383
Views
35
CrossRef citations to date
0
Altmetric
Mini-Review

G protein coupled receptors as allosteric proteins and the role of allosteric modulators

Pages 313-321 | Received 18 Jun 2010, Accepted 22 Jun 2010, Published online: 21 Sep 2010

References

  • Changeux J-P. The feedback control mechanism of biosynthetic L-threonine deaminase by L-isoleucine. Cold Spring harbor Symp Quant Biol 1961, 26, 313–318.
  • Monod J, Jacob F. General conclusions: telenomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harbor Symp Quant Biol 1961, 26, 389–401.
  • Monod J, Wyman J, Changeux JP. On the nature of allosteric transitions: a plausible model. J Mol Biol 1965, 12, 88–118.
  • Fenton AW. Allostery: an illustrated definition for the ‘second secret of life’. Trends Biochem Sci 2008, 33, 420–425.
  • Segel IH. Enzyme kinetics: behavior and analysis of rapid equilibrium and steady-state enzyme kinetics. New York: Wiley Classics Library, 1993.
  • Colquhoun D. The relationship between classical and cooperative models for drug action. In: Rang HP, ed. A Symposium on Drug Receptors. Baltimore: University Park Press, 1973, 149–182.
  • Karlin A. On the application of ‘a plausible model’ of allosteric proteins to the receptor for acetylcholine. J Theoret Biol 1967, 16, 306–320.
  • Thron CD. On the analysis of pharmacological experiments in terms of an allosteric receptor model. Mol Pharmacol 1973, 9, 1–9.
  • Stockton JM, Birdsall NJ, Burgen AS, Hulme EC. Modification of the binding properties of muscarinic receptors by gallamine. Mol Pharmacol 1983, 23, 551–557.
  • Ehlert FJ. Estimation of the affinities of allosteric ligands using radioligand binding and pharmacological null methods. Mol Pharmacol 1988, 33, 187–194.
  • Rees S, Morrow D, Kenakin T. GPCR drug discovery through the exploitation of allosteric drug binding sites. Recept Channels 2002, 8, 261–268.
  • Frauenfelder H, Sligar SG, Wolynes PG. The energy landscapes and motions of proteins. Science 1991, 254, 1598–1603.
  • Hilser VJ, Garcia-Moreno EB, Oas TG, Kapp G, Whitten ST. A statistical thermodynamic model of protein ensembles. Chem Rev 2006, 106, 1545–1558.
  • Onaran HO, Scheer A, Cotecchia S, Costa T. A look at receptor efficacy. From the signaling network of the cell to the intramolecular motion of the receptor. In: Kenakin TP, Angus JA, eds. The Pharmacology of Functional, Biochemical, and Recombinant Systems Handbook of Experimental Pharmacology. Vol. 148. Germany: Springer, Heidelberg 2002, 217–280.
  • Lockless SW, Ranganathan R. Evolutionarily conserved pathways of energetic connectivity in protein families. Science 1999, 286, 295–299.
  • Liu J, Perumal NB, Oldfield CJ, Su EW, Uversky VN, Dunker AK. Intrinsic disorder in transcription factors. Biochemistry 2006, 45, 6873–6888.
  • Blanpain C, Doranz BJ, Vakili J, Rucker J, Govaerts C, Baik SS, Lorthioir O, Migeotte I, Libert F, Baleux F, Vassart G, Doms RW, Parmentier M. Multiple charged and aromatic residues in CCR5 amino-terminal domain are involved in high affinity binding of both chemokines and HIV-1 Env protein. J Biol Chem 1999, 274, 34719–34727.
  • Blanpain C, Lee B, Vakili J, Doranz BJ, Govaerts C, Migeotte I, Sharron M, Dupriez V, Vassart G, Doms RW, Parmentier M. Extracellular cysteines of CCR5 are required for chemokine binding, but dispensable for HIV-1 coreceptor activity. J Biol Chem 1999, 274, 18902–18908.
