duling BR. (2008). Incidence of protein on actin bridges between endothelium and smooth muscle in arterioles demonstrates heterogeneous connexin expression and phosphorylation. Am J Physiol Heart Circ Physiol 294:H2898–H2904.
  • Isakson BE, Ramos SI, Duling BR. (2007). Ca2+ and inositol 1,4,5-trisphosphate-mediated signaling across the myoendothelial junction. Circ Res 100:246–254.
  • Jacobsen JC, Aalkjaer C, Nilsson H, Matchkov VV, Freiberg J, Holstein-Rathlou NH. (2007). Activation of a cGMP-sensitive calcium-dependent chloride channel may cause transition from calcium waves to whole-cell oscillations in smooth muscle cells. Am J Physiol Heart Circ Physiol 293:H215–H228.
  • Jacobsen JC, Aalkjaer C, Nilsson H, Matchkov VV, Freiberg J, Holstein-Rathlou NH. (2007). A model of smooth muscle cell synchronization in the arterial wall. Am J Physiol Heart Circ Physiol 293:H229–H237.
  • Kanai AJ, Strauss HC, Truskey GA, Crews AL, Grunfeld S, Malinski T. (1995). Shear stress induces ATP-independent transient nitric oxide release from vascular endothelial cells, measured directly with a porphyrinic microsensor. Circ Res 77:284–293.
  • Kapela A, Bezerianos A, Tsoukias N, 2006. Integrative mathematical modeling for analysis of microcirculatory function. In: Maglaveras N, Chouvarda I, Koutkias V, Brause R, Biological and Medical Data Analysis, 7th International Symposium, ISBMDA 2006, Thessaloniki, Greece, Proceedings Springer, Berlin/Heidelberg.
  • Kapela A, Bezerianos A, Tsoukias NM. (2008). A mathematical model of Ca2+ dynamics in rat mesenteric smooth muscle cell: agonist and NO stimulation. J Theor Biol 253:238–260.
  • Keener JP, Sneyd J. (1998). Mathematical physiology. New York: Springer.
  • Koenigsberger M, Sauser R, Beny JL, Meister JJ. (2005). Role of the endothelium on arterial vasomotion. Biophys J 88:3845–3854.
  • Koenigsberger M, Sauser R, Beny JL, Meister JJ. (2006). Effects of arterial wall stress on vasomotion. Biophys J 91:1663–1674.
  • Koenigsberger M, Sauser R, Lamboley M, Beny JL, Meister JJ. (2004). Ca2+ dynamics in a population of smooth muscle cells: modeling the recruitment and synchronization. Biophys J 87:92–104.
  • Lamboley M, Pittet P, Koenigsberger M, Sauser R, Beny JL, Meister JJ. (2005). Evidence for signaling via gap junctions from smooth muscle to endothelial cells in rat mesenteric arteries: possible implication of a second messenger. Cell Calcium 37:311–320.
  • Ledoux J, Taylor MS, Bonev AD, Hannah RM, Solodushko V, . (2008). Functional architecture of inositol 1,4,5-trisphosphate signaling in restricted spaces of myoendothelial projections. Proc Natl Acad Sci U S A 105:9627–9632.
  • Mizuno O, Kobayashi S, Hirano K, Nishimura J, Kubo C, Kanaide H. (2000). Stimulus-specific alteration of the relationship between cytosolic Ca(2 +) transients and nitric oxide production in endothelial cells ex vivo. Br J Pharmacol 130:1140–1146.
  • Moncada S, Higgs EA. (2006). The discovery of nitric oxide and its role in vascular biology. Br J Pharmacol 147(Suppl 1):S193–S201.
  • Nilsson H, Aalkjaer C. (2003). Vasomotion: mechanisms and physiological importance. Mol Interv 3:79–89.51
  • Oishi H, Budel S, Schuster A, Stergiopulos N, Meister JJ, Beny JL. (2001). Cytosolic-free calcium in smooth-muscle and endothelial cells in an intact arterial wall from rat mesenteric artery in vitro. Cell Calcium 30:261–267.
