12
Views
24
CrossRef citations to date
0
Altmetric
Research Article

Elimination of Ascorbic Acid-Induced Membrane Lipid Peroxidation and Serotonin Receptor Loss by Trolox-c, A Water Soluble Analogue of Vitamin E

, , &
Pages 181-200 | Published online: 26 Sep 2008

References

  • Muakkassah-Kelly S. F., Andresen J. W., Shih J. C., Hochstein P. Decreased [3H]serotonin and [3H]spiperone binding consequent to lipid peroxidation in rat cortical membranes. Biochem. Biophys. Res. Commun. 1982; 104: 1003–1010
  • Muakkassah-Kelly S. F., Andresen J. W., Shih J. C., Hochstein P. Dual effects of ascorbate on serotonin and spiperone binding in rat cortical membranes. J. Neurochem. 1983; 41: 1429–1439
  • Andresen J. W., Shih J. C. Necessity of ascorbic acid in the radioligand binding assay for [3H] 5-hydroxytryptamine. Neuropharmacology 1986; 25: 869–875
  • Peroutka S. J., Ison P. J., Liu D. U., Barrett R. W. Artifactual high-affinity and saturable binding of [3H]5–hydroxytryptamine induced by radioligand oxidation. J. Neurochem. 1986; 47: 38–45
  • Hamblin M. W., Adriaenssens P. I., Ariani K., Cawthon R. M., Stratford C. A., Tan G. L., Ciaranello R. D. Ascorbic acid prevents nonreceptor “specific” binding of [3H]-5-hydroxytryptamine to bovine cerebral cortex membranes. J. Pharmacol. Exp. Ther. 1987; 240: 701–711
  • May P. C., Morgan D. G., Salo D., Goss J. R., Finch C. E. Effects of radioligand oxidation and ascorbate-induced lipid peroxidation on serotonin-1 receptor assay: Use of ascorbate and ethylenediamine tetraacetic acid buffers to prevent (3H)-5–HT binding artifacts. J. Neurosci. Res. 1988; 20: 257–262
  • Wills E. D. Lipid peroxidation formation in microsomes, general considerations. Biochem. J. 1969; 113: 315–324
  • Wills E. D. Lipid peroxidation formation in microsomes, the role of non-haem iron. Biochem. J. 1969; 113: 325–332
  • Braughler J. M., Duncan L. A., Chase R. L. The involvement of iron in lipid peroxidation. Importance of ferric to ferrous ratios in initiation. J. Biol. Chem. 1986; 261: 10282–10289
  • Miller D. M., Aust S. D. Studies of ascorbate-dependent, ironcatalyzed lipid peroxidation. Arch. Biochem. Biophys. 1989; 271: 113–119
  • Leslie F. M., Dunlap C. E., Cox B. M. Ascorbate decreases ligand binding to neurotransmitter receptors. J. Neurochem. 1980; 34: 219–221
  • Heikkila R. E., Cabbat F. S., Manzio L. Inhibitory effects of ascorbic acid on the binding of [3H]dopamine antagonists to neostriatal membrane preparations: Relationship to lipid peroxidation. J. Neurochem. 1982; 38: 1000–1006
  • Andorn A. C., Bacon B. R., Nguyen-Hunh A. T., Parlato S. J., Stitts J. A. Guanyl nucleotide interactions with dopaminergic binding sites labeled by [3H]spiroperidol in human caudate and putamen: Guanyl nucleotides enhance ascorbate-induced lipid peroxidation and cause an apparent loss of high affinity binding sites. Mol. Pharmacol. 1988; 33: 155–162
  • Todd R. D., Bauer P. A. Ascorbate modulates 5–[3H]hydroxytryptamine binding to central 5–HT3 sites in bovine frontal cortex. J. Neurochem. 1988; 50: 1505–1512
  • Eagle H. Nutrition needs of mammalian cells in tissue culture. Science 1955; 122: 501–504
  • Hutchings S. E., Sato G. H. Growth and maintenance of HeLa cells in serum-free medium supplemented with hormones. Proc. Natl. Acad. Sci. USA 1978; 75: 901–904