  • Howard OM, Shirakawa AK, Turpin JA, Maynard A, Tobin GJ, Carrington M, Oppenheim JJ, Dean M. Naturally occurring CCR5 extracellular and transmembrane domain variants affect HIV-1 Co-receptor and ligand binding function. J Biol Chem 1999, 274, 16228–16234.
  • Gekko K, Obu N, Li J, Lee JC. A linear correlation between the energetics of allosteric communication and protein flexibility in the Escherichia coli cyclic AMP receptor protein revealed by mutation-induced changes in compressibility and amide hydrogen-deuterium exchange. Biochemistry 2004, 43, 3844–3852.
  • Lu ZL, Gallagher R, Sellar R, Coetsee M, Millar RP. Mutations remote from the human gonadotropin-releasing hormone (GnRH) receptor-binding sites specifically increase binding affinity for GnRH II but not GnRH I: evidence for ligand-selective, receptor-active conformations. J Biol Chem 2005, 280, 29796–29803.
  • Kenakin T. New concepts in drug discovery: collateral efficacy and permissive antagonism. Nat Rev Drug Discov 2005, 4, 919–927.
  • Quiniou C, Sapieha P, Lahaie I, Hou X, Brault S, Beauchamp M, Leduc M, Rihakova L, Joyal JS, Nadeau S, Heveker N, Lubell W, Sennlaub F, Gobeil F Jr, Miller G, Pshezhetsky AV, Chemtob S. Development of a novel noncompetitive antagonist of IL-1 receptor. J Immunol 2008, 180, 6977–6987.
  • Maeda K, Nakata H, Koh Y, Miyakawa T, Ogata H, Takaoka Y, Shibayama S, Sagawa K, Fukushima D, Moravek J, Koyanagi Y, Mitsuya H. Spirodiketopiperazine-based CCR5 inhibitor which preserves CC-chemokine/CCR5 interactions and exerts potent activity against R5 human immunodeficiency virus type 1 in vitro. J Virol 2004, 78, 8654–8662.
  • Watson C, Jenkinson S, Kazmierski W, Kenakin TP. The CCR5 Receptor-based mechanism of action of 873140, a potent allosteric noncompetitive HIV entry-inhibitor. Mol Pharmacol 2005, 67, 1268–1282.
  • Litschig S, Gasparini F, Rueegg D, Stoehr N, Flor PJ, Vranesic I, Prézeau L, Pin JP, Thomsen C, Kuhn R. CPCCOEt, a noncompetitive metabotropic glutamate receptor 1 antagonist, inhibits receptor signaling without affecting glutamate binding. Mol Pharmacol 1999, 55, 453–461.
  • Kew JNC, Trube G, Kemp JA. A novel mechanism of activity-dependent NMDA receptor antagonism describes the effect of ifenprodil in rat cultured cortical neurons. J Physiol 1996, 497.3, 761–772.
  • Trankle C, Weyand A, Schroter A, Mohr K. Using a radioalloster to test predictions of the cooperativity model for gallamine binding to the allosteric site of muscarinic acetylcholine (m2) receptors. Mol Pharmacol 1999, 56, 962–965.
  • Price MR, Baillie GL, Thomas A, Stevenson LA, Easson M, Goodwin R, McLean A, McIntosh L, Goodwin G, Walker G, Westwood P, Marrs J, Thomson F, Cowley P, Christopoulos A, Pertwee RG, Ross RA. Allosteric modulation of the cannabinoid CB1 receptor. Mol Pharmacol 2005, 68, 1484–1495.
  • Jakubic J, Bačáková L, El-Fakahany EE, Tuček S. Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors. Mol Pharmacol 1997, 52, 172–179.
  • Maass A, Mohr K. Opposite effects of alcuronium on agonist and antagonist binding to muscarinic receptors. Eur J Pharmacol 1996, 305, 231–234.
  • Hejnová L, Tucek S, el-Fakahany EE. Positive and negative allosteric interactions on muscarinic receptors. Eur J Pharmacol 1995, 291, 427–430.
  • Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM, Berger EA. CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 1996, 272, 1955–1958.
  • Choe H, Farzan M, Sun Y, Sullivan N, Rollins B, Ponath PD, Wu L, Mackay CR, LaRosa G, Newman W, Gerard N, Gerard C, Sodroski J. The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 1996, 85, 1135–1148.
  • Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Di Marzio P, Marmon S, Sutton RE, Hill CM, Davis CB, Peiper SC, Schall TJ, Littman DR, Landau NR. Identification of a major co-receptor for primary isolates of HIV-1. Nature 1996, 381, 661–666.
  • Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA, Cayanan C, Maddon PJ, Koup RA, Moore JP, Paxton WA. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 1996, 381, 667–673.
  • Wyatt R, Sodroski J. The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science 1998, 280, 1884–1888.
  • Poignard P, Saphire EO, Parren PW, Burton DR. gp120: Biologic aspects of structural features. Annu Rev Immunol 2001, 19, 253–274.
  • Trkola A, Kuhmann SE, Strizki JM, Maxwell E, Ketas T, Morgan T, Pugach P, Xu S, Wojcik L, Tagat J, Palani A, Shapiro S, Clader JW, McCombie S, Reyes GR, Baroudy BM, Moore JP. HIV-1 escape from a small molecule, CCR5-specific entry inhibitor does not involve CXCR4 use. Proc Natl Acad Sci USA 2002, 99, 395–400.
  • Kuhmann SE, Pugach P, Kunstman KJ, Taylor J, Stanfield RL, Snyder A, Strizki JM, Riley J, Baroudy BM, Wilson IA, Korber BT, Wolinsky SM, Moore JP. Genetic and phenotypic analyses of human immunodeficiency virus type 1 escape from a small-molecule CCR5 inhibitor. J Virol 2004, 78, 2790–2807.
  • Kenakin TP. Collateral efficacy as pharmacological problem applied to new drug discovery. Expert Opin Drug Disc 2006, 1, 635–652.
  • Kazmierski W, Bifulco N, Yang H, Boone L, DeAnda F, Watson C, Kenakin TP. Recent progress in discovery of small-molecule CCR5 chemokine receptor ligsnds as HIV-1 inhibitors. Bioorg Med Chem 2003, 11, 2663–2676.
  • Kazmierski W, Peckham JP, Duan M, Kenakin TP, Jenkinson S, Gudmundsson KS, Piscitelli SC, Feldman PL. Recent progress in discovery of new CCR5 and CXCR4 chemokine receptor antagonists as inhibitors of HIV-1 entry. Part 2. Curr Med Chem-Anti-Infective Agents 2005, 4, 2456–2472.
  • Kazmierski W, Gudmundsson KS, Piscitelli SC. Small molecule CCR5 and CXCR4-based viral entry inhibitors for anti-HIV therapy currently in development. Ann Reports Med Chem 2007, 42, 301–320.
  • Schols D. HIV co-receptor inhibitors as novel class of anti-HIV drugs. Antiviral Res 2006, 71, 216–226.
  • Fätkenheuer G, Pozniak AL, Johnson MA, Plettenberg A, Staszewski S, Hoepelman AI, Saag MS, Goebel FD, Rockstroh JK, Dezube BJ, Jenkins TM, Medhurst C, Sullivan JF, Ridgway C, Abel S, James IT, Youle M, van der Ryst E. Efficacy of short-term monotherapy with maraviroc, a new CCR5 antagonist, in patients infected with HIV-1. Nat Med 2005, 11, 1170–1172.
  • Simmons G, Clapham PR, Picard L, Offord RE, Rosenkilde MM, Schwartz TW, Buser R, Wells TN, Proudfoot AE. Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science 1997, 276, 276–279.
  • Mack M, Luckow B, Nelson PJ, Cihak J, Simmons G, Clapham PR, Signoret N, Marsh M, Stangassinger M, Borlat F, Wells TN, Schlöndorff D, Proudfoot AE. Aminooxypentane-RANTES induces CCR5 internalization but inhibits recycling: a novel inhibitory mechanism of HIV infectivity. J Exp Med 1998, 187, 1215–1224.
  • Garzino-Demo A, Moss RB, Margolick JB, Cleghorn F, Sill A, Blattner WA, Cocchi F, Carlo DJ, DeVico AL, Gallo RC. Spontaneous and antigen-induced production of HIV-inhibitory β-chemokines are associated with AIDS-free status. PNAS 96 1999, 11986–11991.
