70
Views
54
CrossRef citations to date
0
Altmetric
Research Article

Minireview: Mutations and Diseases of G Protein Coupled Receptors

Pages 131-160 | Published online: 26 Sep 2008

References

  • Birnhaumer M., Gilbert S., Rosenthal W. An extracellular CNDI mutation of the vasopressin receptor reduces cell surface expression, affinity for ligand and coupling to the Gs/adenylyl Cyclase System. Mol. Pharmacol. 1994, in press
  • Chung P. Z., Wang C. D., Potter P. C., Venter J. C., Fraser C. M. Site-directed mutagenesis and continuous expression of human β-adrenergic receptor. Identification of a conserved aspartate residue involved in agonist binding and receptor activation. J. Biol. Chem. 1988; 163: 4052–4055
  • Clark A. J.L., McLoughlin L., Grossman A. Familial glucocorticoid deficiency associated with a point mutation in the adrenocorticotropin receptor. Lancet 1993; 341: 461–462
  • Cotecchia S., Exum S., Caron M. G., Letkowitz R. J. Regions of the α1-adrenergic receptor involved in coupling to phosphatidylinositol hydrolysis and enhanced sensitivity of biological function. Proc. Natl. Acad. Sci. USA 1990; 87: 2896–2900
  • Dryja T. P., Berson E. L., Rao V. R., Oprian D. D. Heterozygous missense mutation in the rhodopsin gene as a cause of congenital stationary night blindness. Nature Genet. 1993; 4: 280–283
  • Franke R. R., Koenig B., Sakmar T. P., Khorana H. G., Hofmann K. P. Rhodopsin mutants that bind but fail to activate transducin. Science 1990; 250: 123–125
  • Franke R. R., Sakmar T. P., Graham R. M., Khorana H. G. Structure and function in rhodopsin. Studies of the interaction between the rhodopsin cytoplasmic domain and transducin. J. Biol. Chem. 1992; 267: 14767–14774
  • Fraser C. M., Chung F. Z., Wang C. D., Venter J. C. Site directed mutagenesis of human β-adrenergic receptors: substitution of aspartic acid-130 by asparagine produces a receptor with high affinity agonist binding that is uncoupled from adenylate cyclase. Proc. Natl. Acad. Sci. USA 1988; 85: 5478–5482
  • Horstman D., Brandon S., Wilson A. L., Guyer C. A., Cragoe E. J., Jr., Limbird L. E. An aspartate conserved among G-protein receptors confers allosteric regulation of α2-adrenergic receptors by sodium. J. Biol. Chem. 1990; 265: 21590–21595
  • Ji I., Ji T. H. Asp383 in the second transmembrane domain of the lutropin receptor is important for high affinity hormone binding and cAMP production. J. Biol. Chem. 1991; 266: 14953–14957
  • Kjelsberg M. A., Cotecchia S., Ostrowski J., Caron M. G., Lefkowitz R. J. Constitutive activation of the α1b-adrenergic receptor by all amino acid substitutions at a single site. J. Biol. Chem. 1992; 267: 1430–1433
  • Kosugi S., Okajima F., Ban T., Hidaka A., Shenker A., Kohn L. D. Mutation of alanine 623 in the third cytoplasmic loop of the rat thyrotropin (TSH) receptor results in a loss in the phosphoinositide but not cAMP signal induced by TSH and receptor autoantibodies. J. Biol. Chem. 1992; 267: 24153–24156
  • Kremer H., Mariman E., Otten B. J., Moll G. W., Jr., Stoelinga G. B.A., Wit J. M., Jansen M., Drop S. L., Faas B., Ropers H-H., Brunner H. G. Cosegregation of missense mutations of the luteinizing hormone receptor gene with familial male-limited precocious puberty. Hum. Mol. Genet. 1993; 2: 1779–1783
  • Lin S_L., Lin C. R., Gukovsky I., Lusis A. J., Sawchenko P. E., Rosenfeld M. G. Molecular basis of the little mouse phenotype and implications for cell type-specific growth. Nature 1993; 364: 208–213
  • Nash M. I., Hollyfield J. G., Al-Ubaidi M. R., Baehr W. Simulation of autosomal dominant retinitis pigmentosa in transgenic mice expressing a mutated murine opsin gene. Proc. Natl. Acad. Sci. USA 1993; 90: 5499–5503