  • Parthimos D, Edwards DH, Griffith TM. (1999). Minimal model of arterial chaos generated by coupled intracellular and membrane Ca2+ oscillators. Am J Physiol 277:H1119–H1144.
  • Pollock JS, Forstermann U, Mitchell JA, Warner TD, Schmidt HH, . (1991). Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proc Natl Acad Sci U S A 88:10480–10484.
  • Rahman A, Matchkov V, Nilsson H, Aalkjaer C. (2005). Effects of cGMP on coordination of vascular smooth muscle cells of rat mesenteric small arteries. J Vasc Res 42:301–311.
  • Sanderson MJ, Charles AC, Boitano S, Dirksen ER. (1994). Mechanisms and function of intercellular calcium signaling. Mol Cell Endocrinol 98:173–187.
  • Sandow SL, Hill CE. (2000). Incidence of myoendothelial gap junctions in the proximal and distal mesenteric arteries of the rat is suggestive of a role in endothelium-derived hyperpolarizing factor-mediated responses. Circ Res 86:341–346.
  • Schuster A, Beny JL, Meister JJ. (2003). Modelling the electrophysiological endothelial cell response to bradykinin. Eur Biophys J 32:370–380.
  • Schuster A, Lamboley M, Grange C, Oishi H, Beny JL, . (2004). Calcium dynamics and vasomotion in rat mesenteric arteries. J Cardiovasc Pharmacol 43:539–548.
  • Segal SS. (2005). Regulation of blood flow in the microcirculation. Microcirculation 12:33–45.
  • Seppey D, Sauser R, Koenigsberger M, Beny JL, Meister JJ. (2008). Does the endothelium abolish or promote arterial vasomotion in rat mesenteric arteries? Explanations for the seemingly contradictory effects. J Vasc Res 45:416–426.
  • Siegl D, Koeppen M, Wolfle SE, Pohl U, de Wit C. (2005). Myoendothelial coupling is not prominent in arterioles within the mouse cremaster microcirculation in vivo. Circ Res 97:781–788.
  • Silva HS, Kapela A, Tsoukias NM. (2007). A mathematical model of plasma membrane electrophysiology and calcium dynamics in vascular endothelial cells. Am J Physiol Cell Physiol 293:C277–C293.
  • Simonsen U, Wadsworth RM, Buus NH, Mulvany MJ. (1999). In vitro simultaneous measurements of relaxation and nitric oxide concentration in rat superior mesenteric artery. J Physiol 516Pt 1:271–282.
  • Smith PD, Brett SE, Luykenaar KD, Sandow SL, Marrelli SP, . (2008). Kir channels function as electrical amplifiers in rat vascular smooth muscle. J Physiol 586:1147–1160.
  • Sneyd J, Charles AC, Sanderson MJ. (1994). A model for the propagation of intercellular calcium waves. Am J Physiol 266:C293–C302.
  • Somlyo AP, Somlyo AV. (1994). Signal transduction and regulation in smooth muscle. Nature 372:231–236.
  • Stankevicius E, Lopez-Valverde V, Rivera L, Hughes AD, Mulvany MJ, Simonsen U. (2006). Combination of Ca2+-activated K+ channel blockers inhibits acetylcholine-evoked nitric oxide release in rat superior mesenteric artery. Br J Pharmacol 149:560–572.
  • Tschudi MR, Mesaros S, Luscher TF, Malinski T. (1996). Direct in situ measurement of nitric oxide in mesenteric resistance arteries. Increased decomposition by superoxide in hypertension. Hypertension 27:32–35.
  • Tsoukias NM, Kavdia M, Popel AS. (2004). A theoretical model of nitric oxide transport in arterioles: frequency- vs. amplitude-dependent control of cGMP formation. Am J Physiol Heart Circ Physiol 286:H1043–H1056.
  • Verselis V, White RL, Spray DC, Bennett MV. (1986). Gap junctional conductance and permeability are linearly related. Science 234:461–464.