  • Schaffner W., Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal. Biochem. 1973; 56: 502–514
  • Stewart J. C. M. Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal. Biochem. 1980; 104: 10–14
  • Buege J. A., Aust S. D. Microsomal lipid peroxidation. Methods Enzymol. 1978; 52: 302–310
  • VandenBerg S. R., Britt S. G., Redpath G. T., Gonias S. L. 5–Hydroxytryptamine2 (5-HT2) structure-function relationships of the nitro and amino phenylpiperazines on intact human platelets. Biochem. Pharmacol. 1989; 38: 4237–4244
  • VandenBerg S. R., Allgren R. L., Todd R. D., Ciaranello R. D. Solubilization and characterization of high-affinity [3H]serotonin binding sites from bovine cortical membranes. Proc. Natl. Acad. Sci. USA 1983; 80: 3508–3512
  • Lundeen J. E., Gordon J. H. Computer analysis of binding data. Receptor Binding in Drug Research, R. A. O'Brien. Marcel Dekker, New York 1986; 31–49
  • Glennon R. A. Central serotonin receptors. Receptor pharmacology and function, M. Williams, R. A. Glennon, P. B. M. W. M. Timmermans. Marcel Dekker, New York 1989; 257–292
  • Ciaranello R. D., Tan G. L., Dean R. G-protein-linked serotonin receptors in mouse kidney exhibit identical properties to 5–HT1b receptors in brain. J. Pharmacol. Exp. Ther. 1990; 252: 1347–1354
  • Moots P. L., VandenBerg S. R. Demonstration of high affinity [3H]5–HT binding in primitive neural cells of the OTT-6050 mouse teratoma. J. Neuropathol. Exp. Neurol. 1986; 45: 326, Abstract #27
  • Bradley P. B., Engel G., Feniuk W., Fozard J. R., Humphrey P. P. A., Middlemiss D. N., Mylecharane E. J., Richardson B. P., Saxena P. R. Proposals for the classification and nomeclature of functional receptors for 5–hydroxytryptamine. Neuropharmacology 1986; 25: 563–576
  • Peroutka S. J. Pharmacological differentiation and characterization of 5-HT1A 5-HT1B and 5-HT1C and binding sites in the rat frontal cortex. J. Neurochem. 1986; 47: 529–540
  • Porter N. A. Chemistry of lipid peroxidation. Methods Enzymol. 1984; 105: 273–282
  • Slater T. F. Overview of the methods used for detecting lipid peroxidation. Methods Enzymol. 1984; 105: 283–293
  • Heron D. S., Shinitzky M., Hershkowitz M., Samuel D. Lipid fluidity markedly modulates the binding of serotonin to mouse brain membranes. Proc. Natl. Acad. Sci. USA 1980; 77: 7463–7467
  • Wesemann W., Weiner N., Hoffmann-Bleihauer P. Modulation of serotonin binding in rat brain by membrane fluidity. Neurochem. Int. 1986; 9: 447–454
  • Villacara A., Kumami K., Yamamoto T., Mrsulja B. B., Spatz M. Ischemic modification of cerebrocortical membranes: 5–hydroxytryptamine receptors, fluidity, and inducible in vitro lipid peroxidation. J. Neurochem. 1989; 53: 595–601, [published erratum appears in J. Neurochem. 53, 1329, 1989]
  • Davies K. J. A., Delsignore M. E. Protein damage and degradation by oxygen radicals. III. Modification of secondary and tertiary structure. J. Biol. Chem. 1987; 262: 9908–9913
  • Davies K. J. A., Lin S. W., Pacifici R. E. Protein damage and degradation by oxygen radicals. IV. Degradation of denatured protein. J. Biol. Chem. 1987; 262: 9914–9920
  • Domanska-Janik K., Bourre J. M. Effect of lipid peroxidation on Na+K+-ATPase, 5′-nucleotidase and CNPase in mouse brain myelin. Biochim. Biophys. Acta 1990; 1034: 200–206