  • Neve K. A., Cox B. A., Henningsen R. A., Spanoyannis A., Neve R. L. Pivotal role for aspartate-80 in the regulation of dopamine D2 receptor affinity for drugs and inhibition of adenylyl cyclase. Mol. Pharmacol. 1991; 39: 733–739
  • Parma J., Duprez L., Van Sande J., Cochaux P., Gervy C., Mockel J., Dumont J., Vassart G. Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature 1993; 365: 649–651
  • Pollak M. R., Brown E. M., Chou Y-H.W., Marx S. J., Steinmann B., Levi T., Seidman C. E, Seidman J. D. Mutations in the human Ca2+ sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell 1993; 75: 1297–1303
  • Quintana J., Wang H., Ascoli M. The regulation of the binding affinity of the luteinizing hormone/choriogonadotropin receptor by sodium ions is mediated by a highly conserved aspartate located in the second transmembrane domain of G-protein coupled receptors. Mol. Endo. 1993; 7: 767–775
  • Rao V. R., Cohen G. B., Oprian D. D. Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness. Nature 1994; 367: 639–642
  • Ren Q., Kurose H., Lefkowitz R. J., Cotecchia S. Constitutively active mutants of the α2-adrenergic receptor. J. Biol. Chem. 1993; 268: 16483–16487
  • Robbins L. S., Nadeau J. H., Johnson K. R., Kelly M. A., Roselli-Rehfuss L., Baack E., Mountjoy K. G., Cone R. D. Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell 1993; 72: 827–834
  • Robinson P. R., Cohen; G. B., Zhukovsky E. A., Oprian D. D. Constitutively active mutants of rhodopsin. Neuron 1992; 9: 719–725
  • Rosenthal W., Seibold A., Antaramian A., Lonergan M., Arthus M.-F., Hendy G. N, Birnbaumer M., Bichet D. G. Molecular identification of the gene responsible for congenital nephrogenic diabetes insipidus. Nature 1992; 359: 233–235
  • Rosenthal W., Antaramian A, Gilbert S., Birnbaumer M. Nephrogenic diabetes insipidus: a V2 vasopressin receptor unable to stimulate adenylyl cyclase. J. Biol. Chem. 1993; 268: 13030–13033
  • Samama P., Cotecchia S., Costa T., Lefkowitz R. J. A mutation-induced activated state of the β2-adrenergic receptor. J. Biol. Chem. 1993; 268: 4625–4636
  • Shenker A., Laue L., Kosugi S., Merendino J. J., Minegishi T., Cutler G. B., Jr. A constitutively activating mutation of the luteinizing hormone receptor in familial male precocious puberty. Nature 1993; 365: 652–654
  • Stein S. A., Oats E. L., Hall C. R., Grumbbles R. M., Fernandez L. M., Taylor N. A., Puett D., Gin S. Identification of a point mutation in the thyrotropin receptor of the hyt/hyt hypothyroid mouse. Mol. Endocrinol. 1994; 8: 129–138
  • Strader C. D., Sigal I. S., Candelore M. R., Rands E., McGill W. S., Dixon R. A.F. Conserved aspartic acid residues 79 and 113 of the β-adrenergic receptor have different roles in receptor function. J. Biol. Chem. 1988; 263: 10267–10271
  • Surprenant A., Horstman D., Akbarali H., Limbird L. E. A point mutation of cloned α-adrenoceptor that blocks coupling to potassium but not calcium currents. Science 1992; 257: 977–980
  • Tsigos C., Arai K., Hung W., Chrousos G. P. Hereditary isolated glucocorticoid deficiency is associated with abnormalities of the adrenocorticotropin receptor gene. J. Clin. Invest. 1993; 92: 2458–2461
  • Henderson R., Unwin P. N.T. Three-dimensional model of purple membrane obtained by electron microscopy. Nature 1975; 257: 28–32
  • Henderson R., Baldwin J. M., Ceska T. A., Zemlin F., Beckmann E., Diowning K. H. Model for the structure of bacteriorhodopsin based in high-resolution electron cryo-microscopy. J. Mol. Biol. 1990; 213: 899–929
  • Schertler G. F.X., Villa C., Henderson R. Projection structure of rhodopsin. Nature 1993; 362: 770–772, 1993
  • Baldwin J. The Probable arrangement of the helices in G-protein coupled receptors. EMBO J. 1993; 12: 1693–1703