  • Waldron GJ, Garland CJ. (1994). Contribution of both nitric oxide and a change in membrane potential to acetylcholine-induced relaxation in the rat small mesenteric artery. Br J Pharmacol 112:831–836.
  • Weston AH, Richards GR, Burnham MP, Feletou M, Vanhoutte PM, Edwards G. (2002). K+-induced hyperpolarization in rat mesenteric artery: identification, localization, and role of Na+/K+-ATPases. Br J Pharmacol 136:918–926.
  • Wiesner TF, Berk BC, Nerem RM. (1996). A mathematical model of cytosolic calcium dynamics in human umbilical vein endothelial cells. Am J Physiol 270:C1556–C1569.
  • Xia J, Little TL, Duling BR. (1995). Cellular pathways of the conducted electrical response in arterioles of hamster cheek pouch in vitro. Am J Physiol 269:H2031–H2038.
  • Yamamoto Y, Klemm MF, Edwards FR, Suzuki H. (2001). Intercellular electrical communication among smooth muscle and endothelial cells in guinea-pig mesenteric arterioles. J Physiol 535:181–195.
  • Yamamoto Y, Suzuki H. (2005). Dependency of endothelial cell function on vascular smooth muscle cells in guinea-pig mesenteric arteries and arterioles. J Smooth Muscle Res 41:77–85.
  • Yang J, Clark JW, Bryan RM, Robertson CS. (2005). Mathematical modeling of the nitric oxide/cGMP pathway in the vascular smooth muscle cell. Am J Physiol Heart Circ Physiol 289:H886–H897.
  • Yashiro Y, Duling BR. (2000). Integrated Ca(2 +) signaling between smooth muscle and endothelium of resistance vessels. Circ Res 87:1048–1054.

References

  • Bratz IN, Falcon R, Partridge LD, Kanagy NL. (2002). Vascular smooth muscle cell membrane depolarization after NOS inhibition hypertension. Am J Physiol Heart Circ Physiol 2002;282:H1648–H1655.
  • Coleman HA, Tare M, Parkington HC. (2004). Endothelial potassium channels, endotheliumdependent hyperpolarization, and the regulation of vascular tone in health and disease. Clin Exp Pharmacol Physiol 31:641–649.
  • Crane GJ, Gallagher N, Dora KA, Garland CJ. (2003). Small- and intermediate-conductance calcium-activated K+ channels provide different facets of endotheliumdependent hyperpolarization in rat mesenteric artery. J Physiol 553:183–189.
  • Doughty JM, Plane F, Langton PD. (1999). Charybdotoxin and apamin block EDHF in rat mesenteric artery if selectively applied to the endothelium. Am J Physiol 276:H1107–H1112.
  • Kapela A, Bezerianos A, Tsoukias NM. (2008) A mathematical model of Ca22+ dynamics in rat mesenteric smooth muscle cell: agonist and NO stimulation. J Theor Biol 253:238–260.
  • Moore LK, Burt JM. (1995). Gap junction function in vascular smooth muscle: influence of serotonin. Am J Physiol 269:H1481–H1489.
  • Schuster A, Lamboley M, Grange C, Oishi H, Beny JL, (2004). Calcium dynamics and vasomotion in rat mesenteric arteries. J Cardiovasc Pharmacol 43:539–548.
  • Silva HS, Kapela A, Tsoukias NM. (2007). A mathematical model of plasma membrane electrophysiology and calcium dynamics in vascular endothelial cells. Am J Physiol Cell Physiol 293:C277–C293.
  • Takano H, Dora KA, Spitaler MM, Garland CJ. (2004). Spreading dilatation in rat mesenteric arteries associated with calcium-independent endothelial cell hyperpolarization. J Physiol 556:887–903.
  • Tsoukias NM, Kavdia M, Popel AS. (2004). A theoretical model of nitric oxide transport in arterioles: frequency- vs. amplitude-dependent control of cGMP formation. Am J Physiol Heart Circ Physiol 286:H1043–H1056.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.