  • Heredia A, Davis C, Amoroso A, Dominique JK, Le N, Klingebiel E, Reardon E, Zella D, Redfield RR. Induction of G1 cycle arrest in T-lymphocytes results in increased extracellular levels of β-chemokines: a strategy to inhibit R5 HIV-1. Proc Natl Acad Sci 2003, 100, 4179–4184.
  • Rogez C, Martin M, Dereuddre-Bosquet N, Martal J, Dormont D, Clayette P. Anti-human immunodeficiency virus activity of tau interferon in human macrophages: involvement of cellular factors and ß-chemokines. J Virol 2003, 77, 12914–12920.
  • Ullum H, Cozzi Lepri A, Victor J, Aladdin H, Phillips AN, Gerstoft J, Skinhøj P, Pedersen BK. Production of beta-chemokines in human immunodeficiency virus (HIV) infection: evidence that high levels of macrophage inflammatory protein-1beta are associated with a decreased risk of HIV disease progression. J Infect Dis 1998, 177, 331–336.
  • Xiang J, George SL, Wünschmann S, Chang Q, Klinzman D, Stapleton JT. Inhibition of HIV-1 replication by GB virus C infection through increases in RANTES, MIP-1alpha, MIP-1beta, and SDF-1. Lancet 2004, 363, 2040–2046.
  • Shieh B, Yah YP, Ko NY, Liau YE, Liu HH. Lin HH, Chen PP, Li C. Detection of elevated seum beta chemokine levels in seronegative Chinese individuals exposed to human immunodeficiency virus type 1. Clin Infect Dis 2001, 33, 273–279.
  • Pastore C, Picchio GR, Galimi F, Fish F, Hartley O, Offord RE, Mosier DE. Two mechanisms for human immunodeficiency virus type 1 inhibition by N-terminal modifications of RANTES. Antimicrob Agents Chemother 2003, 47, 509–517.
  • Amara A, Gall SL, Schwartz O, Salamero J, Montes M, Loetscher P, Baggiolini M, Virelizier JL, Arenzana-Seisdedos F. HIV coreceptor downregulation as antiviral principle: SDF-1alpha-dependent internalization of the chemokine receptor CXCR4 contributes to inhibition of HIV replication. J Exp Med 1997, 186, 139–146.
  • Hartley O, Gaertner H, Wilken J, Thompson D, Fish R, Ramos A, Pastore C, Dufour B, Cerini F, Melotti A, Heveker N, Picard L, Alizon M, Mosier D, Kent S, Offord R. Medicinal chemistry applied to a synthetic protein: development of highly potent HIV entry inhibitors. Proc Natl Acad Sci USA 2004, 101, 16460–16465.
  • Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, Catano G, Nibbs RJ, Freedman BI, Quinones MP, Bamshad MJ, Murthy KK, Rovin BH, Bradley W, Clark RA, Anderson SA, O’connell RJ, Agan BK, Ahuja SS, Bologna R, Sen L, Dolan MJ, Ahuja SK. The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 2005, 307, 1434–1440.
  • Ketas TJ, Kuhmann SE, Palmer A, Zurita J, He W, Ahuja SK, Klasse PJ, Moore JP. Cell surface expression of CCR5 and other host factors influence the inhibition of HIV-1 infection of human lymphocytes by CCR5 ligands. Virology 2007, 364, 281–290.
  • Muniz-Medina VM, Jones S, Maglich JM, Galardi C, Hollingsworth RE, Kazmierski WM, Ferris RG, Edelstein MP, Chiswell KE, Kenakin TP. The relative activity of ‘function sparing’ HIV-1 entry inhibitors on viral entry and CCR5 internalization: is allosteric functional selectivity a valuable therapeutic property? Mol Pharmacol 2009, 75, 490–501.
  • Wei H, Ahn S, Shenoy SK, Karnik SS, Hunyady L, Luttrell LM, Lefkowitz RJ. Independent beta-arrestin 2 and G protein mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc Natl Acad Sci USA 2003, 100, 10782–10787.