  • Dixon R. A.F., Sigal I. S., Strader C. D. Structure function analysis of the β-adrenergic receptor. Cold Spring Harbor. Symp. Quant. Biol. 1988; 53: 487–497
  • Savarese T. M., Fraser C. M. In vitro mutagenesis and the search for structure-function relationships among G protein-coupled receptors. Biochem. J. 1992; 283: 1–19
  • Vu T.-K. H., Hung D. T., Wheaton V. I., Coughlin S. R. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 1991; 64: 1057–1068
  • Ostrowski J., Kjelsberg M. A., Caron M. G., Lefkowitz R. J. Mutagenesis of the β2-adrenergic receptor. how structure elucidates function. Ann. Rev. Pharmacol. Toxicol. 1992; 32: 167–183
  • Surprenant A., Horstman D., Akbarali H., Limbird L. E. A point mutation of cloned α-adrenoceptor that blocks coupling to potassium but not calcium currents. Science 1992; 257: 977–980
  • Pasternak G. W., Snyder S. H. Indentification of novel high affinity opiate receptor binding in rat brain. Nature 1975; 253: 563–565
  • Kanaho Y., Tsai S.-C., Adamik R., Hewlett E. L., Moss J., Vaughan M. Rhodopsin-enhanced GTPase activity of the inhibitory GTP-binding protein of adenylate cyclase. J. Biol. Chem. 1984; 259: 7378–7381
  • Florio V. A., Sternweis P. C. Reconstitution of resolved muscarinic cholinergic receptors with purified GTP-binding proteins. J. Biol. Chem. 1985; 260: 3477–3483
  • Florio V. A., Sternweis P. C. Mechanism of muscarinic receptor action on G0 in reconstituted phospholipid vesicles. J. Biol. Chem. 1989; 264: 3909–3915
  • Phillips W. J., Cerione R. A. Rhodopsin/transducin interactions. I. Characterization of the binding of the transducin-βγ subunit complex to rhodopsin using fluorescence spectroscopy. J. Biol. Chem. 1992; 267: 17032–17039
  • Phillips W. J., Wong S. C., Cerione R. A. Rhodopsin/transducin interactions. II. Influence of the transducin-βγ subunit complex on the coupling of the transducin-α subunit to rhodopsin. J. Biol. Chem. 1992; 267: 17040–17046
  • Wess J., Bonner T. I., Derje F., Brann M. R. Delineation of muscarinic receptor domains conferring selectivity of coupling to guanine nucleotide-binding proteins and second messengers. Mol. Pharmacol. 1990; 38: 517–523
  • Cheung A. H., Sigal I. S., Dixon R. A.F., Strader C. D. Agonistpromoted sequestration iof the β2-adrenergic receptor requires regions involved in functional couling with Gs. Mol. Pharmacol. 1989; 34: 132–138
  • Cheung A. H., Huang R-R. C., Graziano M. P., Strader C. D. Specific activation of Gs by synthetic peptides corresponding to an intracellular loop of the β-adrenergic receptor. FEBS Lett. 1991; 279: 277–280
  • Okamoto T., Murayama Y., Hayashi Y., Inagaki M., Ogata E., Nishimoto I. Identification of a Gs activator region of the β2-adrenergic receptor that is autoregulated via protein kinase A-dependent phosphorylation. Cell 1991; 67: 723–730
  • Nishimoto I. The IGF-II receptor system. a G protein-linked mechanism. Molecular Reproduction and Development 1993; 35: 398–407
  • Cotecchia S., Exum S., Caron M. G., Lefkowitz R. J. Regions of the α1-adrenergic receptor involved in coupling to phosphatidylinositol hydrolysis and enhanced sensitivity of biological function Proc. Natl. Acad. Sci. USA 1990; 87: 2896–2900
  • Kjelsberg M. A., Cotecchia S., Ostrowski J., Caron M. G., Lefkowitz R. J. Constitutive activation of the α1B-adrenergic receptor by all amino acid substitutions at a single site. J. Biol. Chem. 1992; 267: 1430–1433
  • Samama P., Cotecchia S., Costa T., Lefkowitz R. J. A mutation induced activated state of the β2-adrenergic receptor. Extending the ternary complex model. J. Biol. Chem. 1993; 268: 4625–4636
