113
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Combined sequence and sequence-structure-based methods for analyzing RAAS gene SNPs: a computational approach

&
Pages 513-526 | Received 09 Jan 2014, Accepted 06 May 2014, Published online: 30 May 2014

References

  • Prasad P, Thelma BK. Normative genetic profiles of RAAS pathway gene polymorphisms in North Indian and South Indian populations. Hum Biol 2007;79:241–54
  • Zhu X, Chang YPC, Yan D, et al. Associations between hypertension and genes in the renin-angiotensin system. Hypertension 2003;41:1027–34
  • Rupert JL, Kidd KK, Norman LE, et al. Genetic polymorphisms in the renin-angiotensin system in high-altitude and low-altitude native American populations. Ann Hum Genet 2003;67:17–25
  • Saab YB, Gard PR, Overall ADJ. The association of hypertension with renin-angiotensin system gene polymorphisms in the Lebanese population. J Renin Angiotensin Aldosterone Syst 2011;12:588–94
  • Barley J, Blackwood A, Miller M, et al. Angiotensin converting enzyme gene I/D polymorphism, blood pressure and the renin-angiotensin system in Caucasian and Afro-Caribbean peoples. J Hum Hypertens 1996;10:31–5
  • Vargas-Alarcón G, Hernández-Pacheco G, Rodríguez-Pérez JM, et al. Angiotensin-converting enzyme gene (ACE) insertion/deletion polymorphism in Mexican populations. Hum Biol 2003;75:889–96
  • Todoroki M, Minami J, Ishimitsu T, et al. Relation between the angiotensin-converting enzyme insertion/deletion polymorphism and blood pressure in Japanese male subjects. J Hum Hypertens 2003;17:713–18
  • Bae Y, Park C, Han J, et al. Interaction between GNB3 C825T and ACE I/D polymorphisms in essential hypertension in Koreans. J Hum Hypertens 2007;21:159–66
  • Renner W, Nauck M, Winkelmann BR, et al. Association of angiotensinogen haplotypes with angiotensinogen levels but not with blood pressure or coronary artery disease: the Ludwigshafen Risk and Cardiovascular Health Study. J Mol Med (Berl) 2005;83:235–9
  • Ortlepp JR, Metrikat J, Mevissen V, et al. Relation between the angiotensinogen (AGT) M235T gene polymorphism and blood pressure in a large, homogeneous study population. J Hum Hypertens 2003;17:555–9
  • Robinson MT, Wilson TW, Nicholson GA, et al. AGT and RH blood group polymorphisms affect blood pressure and lipids in Afro-Caribbeans. J Hum Hypertens 2004;18:351–63
  • Ishigami T, Umemura S, Tamura K, et al. Essential hypertension and 5′ upstream core promoter region of human angiotensinogen gene. Hypertension 1997;30:1325–30
  • Dzida G, Sobstyl J, Puzniak A, et al. Polymorphisms of angiotensin-converting enzyme and angiotensin II receptor type 1 genes in essential hypertension in a Polish population. Med Sci Monit 2001;7:1236–41
  • Henskens LOH, Spiering W, Stoffers HE, et al. Effects of ACE I/D and AT1R-A1166C polymorphisms on blood pressure in a healthy normotensive primary care population: first results of the Hippocrates study. J Hypertens 2003;21:81–6
  • Sookoian S, Castano G, Garcia SI, et al. A1166C Angiotensin II type 1 receptor gene polymorphism may predict hemodynamic response to Losartan in patients with cirrhosis and portal hypertension. Am J Gastroenterol 2005;100:636–42
  • van Geel PP, Pinto YM, Voors AA, et al. Angiotensin II type 1 receptor A1166C gene polymorphism is associated with an increased response to angiotensin II in human arteries. Hypertension 2000;35:717–21
  • Rajan S, Ramu P, Umamaheswaran G, et al. Association of aldosterone synthase (CYP11B2 C-344T) gene polymorphism & susceptibility to essential hypertension in a south Indian Tamil population. Indian J Med Res 2010;132:379–85
  • Takai E, Akita H, Kanazawa K, et al. Association between aldosterone synthase (CYP11B2) gene polymorphism and left ventricular volume in patients with dilated cardiomyopathy. Heart 2002;88:649–50
  • Hampf M, Dao NTN, Hoan NT, et al. Unequal crossing-over between aldosterone synthase and 11beta-hydroxylase genes causes congenital adrenal hyperplasia. J Clin Endocrinol Metab 2001;86:4445–52
  • Ono K, Kokubo Y, Mannami T, et al. Heterozygous disruption of CMA1 does not affect blood pressure. J Hypertens 2004;22:103–9
  • Anbazhagan K, Sampathkumar K, Ramakrishnan M, et al. Analysis of polymorphism in renin angiotensin system and other related genes in south Indian chronic kidney disease patients. Clinica Chimica Acta 2009;406:108–12
  • Hasimu B, Nakayama T, Mizutani Y, et al. Haplotype analysis of the human renin gene and essential hypertension. Hypertension 2003;41:308–12