  • Holloway AC, Qian H, Pipolo L, Ziogas J, Miura S, Karnik S, Southwell BR, Lew MJ, Thomas WG. Side chain substitutions within angiotensin II reveal different requirements for signaling, internalization, and phosphorylation of type 1A angiotensin receptors. Mol Pharmacol 2002, 61, 768–777.
  • Ahn S, Shenoy SK, Wei H, Lefkowitz, RJ. Differential kinetic and spatial patterns of beta-arrestin and G protein mediated ERK activation by the angiotensin II receptor. J Biol Chem 2004, 279, 35518–35525.
  • Violin JD, Lekowitz RJ. β-Arrestin-biased ligands at seven transmembrane receptors. Trends Pharmacol Sci 2007, 28, 416–422.
  • Kenakin T. Drug efficacy at G protein-coupled receptors. Annu Rev Pharmacol Toxicol 2002, 42, 349–379.
  • Hermans E. Biochemical and pharmacological control of the multiplicity of coupling at G protein coupled receptors. Pharmacol Ther 2003, 99, 25–44.
  • Perez DM, Karnik SS. Multiple signaling states of G protein-coupled receptors. Pharmacol Rev 2005, 57, 147–161.
  • Kukkonen JP. Regulation of receptor-coupling to (multiple) G proteins: a challenge for basic research and drug discovery. Recept Channels 2004, 10, 167–83.
  • Mukhopadhyay S, Howlett AC. Chemically distinct ligands promote differential CB1 cannabinoid receptor-Gi protein interactions. Mol Pharmacol 2005, 67, 2016–2024.
  • Vassart G, Dumont JE. The thyrotropin receptor and the regulation of thyrocyte function and growth. Endocr Rev 1992, 13, 596–611.
  • Shizukudu Y, Buttrick PM. Subtype specific roles of β-adrenergic receptors in apoptosis of adult rat ventricular myocytes. J Mol Cell Cardiol 2002, 34, 823–831.
  • Galeotti N, Malmberg-Aiello P, Bartolini A, Schunack W, Ghelardini C. H1-receptor stimulation induces hyperalgesia through activation of the phospholipase C-PKC pathway. Neuropharmacology 2004, 47, 295–303.
  • Walters RW, Shukla A, Kovacs JJ, Violin JD, DeWire SM, Lam CM, Chen JR, Muelbauer MJ, Whalen EJ, Lefkowitz RJ. β-Arrestin 1 mediates nicotinic acid-induced flushing, but not its antilipolytic effect, in mice. J Clin Invest 2009, 119, 1312–1321.
  • Richman JG, Kanetemitsu-Parks M, Gaidarov I, Cameron JS, Griffin P, Zheng H, Guerra NC, Cham L, Maciejewski-Lenoir D, Behan DP, Boatman D, Chen R, Skinner P, Ornelas P, Waters MG, Wright SD, Semple G, Connolly DT. Nicotinic acid receptor agonists differentially activate downstream effectors. J Biol Chem 2008, 283, 6232–6240.
  • Cullen CL, Bohn LM. Physiological and pharmacological implications of beta-arerstin regulation. Pharmacol Ther 2009, 121, 285–293.
  • Grady MA, Gasperoni TL, Kirkpatrick P. Aripiprazole. Nat Rev Drug Disc 2003, 2, 427–428.
  • Urban JD, Vargas GA, von Zastrow M, Mailman RB. Aripirazole has functionally selective action at dopamine D2 receptor-mediated signaling pathways. Neuropsychopharmacol 2007, 32, 67–77.
  • Gesty-Palmer D, Flanner P, Yuan L, Corsino L, Spurney R, Lefkowitz RJ, Luttrell LM. A β-arrestin–biased agonist of the parathyroid hormone receptor (PTH1R) promotes bone formation independent of G protein activation. Sci Transl Med 2009, 1, 1ra1.
  • Schmid CL, Raehal KM, Bohn LM. Agonist-directed signaling of the serotonin 2A receptor depends on β-arrestin-2 interactions in vivo. Proc Natl Acad Sci USA 2008, 105, 1079–1084.