  • Ren Q., Kurose H., Lefkowitz R. J., Cotecchia S. Constitutively active mutants of the α2-adrenergic receptor. J. Biol. Chem. 1993; 268: 16483–16487
  • Nash M. I., Hollyfield J. G., Al-Ubaidi M. R., Baehr W. Simulation of autosomal dominant retinitis pigmentosa in transgenic mice expressing a mutated murine opsin gene. Proc. Natl. Acad. Sci. USA 1993; 90: 5499–5503
  • Robinson P. R., Cohen G. B., Zhukovsky E. A., Oprian D. D. Constitutively active mutants of rhodopsin. Neuron 1992; 9: 719–725
  • Birnbaumer M., Seibold A., Gilbert S., Ishido M., Barberis C., Antaramian A., Brabet P., Rosenthal W. Molecular cloning of the human antidiuretic hormone receptor. Nature 1992; 357: 333–335
  • Seibold A., Brabet P., Rosenthal W., Birnbaumer M. Structural and chromosomal localization of the human antidiuretic receptor gene. Am. J. Hum. Genet. 1992; 51: 1078–1083
  • Rosenthal W., Seibold A., Antaramian A., Lonergan M., Arthus M.-F., Hendy G. N., Birnbaumer M., Bichet D. G. Molecular identification of the gene responsible for congenital nephrogenic diabetes insipidus. Nature 1992; 359: 233–235
  • Rosenthal W., Antaramian A., Gilbert S., Birnbaumer M. Nephrogenic diabetes insipidus: a V2 vasopressin receptor unable to stimulate adenylyl cyclase. J. Biol. Chem. 1993; 268: 13030–13033
  • Birnbaumer M., Gilbert S., Rosenthal W. An extracellular NDI mutation of the vasopressin receptor reduces cell surface expression, affinity for ligand and coupling to the Gs/adenylyl cyclase system. Mol. Endocrinol. 1994, in press
  • Robbins L. S., Nadeau J. H., Johnson KR., Kelly M. A., Roselli-Rehfuss L., Baack E., Mountjoy KG., Cone R. D. Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell 1993; 72: 827–834
  • Jackson I. J. More colour than meets the eye. Current Biology 1993; 3: 510–521
  • Shenker A., Laue L., Kosugi S., Merendino J. J., Minegishi T., Cutler G. B., Jr. A constitutively activating mutation of the luteinizing hormone receptor in familial male precocious puberty. Nature. 1993; 365: 652–654
  • Kremer H., Mariman E., Otten B. J., Moll G. W., Jr., Stoelinga G. B.A., Wit J. M., Jansen M., Drop S. L., Faas B., Ropers H-H., Brunner H. G. Cosegregation of missense mutations of the luteinizing hormone receptor gene with familial male-limited precocious puberty. Hum. Mol. Genet. 1993; 2: 1779–1783
  • Ji I., Ji T. H. Asp383 in the second transmembrane domain of the lutropin receptor is important for high affinity hormone binding and cAMP production. J. Biol. Chem. 1991; 266: 14953–14957
  • Kobilka B. K., Kobilka T. S., Daniel K., Regan J. W., Caron M. G., Lefkowitz R. J. Chimeric α2/β2-adrenergic receptors: delineation of domains involved in effector coupling and ligand binding specificity. Science 1988; 240: 130–1316
  • Rubenstein R. C., Wong S. K.P., Ross E. M. The hydrophobic tryptic core of the β-adrenergic receptor retains GS regulatory activity in response to agonists and thiols. J. Biol. Chem. 1987; 262: 16655–16662
  • Suryanarayana S., von Zastrow M., Kobilka B. K. Identification of intramolecular interactions in adrenergic receptors. J. Biol. Chem. 1992; 267: 21991–21994
  • Tsai-Morris C. H., Buczko E., Wang W., Dufau M. L. Intronic nature of the rat luteinizing hormone receptor gene defines a soluble receptor subspecies with hormone binding activity. J. Biol. Chem. 1990; 265: 19385–19388
  • Osenberg D., Marsters S. A., O'Dowd B. F., Jin H., Havlik S., Peroutka S. J., Ashkenazi A. A single amino acid difference confers major pharmacological variation between human and rodent 5HT-1B receptors. Nature 1992; 360: 161–163
  • Gether U., Johansen T. E., Snider M. R., Lowe J. A., Nakanishi S., Schwartz T. W. Different binding epitopes in the NK1 receptor for substance P and a non-peptide antagonist. Nature 1993; 362: 345–348