  • Davison A. J., Legault N. A., Steele D. W. Effect of 6–hydroxydopamine on polymerization of tubulin. Protection by superoxide dismutase, catalase, or anaerobic conditions. Biochem. Pharmacol. 1986; 35: 1411–1417
  • Rafalowska U., Liu G. J., Floyd R. A. Peroxidation induced changes in synaptosomal transport of dopamine and γ-aminobutyric acid. Free Radic. Biol. Med. 1989; 6: 485–492
  • Cheng J. T., Yang C. F., Jou T. C. Inhibitory effect of l-ascorbic acid on the growth of astrocytes in cell culture. Neuropharmacology 1988; 27: 1179–1182
  • Kornbrust D. J., Mavis R. D. Relative susceptibility of microsomes from lung, heart, liver, kidney, brain, and testes to lipid peroxidation: Correlation with vitamin E content. Lipids 1980; 15: 315–322
  • McCay P. B., Vitamin E. Interactions with free radicals and ascorbate. Annu. Rev. Nutri. 1985; 5: 323–340
  • Scarpa M., Rigo A., Maiorino M., Ursini F., Gregolin C. Formation of α-tocopherol radical and recycling of α-tocopherol by ascorbate during peroxidation of phosphotidylcholine liposomes. Biochim. Biophys. Acta 1984; 801: 215–219
  • Liebler D. C., Kling D. S., Reed D. J. Antioxidant protection of phospholipid bilayers by α-tocopherol, control of α-tocopherol status and lipid peroxidation by ascorbic acid and glutathione. J. Biol. Chem. 1986; 261: 12114–12119
  • Doba T., Burton G. W., Ingold K. U. Antioxidant and co-antioxidant activity of vitamin C. The effect of vitamin C, either alone or in the presence of vitamin E or a water-soluble vitamin E analogue, upon the peroxidation of aqueous multilamellar phosopholipid liposomes. Biochim. Biophys. Acta. 1985; 835: 298–303
  • Barclay L. R. C., Locke S. J., MacNeil J. M., VanKessel J., Burton G. W., Ingold K. U. Autoxidation of micelles and model membranes. Quantitative kinetic measurements can be made by using either water-soluble or lipid-soluble initiators with water-soluble or lipid-soluble chain-breaking antioxidants. J. Am. Chem. Soc. 1984; 106: 2479–2481
  • Barclay L. R. C., Bailey A. M. H., Kong D. The antioxidant activity of α-tocopherol-bovine serum albumin complex in micellar and liposome autoxidations. J. Biol. Chem. 1985; 260: 15809–15814
  • Bisby R. H., Ahmed S., Cundall R. B. Repair of amino acid radicals by a vitamin E analogue. Biochem. Biophys. Res. Commun. 1984; 119: 245–251
  • Hormann V. A., Moore D. R., Rikans L. E. Relative contributions of protein sulfhydryl loss and lipid peroxidation to allyl alcohol-induced cytotoxicity in isolated rat hepatocytes. Toxicol. Appl. Pharmacol. 1989; 98: 375–384
  • Sandy M. S., Moldeus P., Ross D., Smith M. T. Role of redox cycling and lipid peroxidation in bipyridyl herbicide cytotoxicity. Studies with a compromised isolated hepatocyte model system. Biochem. Pharmacol. 1986; 35: 3095–3101
  • Phoenix J., Edwards R. H. T., Jackson M. J. Inhibition of Ca2+- induced cytosolic enzyme efflux from skeletal muscle by vitamin E and related compounds. Biochem. J. 1989; 257: 207–213
  • Pellmar T. C., Neel K. L., Lee K. H. Free radicals mediate peroxidative damage in guinea pig hippocampus in vitro. J. Neurosci. Res. 1989; 24: 437–444

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.