  • Vangjeli C, Clarke N, Quinn U, et al. Confirmation that the renin gene distal enhancer polymorphism REN-5312C/T is associated with increased blood pressure/clinical perspective. Circ Cardiovasc Genet 2010;3:53–9
  • de Alencar SA, Lopes JCD. A comprehensive in silico analysis of the functional and structural impact of SNPs in the IGF1R gene. J Biomed Biotechnol 2010;2010:715139
  • Mah JTL, Low ESH, Lee E. In silico SNP analysis and bioinformatics tools: a review of the state of the art to aid drug discovery. Drug Discovery Today 2011;16:800–9
  • Yue P, Li Z, Moult J. Loss of protein structure stability as a major causative factor in monogenic disease. J Mol Biol 2005;353:459–73
  • Yue P, Moult J. Identification and analysis of deleterious human SNPs. J Mol Biol 2006;356:1263–74
  • Sherry ST, Ward MH, Kholodov M, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 2001;29:308–11
  • Ng PC, Henikoff S. Accounting for human polymorphisms predicted to affect protein function. Genome Res 2002;12:436–46
  • Altschul SF, Madden TL, Schäffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389–402
  • Wheeler DL, Church DM, Lash AE, et al. Database resources of the National Center for Biotechnology Information: 2002 update. Nucleic Acids Res 2002;30:13–16
  • Sjölander K, Karplus K, Brown M, et al. Dirichlet mixtures: a method for improved detection of weak but significant protein sequence homology. Comput Appl Biosci 1996;12:327–45
  • Thomas PD, Kejariwal A, Campbell MJ, et al. PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification. Nucleic Acids Res 2003;31:334–41
  • Calabrese R, Capriotti E, Fariselli P, et al. Functional annotations improve the predictive score of human disease-related mutations in proteins. Hum Mutat 2009;30:1237–44
  • Ng PC, Henikoff S. Predicting the effects of amino acid substitutions on protein function. Annu Rev Genomics Hum Genet 2006;7:61–80
  • Ramensky V, Bork P, Sunyaev S. Human non-synonymous SNPs: server and survey. Nucleic Acids Res 2002;30:3894–900
  • Xi T, Jones IM, Mohrenweiser HW. Many amino acid substitution variants identified in DNA repair genes during human population screenings are predicted to impact protein function. Genomics 2004;83:970–9
  • Bromberg Y, Rost B. SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res 2007;35:3823–35
  • Reumers J, Maurer-Stroh S, Schymkowitz J, et al. SNPeffect v2.0: a new step in investigating the molecular phenotypic effects of human non-synonymous SNPs. Bioinformatics 2006;22:2183–5
  • Yuan H-Y, Chiou J-J, Tseng W-H, et al. FASTSNP: an always up-to-date and extendable service for SNP function analysis and prioritization. Nucleic Acids Res 2006;34:W635–41
  • Clément M, Martin SS, Beaulieu ME, et al. Determining the environment of the ligand binding pocket of the human angiotensin II type I (hAT1) receptor using the methionine proximity assay. J Biol Chem 2005;280:27121–9
  • Maestro, version 9.2, Schrödinger, LLC, New York, NY, 2011
  • Glaser F, Pupko T, Paz I, et al. ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 2003;19:163–4
  • Chothia C, Finkelstein AV. The classification and origins of protein folding patterns. Annu Rev Biochem 1990;59:1007–35
  • Connolly M. Analytical molecular surface calculation. J Appl Crystallogr 1983;16:548–58
  • Cyrus C. The nature of the accessible and buried surfaces in proteins. J Mol Biol 1976;105:1–12
  • Ahmad S, Gromiha MM, Sarai A. Real value prediction of solvent accessibility from amino acid sequence. Proteins 2003;50:629–35
  • Jones S, Thornton JM. Analysis of protein-protein interaction sites using surface patches. J Mol Biol 1997;272:121–32
  • Jones S, Thornton JM. Prediction of protein-protein interaction sites using patch analysis. J Mol Biol 1997;272:133–43
  • Haste Andersen P, Nielsen M, Lund O. Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci 2006;15:2558–67
  • Panchenko AR, Kondrashov F, Bryant S. Prediction of functional sites by analysis of sequence and structure conservation. Protein Sci 2004;13:884–92
  • Petersen B, Petersen T, Andersen P, et al. A generic method for assignment of reliability scores applied to solvent accessibility predictions. BMC Struct Biol 2009;9:51
  • Kearse M, Moir R, Wilson A, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012; 28:1647–9
  • Li H, Robertson AD, Jensen JH. Very fast empirical prediction and rationalization of protein pKa values. Proteins 2005;61:704–21
  • Olsson MHM, Søndergaard CR, Rostkowski M, et al. PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theory Comput 2011;7:525–37
  • Thusberg J, Olatubosun A, Vihinen M. Performance of mutation pathogenicity prediction methods on missense variants. Hum Mutat 2011;32:358–68
  • Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 2003;31:3812–14
  • Brunham LR, Singaraja RR, Pape TD, et al. Accurate prediction of the functional significance of single nucleotide polymorphisms and mutations in the ABCA1 gene. PLoS Genet 2005;1:e83
  • Thomas PD, Kejariwal A. Coding single-nucleotide polymorphisms associated with complex vs. Mendelian disease: evolutionary evidence for differences in molecular effects. Proc Natl Acad Sci USA 2004;101:15398–403
  • Harland M, Mistry S, Bishop DT, et al. A deep intronic mutation in CDKN2A is associated with disease in a subset of melanoma pedigrees. Hum Mol Genet 2001;10:2679–86
  • Theuns J, Brouwers N, Engelborghs S, et al. Promoter mutations that increase amyloid precursor-protein expression are associated with Alzheimer disease. Am J Hum Genet 2006;78:936–46
  • Yang C-F, Hwu W-L, Yang L-C, et al. A promoter sequence variant of ZNF750 is linked with familial psoriasis. J Invest Dermatol 2008;128:1662–8
  • Wada T, Sakakibara M, Fukushima Y, et al. A novel splicing mutation of the ATRX gene in ATR-X syndrome. Brain Dev 2006;28:322–5
  • Chatterjee S, Pal JK. Role of 5′- and 3′-untranslated regions of mRNAs in human diseases. Biol Cell 2009;101:251–62
  • Cooper DN, Ball EV, Krawczak M. The human gene mutation database. Nucleic Acids Res 1998;26:285–7
  • Hudson TJ. Wanted: regulatory SNPs. Nat Genet 2003;33:439–40
  • Yan H, Yuan W, Velculescu VE, et al. Allelic variation in human gene expression. Science 2002;297:1143
  • Ortlepp JR, Vosberg HP, Reith S, et al. Genetic polymorphisms in the renin-angiotensin-aldosterone system associated with expression of left ventricular hypertrophy in hypertrophic cardiomyopathy: a study of five polymorphic genes in a family with a disease causing mutation in the myosin binding protein C gene. Heart 2002;87:270–5
  • Sigmund CD. Genetic manipulation of the renin-angiotensin system: targeted expression of the renin-angiotensin system in the kidney. Am J Hypertens 2001;14:33S–37S
  • Schelleman H, Klungel OH, Witteman JCM, et al. Interaction between polymorphisms in the renin-angiotensin-system and angiotensin-converting enzyme inhibitor or [beta]-blocker use and the risk of myocardial infarction and stroke. Pharmacogenomics J 2008;8:400–7
  • Jeunemaitre X, Soubrier F, Kotelevtsev YV, et al. Molecular basis of human hypertension: role of angiotensinogen. Cell 1992;71:169–80
  • Caulfield M, Lavender P, Farrall M, et al. Linkage of the angiotensinogen gene to essential hypertension. N Engl J Med 1994;330:1629–33
  • Tiret L, Ricard S, Poirier O, et al. Genetic variation at the angiotensinogen locus in relation to high blood pressure and myocardial infarction: the ECTIM study. J Hypertens 1995;13:311–18
  • Schunkert H, Hense H-W, Gimenez-Roqueplo A, et al. The angiotensinogen T235 variant and the use of antihypertensive drugs in a population-based cohort. Hypertension 1997;29:628–33
  • Rotimi C, Cooper R, Ogunbiyi O, et al. Hypertension, #serum |angiotensinogen, and molecular variants of the angiotensinogen gene among nigerians. Circulation 1997;95:2348–50
  • Hingorani AD, Sharma P, Jia H, et al. Blood pressure and the M235T polymorphism of the angiotensinogen gene. Hypertension 1996;28:907–11
  • Zafarmand MH, van der Schouw YT, Grobbee DE, et al. The M235T polymorphism in the AGT gene and CHD risk: evidence of a Hardy-Weinberg equilibrium violation and publication bias in a meta-analysis. PLoS One 2008;3:e2533
  • Ortlepp JR, Metrikat J, Mevissen V, et al. Relation between the angiotensinogen (AGT) M235T gene polymorphism and blood pressure in a large, homogeneous study population. J Hum Hypertens 2003;17:555–9
  • Xu M, Sham P, Ye Z, et al. A1166C genetic variation of the angiotensin II type I receptor gene and susceptibility to coronary heart disease: collaborative of 53 studies with 20 435 cases and 23,674 controls. Atherosclerosis 2010;213:191–9
  • Pascoe L, Curnow KM, Slutsker L, et al. Mutations in the human CYP11B2 (aldosterone synthase) gene causing corticosterone methyloxidase II deficiency. Proc Natl Acad Sci USA 1992;89:4996–5000
  • Mitsuuchi Y, Kawamoto T, Rösler A, et al. Congenitally defective aldosterone biosynthesis in humans: the involvement of point mutations of the P-450C18 gene (CYP11B2) in CMO II deficient patients. Biochem Biophys Res Commun 1992;182:974–9
  • Nomoto S, Massa G, Mitani F, et al. CMO I deficiency caused by a point mutation in Exon 8 of the human CYP11B2 gene encoding steroid 18-Hydroxylase (P450C18). Biochem Biophys Res Commun 1997;234:382–5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.