  • Wess J., Bonner T. I., Derje F., Brann M. R. Delineation of muscarinic receptor domains conferring selectivity of coupling to guanine nucleotide-binding proteins and second messengers. Mol. Pharmacol. 1990; 38: 517–523
  • Blüml K., Mutschler E., Wess J. Identification of an intracellular tyrosine residue critical for muscarinic receptor-mediated stimulation of phosphatidylinositol hydrolysis. J. Biol. Chem. 1994; 269: 402–405
  • Benovic J. L., Kühn H., Weyand I., Codina J., Caron M. G., Lefkowitz R. J. Functional desensitization of the isolated β-adrenergic receptor by the β-adrenergic receptor kinase: potential role of an analog of the retinal protein arrestin (48k protein). Proc. Natl. Acad. Sci. USA 1987; 84: 8879–8882
  • Benovic J. L., De Blasi A., Stone W. C., Caron M. G., Lefkowitz R. J. β-Adrenergic receptor kinase: primary structure delineates a multigene family. Science 1989; 246: 235–240
  • Lohse M. J., Andexinger S., Pitcher J., Trukawinski S., Codina J., Faure J.-P., Caron M. G., Lefkowitz R. J. Receptor-specific desensitization with purified proteins. Kinase dependence and receptor specificity of β-arrestin and arrestin in the β2-adrenergic receptor and rhodopsin systems. J. Biol. Chem. 1992; 267: 8558–8564
  • Haga K., Haga T. Activation by G protein βγ subunits of agonist- or light-dependent phosphorylation of muscarinic acetylcholine receptors and rhodopsin. J. Biol. Chem. 1992; 267: 2222–2227
  • Kameyama K., Haga K., Haga T., Kontani K., Katada T., Fukada Y. Activation by G protein βγ subunits of β-adrenergic and muscarinic receptor kinase. J. Biol. Chem. 1993; 268: 7753–7758
  • Pitcher J. A., Inglese J., Higgins J. B., Arriza J. L., Casey P. J., Kim C., Benovic J. L., Kwatra M. M., Caron M. G., Lefkowitz R. J. Role of βγ subunits of G proteins in targeting of the β-adrenergic receptor kinase to membrane-bound receptors. Science 1992; 257: 1264–1267
  • Inglese J., Freedman N. J., Koch W. J., Lefkowitz R. J. Structure and mechanism of the G protein coupled receptor kinases. J. Biol. Chem. 1993; 268: 23735–23738
  • Parma J., Duprez L., Van Sande J., Cochaux P., Gervy C., Mockel J., Dumont J., Vassart G. Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature 1993; 365: 649–651
  • Dalman H. M., Neubig R. R. Two peptides from the α2A-adrenergic receptor alter G protein coupling by distinct mechanisms. J. Biol. Chem. 1991; 266: 11025–11029
  • Ikezu T., Okamoto T., Ogata E., Nishimoto I. Amino acids 356-372 constitute a Gi-activator sequence of the α2-adrenergic receptor and have a Phe substitute in the G protein-activator sequence motif. FEBS Lett. 1992; 311: 29–32
  • Rodbell M., Krans H. M.J., Pohl S. L., Birnbaumer L. The glucagonsensitive adenyl cyclase system in plasma membranes of rat liver. IV. Binding of glucagon: effect of guanyl nucleotides. J. Biol. Chem. 1971; 246: 1872–1876
  • Maguire M. E., Van Arsdale P. M., Gilman A. G. An agonist-specific effect of guanine nucleotides on binding to the beta adrenergic receptor. Mol. Pharmacol. 1976; 12: 335–339
  • Lefkowitz R. J., Mullikan D., Caron M. G. Regulation of β-adrenergic receptors by guanyl-5′-yl imidodiphosphate and other purine nucleotides. J. Biol. Chem. 1976; 251: 4686–4692
  • Berrie C. P., Birdsall N. J.M., Burgen A. S.V., Hulme E. C. Guanine nucleotides modulate muscarinic receptor binding in the heart. Biochem. Biophys. Res. Comm. 1979; 87: 1000–1005
  • Rosenberger L. B., Roeske W. R., Yamamura H. I. The regulation of muscarinic cholinergic receptors by guanine nucleotides in cardiac tissue. Europ. J. Pharmacol. 1979; 56: 179–180
  • Grandt R, Aktories K., Jakobs K. H. Guanine nucleotides and monovalent cations increase agonist affinity of prostaglandin E2 receptors in hamster platelets. Mol. Pharmacol. 1982; 22: 320–326