  • Xu H, Partilla JS, Wang X, Rutherford JM, Tidgewell K, Prisinzano TE, Bohn LM, Rothman RB. A comparison of noninternalizing (herkinorin) and internalizing (DAMGO) μ-opioid agonists on cellular markers related to opioid tolerance and dependence. SYNAPSE 2007, 61, 166–175.
  • Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, Lin FT. Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science 1999, 286, 2495–2498.
  • Groer CE, Tidgewell K, Moyer RA, Harding WW, Rothman RB, Prisinzano TE, Bohn LM. An opioid agonist that does not induce mu opioid receptor-arrestin interactions or receptor internalization. Mol Pharmacol 2007, 71, 549–557.
  • Ryman-Rasmussen JP, Griffith A, Oloff S, Vaidehi N, Brown JT, Goddard WA 3rd, Mailman RB. Functional selectivity of dopamine D1 receptor agonists in regulating the fate of internalized receptors. Neuropharmacology 2007, 52, 562–575.
  • Rajagopal K, Whalen EJ, Violin JD, Stiber JA, Rosenberg PB, Premont RT, Coffman TM, Rockman HA, Lefkowitz RJ. β-Arrestin-2 mediated inotropic effects of the angiotensin II type 1A receptor in isolated cardiac myocytes. Proc Natl Acad Sci USA 2006, 103, 16284–16289.
  • Zhai P, Yamamoto M, Galeotti J, Liu J, Masurekar M, Thaisz J, Irie K, Holle E, Yu X, Kupershmidt S, Roden DM, Wagner T, Yatani A, Vatner DE, Vatner SF, Sadoshima J. Cardiac-specific overexpression of AT1 receptor mutant lacking G alpha q/G alpha i coupling causes hypertrophy and bradycardia in transgenic mice. J Clin Invest 2005, 115, 3045–56.
  • Aplin M, Bonde MM, Hansen JL. Molecular determinants of angiotensin II type 1 receptor functional selectivity. J Mol Cell Cardiol 2009, 46, 15–24.
  • Ji S-P Zhang, Y, van Cleemput J, Jiang W, Liao M, Li L, Wan Q, Backstrom JR, Zhang X. Disruption of PTEN coupling with 5-HT2C receptors supporesses behavioral responses induced by drugs of abuse. Nat Med 2006, 12, 324–329.
  • MacKinnon AC, Tufail-Hanif U, Lucas CD, Jodrell D, Haslett C, Sethi T. Expression of V1A and GRP receptoprs leads to cellular transformation and increased sensitivity to substance-P analogue-inducedgrowth inhibition. Br J Cancer 2005, 92, 522–531.
  • Metra M, Cas LD, di Lenarda A, Poole-Wilson P. Beta-blockers in heart failure: are pharmacological differences clinically important? Heart Fail Rev 2004, 9, 123–130.
  • Wisler JW, DeWire SM, Whalen EJ, Violin JD, Drake MT, Shenoy SK, Lefkowitz RJ. A unique mechanism of β-blocker action: carvedilol stimulates β-arrestin signaling. Proc Natl Acad Sci USA 2007, 104, 16657–16662.
  • Bosier B, Hermans E, Lambert DM. Differential modulation of AP-1 and CRE-driven transcription by cannabinoid agonists emphasizes functional selectivity at eh CB1 receptor. Br J Pharmacol 2008, 155, 24–33.
  • Willins DL, Alsayegh L, Berry SA, Backstrom JR, Sanders-Bush E, Friedman L, Khan N, Roth BL. Serotonergic antagonist effects on trafficking of serotonin 5-HT2A receptors in vitro and in vivo. Ann NY Acad Sci 1998, 861, 121–127.
  • Willins DL, Berry SA, Alsayegh L, Backstrom JR, Sanders-Bush E, Friedman L, Roth BL. Clozapine and other 5-hydroxytryptamine-2A receptor antagonists alter the subcellular distribution of 5-hydroxytryptamine-2A receptors in vitro and in vivo. Neuroscience 1999, 91, 599–606.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.