  • Sugimoto Y., Negishi M., Hayashi Y., Namba T., Honda A., Watabe A., Hirata M., Narumiya S., Ichikawa A. Two isoforms of EP3 receptor with different carboxylterminal domains. Identical ligand binding properties and different coupling properties with Gi proteins. J. Biol. Chem. 1993; 268: 2712–2718
  • Karnik S. S., Sakmar T. P, Chen H. B., Khorana H. G. Cysteine residues 110 and 187 are essential for the formation of correct structureof bovine rhodopsin. Proc. Natl. Acad. Sci. USA 1988; 85: 8459–8463
  • O'Dowd B. F., Hnatowitch M., Caron M. G., Lefkowitz R. J., Bouvier M. Palmitoylation of the human beta 2-adrenergic receptor: mutation of Cys-341 in the carboxyl tail leads to an uncoupled non-palmitoylated form of the receptor. J. Biol. Chem. 1989; 264: 7564–7569
  • Moffett S. W., Mouillac B., Bonin H., Bouvier M. Altered phosphorylation and desensitization patterns of a human β2-adrenergic receptor lacking the palmitoylated Cys341. EMBO J. 1993; 12: 349–356
  • Kennedy M. E., Limbird L. E. Mutations of the α2A-adrenergic receptor that eliminate detectable palmitoylation do not perturb receptor-G protein coupling. J. Biol. Chem. 1993; 268: 8003–8011
  • Chabre M. Triger. Amplification mechanisms in visual phototransduction. Ann. Rev. Biophys. Biophys. Chem. 1985; 14: 331–347
  • Stryer L. Molecular basis for visual excitation. Cold Spring Harbor. Symp. Quant. Biol. 1988; 53: 283–294
  • Braiman M., Bubis J., Doi T., Chen H.-B., Flitsch S. L., Franke R. R., Giles-Gonzalez M. A., Graham R. M., Karnik S. S., Khorana G. G., Knox B. E., Kebs M. P., Marti T., Mogi T., Nakayama T., Oprian D. D., Puckett K. L., Sakmar T. P., Stern L. J., Subramanian S., Thompson D. A. Studies on light transduction by bacteriorhodopsin and rhodopsin. Cold Spring Harbor. Symp. Quant. Biol. 1988; 53: 355–364
  • Zhukovsky E. A., Robinson P. R., Oprian D. D. Transducin activation by rhodopsin without a covalent bond to the 11-cis-retinal chromophore. Science 1991; 251: 558–559
  • Bichet D. G., Arthus M.-F., Lonergan M., Hendy G. N., Paradis A. J., Fujiwara T. M., Morgan K., Gregory M. C., Rosenthal W., Antaramian A., Birnbaumer M. X-linked nephrogenic diabetes insipidus mutations in North America and the Hopewell hypothesis. J. Clin. Invest. 1993; 92: 1262–1268
  • Holtzman E. J., Harris H. W.H., Kolakowski L. F., Guay-Woodford L. M., Botelho B., Aussiello D. A. A molecular defect in vasopressin V2-receptor gene causing nephrogenic diabetes insipidus. N. Engl. J. Med. 1993; 328: 1534–1537
  • Knoers N. V.A.M., Verdijk M., Monnens L. A.H., van den Ouweland A. M. W., van Oost B. A. Inheritance of mutations in the vasopressin V2 receptor gene in 15 Dutch families with congenital nephrogenic diabetes insipidus. Vasopressin, P. Gross, D. Richter, G. L. Robertson, J. Libbey, BerlinGermany 1993; 571–572, Eurotext, Proceedings of the W International Vasopressin Conference May 1993
  • Merendino J. J., Spiegel A. M., Crawford J. D., O'Carroll A-M., Brownstein M. J., Lolait S. J. A mutation in the vasopressin V2 receptor gene in a kindred with X-linked nephrogenic diabetes insipidus. N. Engl. J. Med. 1993; 328: 1538–1541
  • Pan Y., Metzenberg A., Das S., Gitschier J. Mutations in the V2 vasopressin receptor gene are associated with x-linked nephrogenic diabetes insipidus. Nature Genetics 1992; 2: 103–106
  • van den Ouweland A. M. W., Dreesen J. C.F.M., Verdijk M., Knoers N. V.A.M., Monnens L. A.H., Rocchi M., van Oost B. A. Mutations in the vasopressin type 2 receptor gene AVPR2 associated with nephrogenic diabetes insipidus. Nature Genetics 1992; 2: 99–102

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.